Review

EECS 20
Lecture 38 (April 27, 2001)

Tom Henzinger

Revised by Matteo Zavatteri and Tiziano Villa, Fall 2020

Transducive System

Input Value — — Qutput Value

transduciveSystem : Values — Values

Reactive System

Input Signal — > OutputSignal

reactiveSystem : [Time — Values] - [Time — Values]

Discrete time: Time = Natsy={0,1, 2, ..}
Continuous time: Time = Reals, ={x € Reals | x>0}

A reactive system
F: [Time > Values] - [Time — Values]
is memory-free
iff
there exists a fransducive system
f: Values — Values
such that
V x e[Time— Values], Vye Time,

(FG))y) = f(x(y)).

A reactive system
F: [Time > Values] - [Time - Values]
is causal
iff
V X,y € [Time > Values], V z € Time,
if (VteTime, t<z = x(t)=y (1))
then (F(x))(z) = (F(y))(2) .

The Delay System

Delay.: [Time —» Values] > [Time — Values]
such that v x € [Time — Values], Vy € Time,

C if y<l1

(Delay (x)) (y) = { x(y-1) if y>1

Discrete-time delay over finite set of values :
finite memory
Continuous-time delay, or infinite set of values:

infinite memory

Legal Transducive Block Diagrams

-all components are transducive systems

-no cycles

e.g., combinational circuits

Legal Reactive Block Diagrams

-all components are memory-free or delay systems

-every cycle contains at least one delay

e.g., sequential circuits

Discrete-time reactive systems with
finite memory
are naturally implemented as

finite state machines.

A Discrete-Time Reactive System

Natsg — Inputs Natsy — Outputs

— —

F: [Natsy > Inputs] — [Natsy — Outputs]

State Machine Implementation

Natsg — Inputs —

/

2 2

Update
1 1

__ memory-free

Natsy — Outputs
>

NGTSo—>
States

Dini‘rialS‘ra‘re

NGTSo—>

—— delay stores
state

States

update : States x Inputs — States x Outputs
initialState € States

Deterministic State Machine

Inputs (set of possible input values)
Outputs (set of possible output values)
States (set of states)

initialState € States
update : States x Inputs — States x Outputs

Product of State Machines

Any block diagram of N state
machines with the state spaces

Statesl, States?2, ... StatesN

can be implemented by a single state
machine with the state space

Statesl x States2 x ... x StatesN .

This is called a "product machine”.

Deterministic Reactive System:

for every input signal, there is exactly one output signal.

Function:

DetSys : [Time —» Inputs] » [Time — Outputs]

Nondeterministic Reactive System:

for every input signal, there is one or more output signals.

Binary relation:
NondetSys < [Time — Inputs] x [Time — Outputs]

such that V x € [Time — Inputs],
3y e [Time — Outputs], (x,y) € NondetSys

Every pair (x,y) € NondetSys is called a behavior.

Sl is a more detailed
description of S2;

S2 is an abstraction or
property of S1.

/

System S1 refines system S2
iff
1. Time[S1]=Time [S2],
2. Inputs [S1] = Inputs [S2],
3. Outputs [S1] = Outputs [S2],
4. Behaviors [S1] < Behaviors [S2].

Systems S1 and S2 are equivalent
iff
1. Time[S1]=Time [S2],
2. Inputs [S1] = Inputs [S2],
3. Outputs [S1] = Outputs [S2],
4. Behaviors [S1] = Behaviors [S2].

Nondeterministic State Machine

Inputs

Outputs

States

possibleInitialStates < States

possibleUpdates :
States x Inputs — P(States x Outputs)\ @

receptiveness (i.e., machine must
be prepared to accept every input)

State Machines

Deterministic

J X
Output-deterministic
U R

Nondeterministic

A state machine is deterministic
iff
1. there is only one initial state, and

2. for every state and every input,
there is only one successor state.

A state machine is output-deterministic
iff
1. there is only one initial state, and

2. for every state and every input-output pair,
there is only one successor state.

For deterministic M2 :
M1 is simulated by M2 iff M1 is equivalent to M2,

For output-deterministic M2 :
M1 is simulated by M2 iff M1 refines M2.

For nondeterministic M2 :
M1 is simulated by M2 implies M1 refines M2.

relation between condition on infinitely
finitely many states many behaviors

A binary relation S < States [M1] x States [M2] isa
simulation of M1 by M2

iff
1. V p € possibleInitialStates [M1],
3 q € possibleInitialStates [M2], (p.q) e S and
2. V p e States [M1], V q e States [M2],
if (p.q)eS,
then Vv x e Inputs,Vy e Outputs,V p' e States [M1],
if (p',y) e possibleUpdates [M1](p, x)
then 3 q € States [M2],
(q,y) € possibleUpdates [M2] (g, x) and

(p.q)eS.

To check if M1 refines M2,
check if M1 is simulated by det(M2):

M1 refines M2
iff
M1 refines det(M2)
iff

M1 is simulated by (det(M2).

~—_

\

output-deterministic

If M2 isanoutput-deterministic state machine, then
a simulation S of M1 by M2 can be found as follows:

1. If p € possibleInitialStates [M1] and
possibleInitialStates [M2] = {q},
then (p.q) € S.
2. If (pg) € S and
(p'.y) € possibleUpdates [M1] (p,x) and
possibleUpdates [M2] (q.x) = {(qy) }.
then (p'.q9) € S.

Output-Determinization

Given: nondeterministic state machine M

Find: output-deterministic state machine det(M)
that is equivalent fo M

Inputs [det(M)] = Inputs[M]
Outputs [det(M)] = Outputs [M]

The Subset Construction

Let initialState [det(M)] = possibleInitialStates [M];
Let States [det(M)] = { initialState [det(M)]};

Repeat as long as new transitions can be added to det(M) :
Choose P € States [det(M)] and (x,y) € Inputs x Outputs ;
Let Q={q e States[M] |3 p € P, (q,y) € possibleUpdates [M] (p.x) }:
If Q=7 then
Let States [det(M)] = States [det(M)]u {Q};
Let update [det(M)] (P.x) = (Quy) .

Minimization Algorithm

Input: nondeterministic state machine M

Output : minimize (M), the state machine with
the fewest states that is bisimilar to M

(the result is unique up to renaming of
states)

A binary relation B ¢ States [M1] x States [M2] isa
bisimulation between M1 and M2

iff
Al. V p € possibleInitialStates [M1],
3 q € possibleInitialStates [M2], (p,q) € B, and
A2. V p e States [M1], V q € States [M2],
if (p.q)eB,
then Vv x e Inputs,Vy e Outputs,V p' e States [M1],
if (p',y) e possibleUpdates [M1](p, x)
then 3 q € States [M2],
(q,y) € possibleUpdates [M2] (q, x) and
(p,q)eB, and

and

Bl. V q € possibleInitialStates [M2],
3 p € possibleInitialStates [M1], (p,q) € B, and
B2. v p e States [M1], V q e States [M2],
if (p.q)eB,
then Vv x e Inputs,Vy e Outputs,V q e States [M2],
if (q',y) e possibleUpdates [M2](q, x)
then 3 p' € States [M1],
(p,y) € possibleUpdates [M1] (p, x) and

(p.q)eB.

For nondeterministic state machines M1 and M2,

M1 is equivalent to M2
X N
M1 simulates M2 and M2 simulates M1
X1
M1 and M2 are bisimilar.

For output-deterministic state machines M1 and M2,

M1 is equivalent to M2
U N
M1 and M2 are bisimilar.

Minimization Algorithm

1. Let Q be set of all reachable states of M.
2. Maintain a set P of state sets:

Initially let P={Q }.

Repeat until no longer possible: split P.

3. When done, every state set in P represents a single
state of the smallest state machine bisimilar to M.

Split P

If there exist

two state sets R P and R' € P

two states rl e R and r2 e R
an input x € Inputs
an output y € Outputs

such that
3r'eR’, (r,y) e possibleUpdates (rl, x) and
Vr eR, (r,y) ¢ possibleUpdates (r2, x)
then

let Rl={reR|3r eR, (r,y) e possibleUpdates (r,x)};
let R2 = R\RI;
let P = (P\{R})U{RI1,R2}.

The Finite-State Safety Control Problem

Given

finite-state machine Plant

2. set Error of states of Plant

Find
finite-state machine

Controller <€

such that the composite system never enters
a state in Error

The Finite-State Progress Control Problem

Given

finite-state machine Plant

2. set Target of states of Plant

Find
finite-state machine

Controller <€

such that the composite system is guaranteed
to enter a state in Target

Compute the safety-uncontrollable states of Plant

1. Every state in Error is safety-uncontrollable.
2. For all states s,

if for all inputs i
there exist a safety-uncontrollable
state s’ and an output o
such that (s',0) € possibleUpdates (s,i)

then s is safety-uncontrollable.

Compute the progress-controllable states of Plant

1. Every state in Target is progress-controllable.
2. For all states s,

if there exists an input i
for all states s’ and outputs o
if (s',0) € possibleUpdates (s,i)
then s’ is progress-controllable

then s is progress-controllable.

Typical Exam Questions

A. Convert between the following system representations:

1. Mathematical input-output definition
2. Transition diagram
3. Block diagram

B. Apply the following algorithms on state machines:

1. Product construction

2. Subset construction

3. Check for existence of a simulation
4. Minimization

5. Compute controllable states

C. Explain the following concepts:

1. Memory-free vs. finite-state vs. infinite-state
2. Equivalence/refinement vs. simulation vs. bisimulation
3. Safety vs. progress control

