
DFT Properties: (5) Rotation
• Rotating f(x,y) by θ rotates F(u,v) by θ



mean value
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Separability
• The discrete two-dimensional Fourier transform of an image 

array is defined in series form as

• Inverse transform

• Because the transform kernels are separable and symmetric, the two 
dimensional transforms can be computed as sequential row and column 
one-dimensional transforms. 

• The basis functions of the transform are complex exponentials that may be 
decomposed into sine and cosine components.

43

1 1 2

0 0

1[ , ] [ , ]
k lM N j m n
M N

m n
F k l f m n e

MN
p æ ö- - - +ç ÷
è ø

= =

= åå

1 1 2

0 0
[ , ] [ , ]

k lM N j m n
M N

k l
f m n F k l e

p æ ö- - +ç ÷
è ø

= =

=åå



2D DFT: summary
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2D DFT: summary
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2D DFT: summary
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2D DFT: summary
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Magnitude and Phase of DFT
• What is more important?

Hint: use inverse DFT to reconstruct the image using 
magnitude or phase only information

magnitude phase



Magnitude and Phase of DFT (cont’d)

Reconstructed image using 
magnitude only
(i.e., magnitude determines the 
contribution of each component!)

Reconstructed image using 
phase only

(i.e., phase determines
which components are present!)



Magnitude and Phase of DFT (cont’d)



Ex. 1
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Ex. 2
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Ex. 3
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Magnitudes



Margherita Hack
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log amplitude of the spectrum



Einstein
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log amplitude of the spectrum



Examples
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other formulations



2D Discrete Fourier Transform

• Inverse DFT
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• 2D Discrete Fourier Transform (DFT)
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2D Discrete Fourier Transform

• Inverse DFT
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• It is also possible to define DFT as follows
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0,1,..., 1l N= -



2D Discrete Fourier Transform

• Inverse DFT
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• Or, as follows
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where                               and 0,1,..., 1k M= - 0,1,..., 1l N= -



2D DCT

Discrete Cosine Transform



2D DCT
• based on most common form for 1D DCT
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u,x=0,1,…, N-1

“mean” value



1D basis functions
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Cosine basis functions are orthogonal

Figure 1



2D DCT
• Corresponding 2D formulation
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u,v=0,1,…., N-1

direct

inverse



2D basis functions
• The 2-D basis functions can be generated by multiplying the 

horizontally oriented 1-D basis functions (shown in Figure 1) 
with vertically oriented set of the same functions. 

• The basis functions for N = 8 are shown in Figure 2. 
• The basis functions exhibit a progressive increase in frequency both in 

the vertical and horizontal direction. 
• The top left basis function assumes a constant value and is referred to 

as the DC coefficient.
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2D DCT basis functions
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Figure 2



Separability
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The inverse of a multi-dimensional DCT is just a separable product of the 
inverse(s) of the corresponding one-dimensional DCT , e.g. the one-
dimensional inverses applied along one dimension at a time



Separability
• Symmetry

• Another look at the row and column operations reveals that these 
operations are functionally identical. Such a transformation is called a 
symmetric transformation. 

• A separable and symmetric transform can be expressed in the form

• where A is a NxN symmetric transformation matrix which entries a(i,j) 
are given by

• This is an extremely useful property since it implies that the transformation 
matrix can be pre computed offline and then applied to the image thereby 
providing orders of magnitude improvement in computation efficiency.
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T AfA=



Computational efficiency
• Computational efficiency

• Inverse transform

• DCT basis functions are orthogonal. Thus, the inverse transformation 
matrix of A is equal to its transpose i.e. A-1= AT. 
• This property renders some reduction in the pre-computation complexity.
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Block-based implementation
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The source data (8x8) is transformed to 
a linear combination of these 64 
frequency squares. 

Block size
N=M=8

Block-based transform

Basis function



Energy compaction
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Energy compaction
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Appendix
• Eulero’s formula
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Sampling theorem revisited
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Sampling
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Sampling
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If there is no aliasing, the original signal 
can be recovered from its samples by 
low-pass filtering.
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Sampling
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Sampling
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■ Without anti-aliasing filter: 

■ With anti-aliasing filter: 



Sampling in 2D (images)
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Sampling
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Interpolation (low pass filtering)
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Ideal reconstruction  
filter:



Anti-Aliasing

a=imread(‘barbara.tif’);



Anti-Aliasing

a=imread(‘barbara.tif’);
b=imresize(a,0.25);
c=imresize(b,4);



Anti-Aliasing

a=imread(‘barbara.tif’);
b=imresize(a,0.25);
c=imresize(b,4);

H=zeros(512,512);
H(256-64:256+64, 256-64:256+64)=1;

Da=fft2(a);
Da=fftshift(Da);
Dd=Da.*H;
Dd=fftshift(Dd);
d=real(ifft2(Dd));



Impulse Train
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• In the case of continuous signals:



2D DTFT: constant

■ Fourier Transform of 1

To prove: Take the inverse Fourier Transform of the Dirac delta function and use the fact that 
the Fourier Transform has to be periodic with period 1. 

f [k,l]=1,∀k,l

F[u,v]= 1× e− j2π uk+vl( )$
%&

'
()

l=−∞

∞

∑
k=−∞

∞

∑ =

= δ(u− k,v − l)
l=−∞

∞

∑
k=−∞

∞

∑ periodic with period 1 
along u and v


