
University of Verona

A.A 2018/2019

Laboratory of
Networked Embedded Systems

Lesson 1
SystemC Network Simulation Library (SCNSL)

Enrico Fraccaroli

April 9, 2019

Contents

1 Introduction 3
1.1 Network Simulation . 3
1.2 SystemC Network Simulation Library 3
1.3 SCNSL components . 3

1.3.1 Task . 3
1.3.2 Task Proxy . 4
1.3.3 Communicator . 4
1.3.4 Node . 4
1.3.5 Channel . 5
1.3.6 Environment . 5

2 Installation and Setup 6
2.1 Requirements . 6
2.2 Directory structure . 6
2.3 SystemC Installation (If Missing) 7
2.4 SCNSL Installation . 8

2.4.1 If LaTeX and Doxygen are Required 9

3 Network Scenario Creation 10
3.1 Creation Steps . 10

3.1.1 Instantiate the SCNSL Simulator 10
3.1.2 Instantiate the Environment 11
3.1.3 Instantiate the physical Nodes 11
3.1.4 Instantiate the physical Channels 11
3.1.5 Bind nodes to channels, and set node’s properties . . . 11
3.1.6 Instantiate the Tasks 12
3.1.7 Instantiate communicators (optional) 12
3.1.8 Bind tasks, communicators (optional) and channels . . 12
3.1.9 Set tracing features . 12
3.1.10 Creating a custom tasks 13
3.1.11 Example of Binding . 14

1

4 Exercises 15
4.1 Exercises Setup . 15

4.1.1 Compile the exercises 15
4.1.2 Execute the exercises 15

4.2 Exercise 1: Two Nodes . 16
4.3 Exercise 2: Three Nodes with Router 16
4.4 Exercise 3: Temperature Monitoring for Building Automation 17

4.4.1 Version 2 . 18
4.4.2 Version 3 . 18

2

Chapter 1

Introduction

1.1 Network Simulation
Network simulation allows to reproduce the behavior of both computational
and communication aspects of a network, modeling packet-based networks
such as Ethernet, wireless LAN and field bus.

1.2 SystemC Network Simulation Library
SystemC Network Simulation Library (SCNSL) is an extension of SystemC
to allow modeling packet-based networks such as wireless networks, Ether-
net, and fieldbus. As done by basic SystemC for signals on the bus, SCNSL
provides primitives to model packet transmission, reception, contention on
the channel and wireless path loss. The use of SCNSL together with Sys-
temC allows the easy and complete modeling of distributed applications of
networked embedded systems such as wireless sensor networks, routers, and
distributed plant controllers.

1.3 SCNSL components

1.3.1 Task

The application interacting with the network, that is the system function-
ality which is under development. Tasks shall be implemented by designers
either at RTL or TLM level. From the point of view of the network simulator,
a task is just the producer or consumer of packets and therefore its imple-
mentation is not important. For the system designer, task implementation
is crucial and many operations are connected to its modeling (i.e., change of

3

Figure 1.1: SCNSL components

abstraction level, validation, fault injection, HW/SW partitioning, mapping
to an available platform, synthesis and so forth).

1.3.2 Task Proxy

Acts as an intermediate layer between designer’s domain and simulator do-
main. Each Task instance is connected to one or more TaskProxy instances
and, from the perspective of the network simulation kernel, the TaskProxy
instance is the alter-ego of the task. Viceversa, from the point of view of the
application, each TaskProxy can represent a sort of socket interface, since it
provides the primitives for network communication.

1.3.3 Communicator

Element created by SCNSL developers to modify simulation behavior. For
example, it can be used to implement queues and protocols. Their presence
is not mandatory.

1.3.4 Node

Abstraction of physical devices. Tasks are hosted on Nodes. Tasks deployed
on different nodes shall communicate by using the API provided by SCNSL

4

for the network communication, while tasks deployed on the same node shall
communicate by using standard SystemC communication primitives.

1.3.5 Channel

Models the pysichal transmission channel. For example wired and wireless
are available.

1.3.6 Environment

Models some properties of the surrounding environment, also providing func-
tions to get informations related to the transmissions of packets (e.g., delay,
error rate, etc.).

5

Chapter 2

Installation and Setup

2.1 Requirements
The lecture requires the following items

• Linux 32/64bit

• SystemC

• cmake

• A C++ compiler and a linker

• Doxygen, for the documentation

• Latex, for the documentation

2.2 Directory structure
Let us assume the following directory structure:
HOME

|-- Software
\-- Source

let us export the following environment variables:

• Export the root directory of SystemC.
export SYSTEMC_HOME=${HOME}/ Software/systemc

• Add its include directory to the PATH variable
export PATH=${PATH}:${SYSTEMC_HOME }/ include

6

• Add the path to the library directory to PATH
export PATH=${PATH}:${SYSTEMC_HOME }/lib -linux64

• Add it also to the variable LD_LIBRARY_PATH
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH }:${SYSTEMC_HOME }/lib -linux64

• Create the directory where the scnsl library will be installed
mkdir -p ${HOME}/ Software/scnsl

• Export the root directory where the scnsl library will be installed
export SCNSL_HOME=${HOME}/ Software/scnsl

• Add to PATH its include directory
export PATH=${PATH}:${SCNSL_HOME }/ include

• Add to LD_LIBRARY_PATH its library directory
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH }:${SCNSL_HOME }/lib

2.3 SystemC Installation (If Missing)
SystemC can be downloaded at
http ://www.accellera.org/downloads/standards/systemc

Then, download the last release. For the rest of the procedure I will use the
names and version of tools up to the date of April 9, 2019.

You should see the version SystemC 2.3.1 (Includes TLM), and the
link Core SystemC Language and Examples. This will download a
compressed file which contains the source codes of SystemC. Then, unpack
the compressed file:
tar xvf systemc -2.3.1a.tar.gz

Move inside the folder:
cd systemc -2.3.1a

And then run the configuration file by passing the place where the software
should be installed, for instance:
./ configure --prefix =/home/<username >/ Software/systemc

7

In this case replace <username> with yours and be sure that both Software
and its sub-directory systemc exists.
Check if the prompted paths at the end of the configuration process
are correct.

Afterwards, compile and install it:
make install

2.4 SCNSL Installation
SCNSL is available to download at:
https :// sourceforge.net/projects/scnsl/

If you have the version control system Bazaar (similar to the most well-
known Git), you can get the most updated version of the library, directly
from the repository, by using bzr client.
bzr checkout bzr:// scnsl.bzr.sourceforge.net/bzrroot/scnsl/trunk scnsl

Move inside the scnsl directory:
cd scnsl

Create and move inside a build directory:
mkdir build
cd build

Run cmake in order to generate the Makefile
cmake ..
ccmake .

Compile the library
make install

Then compile all the tests
make tests

Copy the compiled library inside the Software folder on your root
cp -rvf scnsl -stable -linux -x86_64 ${HOME}/ Software/scnsl

In order to use the scnsl library, remember to add to the LD_LIBRARY_PATH
environment variable the directory where the SCNSL library is located. You
also have to add the SCNSL include directory to the PATH environment vari-
able.

8

2.4.1 If LaTeX and Doxygen are Required

From inside the build directory open with gedit a specific CMake script
executed during the generation of the Makefile, in particular:
gedit ../ scripts/FindScnsl.cmake

Find the following lines and delete them
find_package(EdalabLatex REQUIRED)
find_package(EdalabDoxygen REQUIRED)

9

Chapter 3

Network Scenario Creation

3.1 Creation Steps
The steps required to create a network scenario with SCNSL are the following:

1. Instantiate the SCNSL Simulator.

2. Instantiate the Environment.

3. Instantiate the physical Nodes.

4. Instantiate the physical Channels.

5. Bind nodes to channels, and set node’s properties.

6. Instantiate the Tasks.

7. Instantiate communicators (optional).

8. Bind tasks, communicators (optional) and channels.

9. Set tracing features.

10. Creating a custom tasks.

3.1.1 Instantiate the SCNSL Simulator

It is important, first of all, to create an instance of SCNSL Simulator; the
instance is a singleton and provides the methods for creating the scenario
components. Instantiate the simulator as follows:� �
Scnsl :: Setup:: Scnsl_t * sim = Scnsl:: Setup:: Scnsl_t :: get_instance ();� �

10

3.1.2 Instantiate the Environment

This object can be used to model, manage and get some properties related
to the environment.� �
Scnsl :: Utils:: DefaultEnvironment_t :: createInstance(ALPHA_VALUE);� �
3.1.3 Instantiate the physical Nodes

A node can be created with the following code:� �
Scnsl ::Core:: Node_t * NODE_NAME = sim ->createNode ();� �
3.1.4 Instantiate the physical Channels

A channel can be created and set as follows:� �
CoreChannelSetup_t CHANNEL_SETUP;

CHANNEL_SETUP.name = "full_duplex_channel";
CHANNEL_SETUP.extensionId = "core";
CHANNEL_SETUP.channel_type(CoreChannelSetup_t :: FULL_DUPLEX);
CHANNEL_SETUP.capacity = 1000;
CHANNEL_SETUP.capacity2 = 1000;
CHANNEL_SETUP.delay = sc_core :: sc_time(1, sc_core ::SC_MS);

Scnsl ::Core:: Channel_if_t * CHANNEL_NAME = sim ->createChannel(CHANNEL_SETUP);� �
3.1.5 Bind nodes to channels, and set node’s properties

First, for each transmission between pairs of tasks must be defined a unique
bindIdentifier as follows:� �
BindSetup_base_t BIND_SETUP;
BIND_SETUP.extensionId = "core";
BIND_SETUP.bindIdentifier = "bind_id";
BIND_SETUP.destinationNode = DESTINATION_NAME;
BIND_SETUP.node_binding.bitrate = Scnsl:: Protocols :: YOUR_PROTOCOL :: BITRATE;
BIND_SETUP.node_binding.transmission_power = 100;
BIND_SETUP.node_binding.receiving_threshold = 10;
BIND_SETUP.node_binding.x = 1;
BIND_SETUP.node_binding.y = 1;
BIND_SETUP.node_binding.z = 1;� �
The bindIdentifier will be used by the reference task to set the TaskProxy
specific of the destination task. Then, each node has to be bound which each
channel to which it is connected. The BindSetup object (BIND_SETUP_NAME)
is used to set some node’s properties, in addition to the bindIdentifier.
Then, the structure is used to bing a given node and a channel:

11

� �
sim ->bind(NODE_NAME , CHANNEL_NAME , BIND_SETUP);� �
3.1.6 Instantiate the Tasks

In order to instantiate a task use the following code:� �
MYTASK_T * TASK_NAME("task_name", TASK_ID , NODE_NAME , PROXIES);� �
3.1.7 Instantiate communicators (optional)� �
CoreCommunicatorSetup_t COMMUNICATOR_SETUP;

COMMUNICATOR_SETUP.extensionId = "core";
COMMUNICATOR_SETUP.name = "the_communicator_name";
COMMUNICATOR_SETUP.type =
CoreCommunicatorSetup_t :: MAC_802_15_4;
COMMUNICATOR_SETUP.node = NODE_OF_THE_COMMUNICATOR;

// Eventually set here other properties ...

Scnsl ::Core:: Communicator_if_t *
REFERENCE_PROTOCOL_COMMUNICATOR =

sim ->createCommunicator(COMMUNICATOR_SETUP);� �
3.1.8 Bind tasks, communicators (optional) and chan-

nels

Communicators are required to bind tasks to channels:� �
sim ->bind(REFERENCE_TASK_NAME ,

DESTINATION_TASK_NAME ,
REFERENCE_CHANNEL_NAME ,
BIND_SETUP ,
REFERENCE_COMMUNICATOR_NAME);� �

• The destination task can be NULL for broadcast transmission or if the
reference task is a receiver task;

• For each TaskProxy related to a Task, there must be the corresponding
binding Task/Channel/(Communicator).

3.1.9 Set tracing features

SCNSL provides tracing capabilityes via an object named Tracer. A tracer
object combines two utility objects: a Filter and a Formatter.

12

� �
CoreTracingSetup_t SETUP;

SETUP.extensionId = "core";
SETUP.filterExtensionId = "core";
SETUP.formatterExtensionId = "core";
SETUP.filterName = "base_filter";
SETUP.formatterName = "base_formatter";
SETUP.print_trace_type = true;
SETUP.info = 5;
SETUP.debug = 0;
SETUP.log = 5;
SETUP.error = 0;
SETUP.warning = 0;
SETUP.fatal = 0;

Scnsl_t :: Tracer_t * TRACER = scnsl ->createTracer(SETUP);� �
3.1.10 Creating a custom tasks

SCNSL can be used also to test network application. In this case, users will
provide the application code into a custom task.
Define the structure of the task class inside a file Hello_t.hh:� �

1 #include <systemc >
2 #include <scnsl.hh >
3
4 class Hello_t :
5 public Scnsl::Tlm:: TlmTask_if_t
6 {
7 ...
8 SC_HAS_PROCESS(Hello_t);
9 ...

10 /// @brief Constructor.
11 /// @param name This module name.
12 /// @param id This module unique ID.
13 /// @param n The node on which this task is placed.
14 /// @param proxies The number of connected task proxies.
15 /// @param is_sender Switches this task behavior.
16 /// @throw std:: invalid_argument If proxies is zero.
17 Hello_t(sc_core :: sc_module_name name ,
18 const task_id_t id,
19 Scnsl ::Core:: Node_t * n,
20 const size_t proxies ,
21 const bool is_sender) throw (std:: invalid_argument);
22 ...
23 // The standard TLM blocking transport , used to receiving:
24 virtual void b_transport(tlm:: tlm_generic_payload & p,
25 sc_core :: sc_time & t);
26 ...
27 // The routine sending the message.
28 void sendingRoutine ();
29 };� �
The constructor accepts a flag, is_sender, which will be used by the ap-
plication to have a sender or receiver behavior. All the other constructor
parameters are required by the parent.

13

The implementation of the application could be the following, in a file named
Hello_t.cc:� �

1 #include "Hello_t.hh"
2 Hello_t :: Hello_t(sc_core :: sc_module_name name ,
3 const task_id_t id,
4 Scnsl ::Core:: Node_t * n,
5 const size_t proxies ,
6 const bool is_sender) throw (std:: invalid_argument):
7 Scnsl ::Tlm:: TlmTask_if_t(name , id, n, proxies)
8 {
9 if (is_sender)

10 {
11 SC_THREAD(sendingRoutine);
12 }
13 }� �
3.1.11 Example of Binding

Task1 Task2

Node1 Node2

Channel

� �
1 MyTask * Task1("Task1", 0, Node1 , 1);
2 MyTask * Task2("Task2", 1, Node2 , 1);
3 ...
4 bsb0.bindIdentifier = "Task1_Task2";
5 bsb1.bindIdentifier = "Task2_Task1";
6 ...
7 sim ->bind(Node1 , Channel , bsb0);
8 sim ->bind(Node2 , Channel , bsb1);
9 ...

10 sim ->bind(&Task1 , &Task2 , Channel , bsb0 , NULL);
11 sim ->bind(&Task2 , NULL , Channel , bsb1 , NULL);� �

14

Chapter 4

Exercises

4.1 Exercises Setup

4.1.1 Compile the exercises

Download the file containing the exercises from the course page of

Networked embedded systems (2016/2017)

This should download a compressed file. Uncompress it and then move
inside the “exercises_lesson1” directory.
cd source

Create the “build/” folder and move inside it.
mkdir build
cd build

Execute cmake and pass directly the library
cmake -DLIB_SCNSL=${SCNSL_HOME }/lib/libscnsl.so ..

Compile the code
make

4.1.2 Execute the exercises

Execute each exercise and redirect its output to a text file
./ Two_Nodes > Two_Nodes.log
./ Three_Nodes_with_Router > Three_Nodes_with_Router.log
./ Temperature_Monitoring 15 > Temperature_Monitoring.log

15

Use the script calculatePLR.sh (inside the root) to calculate the Packet
Loss Rate (PLR). The script takes as only parameter a text file containing
the simulation traces.
../ calculatePLR.sh Two_Nodes.log
../ calculatePLR.sh Three_Nodes_with_Router.log
../ calculatePLR.sh Temperature_Monitoring.log

4.2 Exercise 1: Two Nodes
n0 n1

Sensor Collectorch

Calculate the minimum transmitting power of the sensor node n0. Mantain
unchanged the distance between nodes.

Hint: if the transmitting power is lower than the minimum transmitting
power, no packets will arrive to the receiver, i.e., Packet Loss Rate (PLR)=100%.

4.3 Exercise 2: Three Nodes with Router
n0 n1 n2

Sensor Router Collector

ch

1. Calculate the delay:

• Sensor-to-Router

• Router-to-Collector

• Sensor-to-Collector

2. Calculate the Packet Loss Rate (PLR).

16

3. Calculate the minimum transmitting power, both for sensor node n0
and router node n1, mantaining unchanged the distances between nodes.

Hint: help you with Exercise 1 to calculate the delay.

4.4 Exercise 3: Temperature Monitoring for
Building Automation

Cn Sn Sn . . . Sn

Cn Sn Sn . . . Sn

.

Cn Sn Sn . . . Sn

Cn Sn Sn . . . Sn

Floor N

Floor N-1

Floor 1

Floor 0

Room 0 Room 1 Room 3 Room N

• N floors

• N rooms for each floor

• 1 controller for each floor

• 1 sensor for each room (#sensors > 0)

• Each sensor sends the detected temperature to the controller of its floor

17

4.4.1 Version 2

Cn Sn Sn . . . SnFloor 0

Room 0 Room 1 Room 3 Room N

Ch1

Ch2

Ch3

For this exercise we consider the first floor. The idea is that the network
scenario can be seen as a 1xN matrix:

• Node in the first column (Room 0) works as a collector node (RX only)

• Nodes in the other columns (Room 0 – Room N-1) work as sensor nodes
(TX only)

In each sensor node (ni , 1≤i≤N-1) the corresponding sensor task (si , 0≤i≤N-
2) sends data to the controller task (c) through a separate point-to-point
channel (chi , 0≤i≤N-2).

4.4.2 Version 3
ch

Cn Sn Sn . . . SnFloor 0

Room 0 Room 1 Room 3 Room N

1. Set the number of rooms (i.e., the number of nodes) to 5 and calculate
the Packet Loss Rate (PLR).

• How can a communication like this be realized in a real scenario,
for instance, in a Wireless Sensor Network?

2. Increase the number of rooms (i.e., the number of nodes).

• How is the new PLR in respect to the node’s distance?

18

3. Change the controller data collection from sensors, from the current
point-to-point transmission to a shared one.

4. Set the number of rooms (i.e., the number of nodes) to 5 and calculate
the Packet Loss Rate (PLR).

• What can you say about the new PLR compared to the one of the
point-to-point transmission?

• Is the minimum transmitting power affected by the change to a
shared communication?

5. Increase the number of rooms (i.e., the number of nodes).

• How is the new PLR?

• Does the increasing of sensor nodes affects the PLR?

19

That’s all folks

	Introduction
	Network Simulation
	SystemC Network Simulation Library
	SCNSL components
	Task
	Task Proxy
	Communicator
	Node
	Channel
	Environment

	Installation and Setup
	Requirements
	Directory structure
	SystemC Installation (If Missing)
	SCNSL Installation
	If LaTeX and Doxygen are Required

	Network Scenario Creation
	Creation Steps
	Instantiate the SCNSL Simulator
	Instantiate the Environment
	Instantiate the physical Nodes
	Instantiate the physical Channels
	Bind nodes to channels, and set node’s properties
	Instantiate the Tasks
	Instantiate communicators (optional)
	Bind tasks, communicators (optional) and channels
	Set tracing features
	Creating a custom tasks
	Example of Binding

	Exercises
	Exercises Setup
	Compile the exercises
	Execute the exercises

	Exercise 1: Two Nodes
	Exercise 2: Three Nodes with Router
	Exercise 3: Temperature Monitoring for Building Automation
	Version 2
	Version 3

