
Data-intensive
computing systems

University of Verona

Computer Science Department

 Damiano Carra

 2

Acknowledgements

q  Credits

–  Part of the course material is based on slides provided by the following

authors

•  P. Michiardi, M. Zaharia, A. Davidson

 3

Introduction - Motivation

q  MapReduce greatly simplified “big data” analysis on large, unreliable
clusters

q  But as soon as it got popular, users wanted more:

–  More complex, multi-stage applications
(e.g. iterative machine learning & graph processing)

–  More interactive ad-hoc queries

q  Response è specialized frameworks for some of these apps

–  E.g. Pregel for graph processing

 4

Motivation – Data point of view

q  Complex apps and interactive queries both need one thing that
MapReduce lacks:

–  Efficient primitives for data sharing

q  In MapReduce, the only way to share data across jobs is stable
storage

–  Slow!

 5

Goal

q  From the Hadoop approach

–  Slow due to replication and disk I/O, but necessary for fault tolerance

q  To an “in-memory” approach

iter. 1 iter. 2 .		.		.	

Input	

HDFS	
read	

HDFS	
write	

HDFS	
read	

HDFS	
write	

iter. 1 iter. 2 .		.		.	

Input	

 6

Motivation – System point of view

q  Hadoop code base is huge

q  Contributions/Extensions to Hadoop are cumbersome

q  System/Framework: no unified pipeline

–  Sparse modules

–  Diversity of APIs

–  Higher operational costs

 7

Goals

q  Unified pipeline

q  Simplified data flow

 8

Summary of the challenges

q Data

–  How to design a distributed memory abstraction that is both
fault-tolerant and efficient?

q System

–  Is it possible to build a unified system that includes library
for the most common problems?

 9

Resilient Distributed Datasets (RDD)

 10

What is an RDD

q  RDD are partitioned, locality aware, distributed collections

–  RDD are immutable

q  RDD are data structures that:

–  Either point to a direct data source (e.g. HDFS)

–  Apply some transformations to its parent RDD(s) to generate new data
elements

q  Computations on RDDs

–  Represented by lazily evaluated lineage DAGs composed by chained RDDs

 11

RDD Abstraction

q  Overall objective

–  Support a wide array of operators (more than just Map and Reduce)

–  Allow arbitrary composition of such operators

q  Simplify scheduling

–  Avoid to modify the scheduler for each operator

q  The question is: How to capture dependencies in a general way?

 12

RDD Interfaces

q  Set of partitions (“splits”)

–  Much like in Hadoop MapReduce, each RDD is associated to (input) partitions

q  List of dependencies on parent RDDs

–  This is completely new w.r.t. Hadoop MapReduce

q  Function to compute a partition given parents

–  This is actually the “user-defined code” we referred to when discussing about
the Mapper and Reducer classes in Hadoop

q  Optional preferred locations

–  This is to enforce data locality

q  Optional partitioning info (Partitioner)

–  This really helps in some “advanced” scenarios in which you want to pay
attention to the behavior of the shuffle mechanism

 13

Examples of RDD

Hadoop RDD Filtered RDD Joined RDD

Partitions One per HDFS block Same as parent RDD One per reduce task

Dependencies None One-to-one on
parent

Shuffle on each
parent

Compute (partition) Read corresponding
block

Compute parent
and filter it

Read and join
shuffled data

Preferred location HDFS block location None (ask parent) None

Partitioner None None HashPartitioner
(numTask)

 14

Dependency types: narrow

q  Each partition of the parent RDD
is used by at most one partition
of the child RDD

q  Task can be executed locally and
we don’t have to shuffle. (Eg:
map, flatMap, filter, sample)

 15

Dependency types: wide

q  Multiple child partitions may
depend on one partition of the
parent RDD

q  This means we have to shuffle
data unless the parents are hash-
partitioned

–  Eg: sortByKey, reduceByKey,
groupByKey, cogroupByKey, join,
cartesian

 16

Dependency Types: Optimizations

q  Benefits of Lazy evaluation:
The DAG Scheduler optimizes
Stages and Tasks before
submitting them to the Task
Scheduler

q  Examples:

–  Pipelining narrow
dependencies within a Stage

–  Join plan selection based on
partitioning

–  Cache reuse

 17

Operations on RDDs: Transformations

q  Transformations

–  Set of operations on a RDD that define how they should be transformed

–  As in relational algebra, the application of a transformation to an RDD yields a
new RDD (because RDDs are immutable)

–  Transformations are lazily evaluated, which allow for optimizations to take
place before execution

q  Examples (not exhaustive)

–  map(func), flatMap(func), filter(func)

–  grouByKey()

–  reduceByKey(func), mapValues(func), distinct(), sortByKey(func)

–  join(other), union(other)

–  sample()

 18

Operations on RDDs: Actions

q  Actions

–  Apply transformation chains on RDDs, eventually performing some additional
operations (e.g., counting)

–  Some actions only store data to an external data source (e.g. HDFS), others
fetch data from the RDD (and its transformation chain) upon which the action is
applied, and convey it to the driver

q  Examples (not exhaustive)

–  reduce(func)

–  collect(), first(), take(), foreach(func)

–  count(), countByKey()

–  saveAsTextFile()

 19

Examples

 20

Word count

q  “sc” is the SparkContext

–  A SparkContext initializes the application driver, the latter then registers the
application to the cluster manager, and gets a list of executors

q  Alternative version:

val textFile = sc.textFile("hdfs://...")

val counts = textFile.flatMap(line => line.split(" "))

 .map(word => (word, 1))

 .reduceByKey((a,b) => a + b)

counts.saveAsTextFile("hdfs://...")

val counts = textFile.flatMap(_.split(" "))

 .map(_ => 1))

 .reduceByKey(_ + _)

 21

Common Transformations

 22

Common Transformations

 23

Log mining

q  Load error messages from a log into memory, then interactively search for
various patterns

lines = sc.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’))

messages.persist() // keep in memory

messages.filter(_.contains(“foo”)).count

messages.filter(_.contains(“bar”)).count

 24

Pagerank

q  Pagerank defined as usual è

q  Simple version, with no sink nodes

val links = ... // load RDD of (url, neighbors) pairs

var ranks = ... // load RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {

 val contribs = links.join(ranks).flatMap {

 (url, (links, rank)) =>

 links.map(dest => (dest, rank/links.size))

 }
 ranks = contribs.reduceByKey(_ + _)
 .mapValues(0.15/G + 0.85 * _)

}
ranks.saveAsTextFile("hdfs://...”)

P(n) =α 1
G

!

"
##

$

%
&&+ (1−α)

P(m)
C(m)m∈L(n)

∑

 25

PageRank Performance

17
1

80

23

14

0

50

100

150

200

30 60

It
e
ra

ti
o
n
 t

im
e
 (

s)

Number of machines

Hadoop

Spark

 26

Other Iterative Algorithms

Time per Iteration (s)

 27

Overview of the framework

 28

A Very Simple Application Example

val sc = new SparkContext("spark://...", "MyJob", home, jars)

val file = sc.textFile("hdfs://...") // This is an RDD

val errors = file.filter(_.contains("ERROR")) // This is an RDD

errors.cache()

errors.count() // This is an action

 29

Spark Applications: The Big Picture

q  There are two ways to manipulate data in Spark

–  Use the interactive shell

–  Write standalone applications, i.e., driver programs

 30

Spark Components: details

 31

The RDD graph: dataset vs. partition views

 32

Data Locality

q  Data locality principle

–  Same as for Hadoop MapReduce

–  Avoid network I/O, workers should manage local data

q  Data locality and caching

–  First run: data not in cache, so use HadoopRDD’s locality prefs (from HDFS)

–  Second run: FilteredRDD is in cache, so use its locations

–  If something falls out of cache, go back to HDFS

 33

Lifetime of a Job in Spark

 34

In Summary

q  Our example Application: a jar file

–  Creates a SparkContext, which is the core component of the driver

–  Creates an input RDD, from a file in HDFS

–  Manipulates the input RDD by applying a filter transformation

–  Invokes the action count() on the transformed RDD

q  The DAG Scheduler

–  Gets: RDDs, functions to run on each partition and a listener for results

–  Builds Stages of Tasks objects (code + preferred location)

–  Submits Tasks to the Task Scheduler as ready

–  Resubmits failed Stages

q  The Task Scheduler

–  Launches Tasks on executors

–  Relaunches failed Tasks

–  Reports to the DAG Scheduler

