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Introduction - Motivation 

q  MapReduce greatly simplified “big data” analysis on large, unreliable 
clusters 

q  But as soon as it got popular, users wanted more: 

–  More complex, multi-stage applications 
(e.g. iterative machine learning & graph processing) 

–  More interactive ad-hoc queries 

q  Response è specialized frameworks for some of these apps  

–  E.g. Pregel for graph processing 
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Motivation – Data point of view 

q  Complex apps and interactive queries both need one thing that 
MapReduce lacks: 

–  Efficient primitives for data sharing 

q  In MapReduce, the only way to share data across jobs is stable 
storage 

–  Slow! 
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Goal 

q  From the Hadoop approach 

–  Slow due to replication and disk I/O, but necessary for fault tolerance 

q  To an “in-memory” approach 
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Motivation – System point of view 

q  Hadoop code base is huge 

q  Contributions/Extensions to Hadoop are cumbersome 

q  System/Framework: no unified pipeline 

–  Sparse modules 

–  Diversity of APIs 

–  Higher operational costs 
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Goals 

q  Unified pipeline 

q  Simplified data flow 
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Summary of the challenges 

q Data 

–  How to design a distributed memory abstraction that is both 
fault-tolerant and efficient? 

 

q System 

–  Is it possible to build a unified system that includes library 
for the most common problems? 
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Resilient Distributed Datasets (RDD) 
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What is an RDD 

q  RDD are partitioned, locality aware, distributed collections 

–  RDD are immutable 

q  RDD are data structures that: 

–  Either point to a direct data source (e.g. HDFS) 

–  Apply some transformations to its parent RDD(s) to generate new data 
elements 

q  Computations on RDDs 

–  Represented by lazily evaluated lineage DAGs composed by chained RDDs 
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RDD Abstraction 

q  Overall objective 

–  Support a wide array of operators (more than just Map and Reduce) 

–  Allow arbitrary composition of such operators 

q  Simplify scheduling 

–  Avoid to modify the scheduler for each operator 

q  The question is: How to capture dependencies in a general way? 
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RDD Interfaces 

q  Set of partitions (“splits”) 

–  Much like in Hadoop MapReduce, each RDD is associated to (input) partitions 

q  List of dependencies on parent RDDs 

–  This is completely new w.r.t. Hadoop MapReduce  

q  Function to compute a partition given parents 

–  This is actually the “user-defined code” we referred to when discussing about 
the Mapper and Reducer classes in Hadoop 

q  Optional preferred locations 

–  This is to enforce data locality  

q  Optional partitioning info (Partitioner) 

–  This really helps in some “advanced” scenarios in which you want to pay 
attention to the behavior of the shuffle mechanism 
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Examples of RDD 

Hadoop RDD Filtered RDD Joined RDD 

Partitions One per HDFS block Same as parent RDD One per reduce task 

Dependencies None One-to-one on 
parent 

Shuffle on each 
parent 

Compute (partition) Read corresponding 
block  

Compute parent 
and filter it  

Read and join 
shuffled data  

Preferred location HDFS block location  None (ask parent)  None 

Partitioner None None HashPartitioner 
(numTask) 

 14 

Dependency types: narrow 

q  Each partition of the parent RDD 
is used by at most one partition 
of the child RDD 

q  Task can be executed locally and 
we don’t have to shuffle. (Eg: 
map, flatMap, filter, sample) 
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Dependency types: wide 

q  Multiple child partitions may 
depend on one partition of the 
parent RDD 

q  This means we have to shuffle 
data unless the parents are hash-
partitioned 

–  Eg: sortByKey, reduceByKey, 
groupByKey, cogroupByKey, join, 
cartesian 
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Dependency Types: Optimizations 

q  Benefits of Lazy evaluation: 
The DAG Scheduler optimizes 
Stages and Tasks before 
submitting them to the Task 
Scheduler 

q  Examples: 

–  Pipelining narrow 
dependencies within a Stage 

–  Join plan selection based on 
partitioning 

–  Cache reuse 
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Operations on RDDs: Transformations 

q  Transformations 

–  Set of operations on a RDD that define how they should be transformed 

–  As in relational algebra, the application of a transformation to an RDD yields a 
new RDD (because RDDs are immutable) 

–  Transformations are lazily evaluated, which allow for optimizations to take 
place before execution 

q  Examples (not exhaustive) 

–  map(func), flatMap(func), filter(func) 

–  grouByKey() 

–  reduceByKey(func), mapValues(func), distinct(), sortByKey(func) 

–  join(other), union(other) 

–  sample() 
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Operations on RDDs: Actions 

q  Actions 

–  Apply transformation chains on RDDs, eventually performing some additional 
operations (e.g., counting) 

–  Some actions only store data to an external data source (e.g. HDFS), others 
fetch data from the RDD (and its transformation chain) upon which the action is 
applied, and convey it to the driver 

q  Examples (not exhaustive) 

–  reduce(func) 

–  collect(), first(), take(), foreach(func) 

–  count(), countByKey() 

–  saveAsTextFile() 
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Examples 
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Word count 

q  “sc” is the SparkContext  

–  A SparkContext initializes the application driver, the latter then registers the 
application to the cluster manager, and gets a list of executors 

q  Alternative version: 

val textFile = sc.textFile("hdfs://...") 

val counts = textFile.flatMap(line => line.split(" ")) 

                 .map(word => (word, 1)) 

                 .reduceByKey((a,b) => a + b) 

counts.saveAsTextFile("hdfs://...") 

val counts = textFile.flatMap(_.split(" ")) 

                 .map(_ => 1)) 

                 .reduceByKey(_ + _) 
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Common Transformations 
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Common Transformations 
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Log mining 

q  Load error messages from a log into memory, then interactively search for 
various patterns 

lines = sc.textFile(“hdfs://...”) 

errors = lines.filter(_.startsWith(“ERROR”)) 

messages = errors.map(_.split(‘\t’)) 

messages.persist() // keep in memory 

 

messages.filter(_.contains(“foo”)).count 

messages.filter(_.contains(“bar”)).count 
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Pagerank 

q  Pagerank defined as usual   è 

q  Simple version, with no sink nodes 

val links = ... // load RDD of (url, neighbors) pairs 

var ranks = ... // load RDD of (url, rank) pairs 

 

for (i <- 1 to ITERATIONS) { 

  val contribs = links.join(ranks).flatMap { 

    (url, (links, rank)) => 

      links.map(dest => (dest, rank/links.size)) 

  } 
  ranks = contribs.reduceByKey(_ + _) 
                  .mapValues(0.15/G + 0.85 * _) 

} 
ranks.saveAsTextFile("hdfs://...”) 
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PageRank Performance 
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Other Iterative Algorithms 

Time per Iteration (s) 
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Overview of the framework 
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A Very Simple Application Example 

val sc = new SparkContext("spark://...", "MyJob", home, jars) 

val file = sc.textFile("hdfs://...") // This is an RDD 

val errors = file.filter(_.contains("ERROR")) // This is an RDD 

errors.cache() 

errors.count() // This is an action 
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Spark Applications: The Big Picture 

q  There are two ways to manipulate data in Spark 

–  Use the interactive shell 

–  Write standalone applications, i.e., driver programs 
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Spark Components: details 
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The RDD graph: dataset vs. partition views 
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Data Locality 

q  Data locality principle 

–  Same as for Hadoop MapReduce 

–  Avoid network I/O, workers should manage local data 

q  Data locality and caching 

–  First run: data not in cache, so use HadoopRDD’s locality prefs (from HDFS) 

–  Second run: FilteredRDD is in cache, so use its locations 

–  If something falls out of cache, go back to HDFS 
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Lifetime of a Job in Spark 
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In Summary 

q  Our example Application: a jar file 

–  Creates a SparkContext, which is the core component of the driver 

–  Creates an input RDD, from a file in HDFS 

–  Manipulates the input RDD by applying a filter transformation 

–  Invokes the action count() on the transformed RDD 

q  The DAG Scheduler 

–  Gets: RDDs, functions to run on each partition and a listener for results 

–  Builds Stages of Tasks objects (code + preferred location) 

–  Submits Tasks to the Task Scheduler as ready 

–  Resubmits failed Stages 

q  The Task Scheduler 

–  Launches Tasks on executors 

–  Relaunches failed Tasks 

–  Reports to the DAG Scheduler 


