Review

EECS 20
Lecture 38 (April 27, 2001)

Tom Henzinger

Revised by Matteo Zavatteri and Tiziano Villa, Fall 2020



Transducive System

Input Value — —  Qutput Value

transduciveSystem : Values — Values

Reactive System

Input Signal — > OutputSignal

reactiveSystem : [ Time — Values ] - [ Time — Values ]



Discrete time: Time = Natsy={0,1, 2, ..}
Continuous time: Time = Reals, ={x € Reals | x>0}



A reactive system
F: [ Time > Values ] - [ Time — Values ]
is memory-free
iff
there exists a fransducive system
f: Values — Values
such that
V x e[ Time— Values], Vye Time,

(FG))y) = f(x(y)).



A reactive system
F: [ Time > Values ] - [ Time - Values ]
is causal
iff
V X,y € [ Time > Values ], V z € Time,
if (VteTime, t<z = x(t)=y (1))
then (F(x))(z) = (F(y))(2) .



The Delay System

Delay.: [ Time —» Values ] > [ Time — Values ]
such that v x € [ Time — Values ], Vy € Time,

C if y<l1

( Delay (x)) (y) = { x(y-1) if y>1



Discrete-time delay over finite set of values :
finite memory
Continuous-time delay, or infinite set of values:

infinite memory



Legal Transducive Block Diagrams

-all components are transducive systems

-no cycles

e.g., combinational circuits

Legal Reactive Block Diagrams

-all components are memory-free or delay systems

-every cycle contains at least one delay

e.g., sequential circuits



Discrete-time reactive systems with
finite memory
are naturally implemented as

finite state machines.



A Discrete-Time Reactive System

Natsg — Inputs Natsy — Outputs

— —

F: [ Natsy > Inputs ] — [ Natsy — Outputs ]



State Machine Implementation

Natsg — Inputs —

/

2 2

Update
1 1

__ memory-free

Natsy — Outputs
>

NGTSo—>
States

Dini‘rialS‘ra‘re

NGTSo—>

—— delay stores
state

States

update : States x Inputs — States x Outputs
initialState € States



Deterministic State Machine

Inputs ( set of possible input values )
Outputs ( set of possible output values )
States ( set of states)

initialState € States
update : States x Inputs — States x Outputs



Product of State Machines

Any block diagram of N state
machines with the state spaces

Statesl, States?2, ... StatesN

can be implemented by a single state
machine with the state space

Statesl x States2 x ... x StatesN .

This is called a "product machine”.



Deterministic Reactive System:

for every input signal, there is exactly one output signal.

Function:

DetSys : [ Time —» Inputs ] » [ Time — Outputs ]



Nondeterministic Reactive System:

for every input signal, there is one or more output signals.

Binary relation:
NondetSys < [ Time — Inputs ] x [ Time — Outputs ]

such that V x € [ Time — Inputs ],
3y e [ Time — Outputs ], (x,y) € NondetSys

Every pair (x,y) € NondetSys is called a behavior.



Sl is a more detailed
description of S2;

S2 is an abstraction or
property of S1.

/

System S1 refines system S2
iff
1. Time[S1]=Time [S2],
2. Inputs [S1] = Inputs [S2],
3. Outputs [S1] = Outputs [S2],
4. Behaviors [S1] < Behaviors [S2].



Systems S1 and S2 are equivalent
iff
1. Time[S1]=Time [S2],
2. Inputs [S1] = Inputs [S2],
3. Outputs [S1] = Outputs [S2],
4. Behaviors [S1] = Behaviors [S2].



Nondeterministic State Machine

Inputs

Outputs

States

possibleInitialStates < States

possibleUpdates :
States x Inputs — P( States x Outputs )\ @

receptiveness (i.e., machine must
be prepared to accept every input)



State Machines

Deterministic

J X
Output-deterministic
U R

Nondeterministic



A state machine is deterministic
iff
1. there is only one initial state, and

2. for every state and every input,
there is only one successor state.

A state machine is output-deterministic
iff
1. there is only one initial state, and

2. for every state and every input-output pair,
there is only one successor state.



For deterministic M2 :
M1 is simulated by M2 iff M1 is equivalent to M2,

For output-deterministic M2 :
M1 is simulated by M2 iff M1 refines M2.

For nondeterministic M2 :
M1 is simulated by M2 implies M1 refines M2.

relation between condition on infinitely
finitely many states many behaviors




A binary relation S < States [M1] x States [M2] isa
simulation of M1 by M2

iff
1. V p € possibleInitialStates [M1],
3 q € possibleInitialStates [M2], (p.q) e S and
2. V p e States [M1], V q e States [M2],
if (p.q)eS,
then Vv x e Inputs,Vy e Outputs,V p' e States [M1],
if (p',y) e possibleUpdates [M1]( p, x)
then 3 q € States [M2],
(q,y) € possibleUpdates [M2] (g, x ) and

(p.q)eS.



To check if M1 refines M2,
check if M1 is simulated by det(M2):

M1 refines M2
iff
M1 refines det(M2)
iff

M1 is simulated by ( det(M2).

~—_

\

output-deterministic



If M2 isanoutput-deterministic state machine, then
a simulation S of M1 by M2 can be found as follows:

1. If p € possibleInitialStates [M1] and
possibleInitialStates [M2] = {q},
then (p.q) € S.
2. If (pg) € S and
(p'.y) € possibleUpdates [M1] (p,x) and
possibleUpdates [M2] (q.x) = {(qy) }.
then (p'.q9) € S.



Output-Determinization

Given: nondeterministic state machine M

Find:  output-deterministic state machine det(M)
that is equivalent fo M

Inputs [det(M)] = Inputs[M]
Outputs [det(M)] = Outputs [M]



The Subset Construction

Let initialState [ det(M) ] = possibleInitialStates [M];
Let States [ det(M) ] = { initialState [det(M)]};

Repeat as long as new transitions can be added to det(M) :
Choose P € States [det(M)] and (x,y) € Inputs x Outputs ;
Let Q={q e States[M] |3 p € P, (q,y) € possibleUpdates [M] (p.x) }:
If Q=7 then
Let States [det(M)] = States [det(M)]u {Q};
Let update [det(M)] (P.x) = (Quy) .



Minimization Algorithm

Input:  nondeterministic state machine M

Output : minimize (M), the state machine with
the fewest states that is bisimilar to M

(the result is unique up to renaming of
states)



A binary relation B ¢ States [M1] x States [M2] isa
bisimulation between M1 and M2

iff
Al. V p € possibleInitialStates [M1],
3 q € possibleInitialStates [M2], (p,q) € B, and
A2. V p e States [M1], V q € States [M2],
if (p.q)eB,
then Vv x e Inputs,Vy e Outputs,V p' e States [M1],
if (p',y) e possibleUpdates [M1]( p, x)
then 3 q € States [M2],
(q,y) € possibleUpdates [M2] (q, x ) and
(p,q)eB, and



and

Bl. V q € possibleInitialStates [M2],
3 p € possibleInitialStates [M1], (p,q) € B, and
B2. v p e States [M1], V q e States [M2],
if (p.q)eB,
then Vv x e Inputs,Vy e Outputs,V q e States [M2],
if (q',y) e possibleUpdates [M2](q, x)
then 3 p' € States [M1],
(p,y) € possibleUpdates [M1] (p, x ) and

(p.q)eB.



For nondeterministic state machines M1 and M2,

M1 is equivalent to M2
X N
M1 simulates M2 and M2 simulates M1
X1
M1 and M2 are bisimilar.

For output-deterministic state machines M1 and M2,

M1 is equivalent to M2
U N
M1 and M2 are bisimilar.



Minimization Algorithm

1. Let Q be set of all reachable states of M.
2. Maintain a set P of state sets:

Initially let P={Q }.

Repeat until no longer possible: split P.

3. When done, every state set in P represents a single
state of the smallest state machine bisimilar to M.



Split P

If there exist

two state sets R P and R' € P

two states rl e R and r2 e R
an input x € Inputs
an output y € Outputs

such that
3r'eR’, (r,y) e possibleUpdates (rl, x ) and
Vr eR, (r,y) ¢ possibleUpdates (r2, x)
then

let Rl={reR|3r eR, (r,y) e possibleUpdates (r,x)};
let R2 = R\RI;
let P = (P\{R})U{RI1,R2}.



The Finite-State Safety Control Problem

Given

finite-state machine Plant

2. set Error of states of Plant

Find
finite-state machine

Controller <€

such that the composite system never enters
a state in Error



The Finite-State Progress Control Problem

Given

finite-state machine Plant

2. set Target of states of Plant

Find
finite-state machine

Controller <€

such that the composite system is guaranteed
to enter a state in Target



Compute the safety-uncontrollable states of Plant

1. Every state in Error is safety-uncontrollable.
2. For all states s,

if for all inputs i
there exist a safety-uncontrollable
state s’ and an output o
such that (s',0) € possibleUpdates (s,i)

then s is safety-uncontrollable.



Compute the progress-controllable states of Plant

1. Every state in Target is progress-controllable.
2. For all states s,

if there exists an input i
for all states s’ and outputs o
if (s',0) € possibleUpdates (s,i)
then s’ is progress-controllable

then s is progress-controllable.



Typical Exam Questions

A. Convert between the following system representations:

1. Mathematical input-output definition
2. Transition diagram
3. Block diagram

B. Apply the following algorithms on state machines:

1. Product construction

2. Subset construction

3. Check for existence of a simulation
4. Minimization

5. Compute controllable states

C. Explain the following concepts:

1. Memory-free vs. finite-state vs. infinite-state
2. Equivalence/refinement vs. simulation vs. bisimulation
3. Safety vs. progress control



