
GIOTTO

University of Verona

Dep. Computer Science

Italy

Dott. Luigi Di Guglielmo

Prof. Tiziano Villa



Outline

• Introduction

• GIOTTO concepts

• The language

• The semantics

• Example

• Conclusion

31/01/2011 2Systems



Introduction (I)

• GIOTTO is a time-triggered programming 
language that aims at implementing 
embedded control systems on distributed 
platforms

• It has been developed by the Embedded 
System Design Group at Berkeley, University 
of California (US)

31/01/2011 3Systems



Introduction (II)

• Embedded software development for control applications 
consists of two phases: first modeling then implementation

• Modeling consists of defining the logic of the control 
application
– Done by control engineers
– Supported by tools that offer limited code-generation facilities 

(e.g., Matlab)

• Efficient implementation takes into account the model, 
code and platform constraints
– Done by software engineers
– Generation of code for specific platforms

31/01/2011 4Systems



Introduction (III)

• Development issues can be distinguished in

– Platform independent

• Platform independent issues include application 
functionality and timing

– Platform dependent

• Platform dependent issues include scheduling, 
communication and physical performance

31/01/2011 5Systems



Introduction (IV)

• A key to automating the embedded software 
development is to define an interface 
between platform-independent and platform-
dependent issues

• Such an interface, i.e., abstract programmer’s 
model for embedded systems, enables 
decoupling software design from 
implementation

31/01/2011 6Systems



GIOTTO

• Giotto provides an abstract programmer’s model 
that enables design decoupling from 
implementation
– A Giotto program determines the functionality (i.e., 

input and output behavior) and the timings of the 
software

– The Giotto compiler synthesizes the embedded 
software for a given platform

• The synthesis problem is difficult for distributed platforms, 
thus, the compiler may fail

31/01/2011 7Systems



Giotto Program

• A Giotto program is defined by specifying a set of modes 
and mode switches

• Each mode specifies a set of concurrent tasks and the 
switches from the current mode to the others
– At every instant the program execution is in one specific mode, 

e.g., M
– Each task of M has a real-time frequency and is invoked at this 

frequency as long as the mode M remains unchanged
– Each mode switch of M to a mode M’ has a real-time frequency 

and a condition that is evaluated at this frequency. If the 
condition evaluates to true, then the new mode is M’

– In the new mode, some tasks may be removed and others 
added

31/01/2011 8Systems



GIOTTO Semantics

• Giotto has a formal semantics that specifies 
the meaning of mode and mode switches, of 
inter-task communication and communication 
with the program environment

• In Giotto, the environment consists of sensors 
and actuators

31/01/2011 9Systems



GIOTTO LANGUAGE

31/01/2011 10Systems



Basic Components

• The main components used by Giotto for 
defining a program are:

– Ports

– Tasks

– Drivers

– Modes

– Mode switches

31/01/2011 11Systems



Giotto’s Language Primitives (I)

• A port
– is a physical location in memory

– It may either be associated with a sensor or actuator (i.e., 
environment communication), or be used for inter-task 
communication

• A task
– is a periodic job characterized by input and output ports 

and an implementation, written in any programming 
language, with known WCET (worst-case execution time)

– At each invocation, a task reads its inputs and computes 
new values for its output ports

31/01/2011 12Systems



Giotto’s Language Primitives (II) 

• A driver represents a connection
– A driver computes a function on its source ports 

and passes the result to its destination ports
• Actuator driver

– The driver destination ports are actuators ports

• Task driver
– The driver destination ports are input ports of a task

– A Giotto driver has a guard, i.e., a predicate on its 
source ports; if the guard does not evaluate to 
true, then the driver is not executed

31/01/2011 13Systems



Giotto’s Language Primitives (III)

• A mode represents a functional unit

– Set of concurrent tasks

• Invocation frequency

• Task drivers

– Set of actuator updates

• Invocation frequency

• Actuator drivers

– Set of mode switches

31/01/2011 14Systems



Giotto’s Language Primitives (IV)

• A mode switch represent a jump between 
functional units
– When a mode switch is enabled, it causes the 

program to switch instantaneously from one mode to 
another

– It has an invocation frequency and a mode driver, 
whose guard is evaluated with the given frequency

• When the guards evaluates to true the switch is enabled and 
the driver is executed

– Guards of mode drivers are disjoint
• It guarantees determinism

31/01/2011 15Systems



Giotto’s Language Primitives (V)

• A mode driver connects modes

– Source ports of the mode driver are task output 
ports of the current mode, and the destination 
ports are the task output ports of the next mode

31/01/2011 16Systems



Language Semantics: Task (I)

• Input and output ports of a Giotto task are 
updated logically at the beginning and at the 
end of the task period, respectively

• A Giotto task does not have to be started at 
the beginning of its period, it has only to be 
started and be finished sometime during its 
period

31/01/2011 17Systems



Language Semantics: Task (II)

0 5 10 15 20 25

P

Q
t

Input port updates

31/01/2011 18Systems



Language Semantics: Task (II)

0 5 10 15 20 25

P

Q
t

Output port updates

31/01/2011 19Systems



Language Semantics: Task (II)

0 5 10 15 20 25

P

Q
t

Task code execution

31/01/2011 20Systems



Language Semantics: Driver (III)

• Since the result of a task computation is written 
at the end of the task period, task drivers only 
cause data flow from past task invocations to 
current invocations, and not between current 
invocations

• Note that no matter when a task P finishes, its 
results are buffered until the end of its period

• Only at the end of the period, the concurrent 
process Q can see that results

31/01/2011 21Systems



Language Semantics: Driver (IV)

0 5 10 15 20 25

P

Q
t

Data flow using drivers

31/01/2011 22Systems



Language Semantics: Mode Switch (V)

• In Giotto, a task is considered a unit of work, 
which, once started, must be allowed to 
complete

• A mode switch may cease the periodic invocation 
of a task if that task period ends at the time the 
mode-switch guard is evaluated true

• A mode switch must not terminate any task 
whose period has not ended

31/01/2011 23Systems



Language Semantics: Mode Switch (VI)

• If a task is active when a mode switch occurs, 
then the Giotto semantics requires that the 
next mode again contains the task

• The least common multiple of all task periods, 
actuator update periods and mode switch 
periods of a Giotto mode determines the 
period of the mode

31/01/2011 24Systems



Language Semantics: Mode Switch (VII)

0 5 10 15 20 25

P

Q

R
30

31/01/2011 25Systems



Summary: Giotto

• Giotto is a design methodology for embedded 
control systems.

• The programmer specifies the platform-
independent programmer’s model in the 
time-triggered programming language.

• The Giotto compiler produces executables 
combined with a run-time library for a 
particular platform.

31/01/2011 26Systems



EXAMPLE

31/01/2011 Systems 27



The Elevator (I)

31/01/2011 Systems 28



The Elevator (II)

• It is provided within the GIOTTO archive
(~dgglgu08/archives/Giotto.1.0.1.tgz)

• Let’s analyze the code identifying the different 
components required by a Giotto program

– Modes

– Mode switches

– Drivers

– Ports

31/01/2011 Systems 30


