Modeling Custom Hardware in VHDL

Technical Report 1CS-99-29
July 6, 1999

Heiko Lehr

Supervised by Prof. Daniel D. Gajski

Research Paper ”Studienarbeit”

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA
(949) 824-8059

Abstract

This report focuses on models for describing Hardware at different refinement levels within High Level
Synthesis flow: SFSMD, FSMD and FSM Controlling Datapath. Simple data interfaces are often needed in
these models. The hardware description language VHDL is used and tested for implementing these models and
interfaces. Problems inherent in the models as well as problems caused by VHDL are discussed. A model related
main difficulty is the one-cycle delay of data processing, when introducing a datapath. VHDL descriptions of
abstract models (SFSMD) can become complicated. Templates for general problems, ezamples and VHDL
gutdelines are provided in this report to help to minimize design errors significantly.
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Modeling Custom Hardware in VHDL

Heiko Lehr

Abstract

This report focuses on models for describing Hardware
at different refinement levels within High Level Synthe-
sis flow: SFSMD, FSMD and FSM Controlling Data-
path. Simple data interfaces are often needed in these
models. The hardware description language VHDL 1s
used and tested for implementing these models and in-
terfaces. Problems inherent in the models as well as
problems caused by VHDL are discussed. A model re-
lated main difficulty 1s the one-cycle delay of data pro-
cessing, when introducing a datapath. VHDL descrip-
tions of abstract models (SFSMD) can become compli-
cated. Templates for general problems, examples and
VHDL guidelines are provided in this report to help to
minimize design errors significantly.

1 The meaning of the models

In order to discuss High Level Synthesis, different
specification models are important.

SFSMD
v
FSMD —» FSM controling Datapath

~
FSM

Figure 1: Models for HL-Synthesis

Figure 1 shows the refinement flow of the models.
The models used for high level synthesis are connected
by the solid arrows. The FSMD to FSM flow is not
useful (indicated by a dotted arrow). The horizontal
arrow indicates, that the connected models are on the
same refinement level. They are related strongly, but
their ideas and possibilities for usage are differently.

Theoretically, each model could be described be-
haviorally and structurally. However depending on
the model, such a description may be impractical or
even meaningless because of an exploding size or com-
plexity of the description.

Figure 2 shows the system exploration chart (Y-
Chart). Tt consists of refinement levels (circles) and
description domains (lines). The significant descrip-
tion models are marked in the chart.

The following sections explain these models. Ad-
ditionally, description models of little or no use are
mentioned briefly.

FSM Behavioral

BEHAVIORAL P : L STRUCTURAL
» Controling N
DOMAIN SESMD tapath Structural™ DOMAIN

Behavioral
~

Specification Memories,
/ FSMD FSMCS"liCtlij'r \Busses
/ h i — — — Controlin Registers
, Benavior P Behavioral ‘b o ath Structurg) ALUs, MUXs
<
/ Boolean Gates, \ \
eépressions’ Flipflops \

/
-

\ N >~ _ Cdls y

\ N ‘ 7 /

\\\Chips// /

PHYSICAL
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Figure 2: System Exploration Chart

1.1 SFSMD

The Super Finite State Machine with Datapath (SF-
SMD) is the most abstract level of description.

The whole algorithm can be considered to be a SF-
SMD with one superstate. But generally, the algo-
rithm can be divided into any number of parts of any
size. These parts are the superstates.

The algorithm parts consist of reading inputs (T),
writing outputs (O) and executing expressions (EXP),
which use intermediate storage variables (V). Using
these elements, SFSMD can be described syntactically
in the same way as FSMD. (See FSMD below.) The



basic difference between the two models is, that SF-
SMD does not restrict the size of the algorithm-parts
assigned to a state, whereas FSMD does. This is, be-
cause SFSMD does not correspond to hardware at all,
whereas the states of FSMD correspond to clock cy-
cles.

1.1.1 Behavioral Description

For behavioral description, the algorithm which is cho-
sen to be implemented in hardware must be correct
and executable on any platform, but no restrictions
concerning a special structure apply. The whole algo-
rithm could be assigned to one single big superstate
(figure 3). But in most cases several superstates are
recommended. When describing the algorithm in a
high level programming language, it 1s typical to map
the procedures to superstates.

Figure 4 shows an example with several superstates.
Like in every state machine, in SFSMD a superstate
can have several possible successors. The valid one is
determined by transition conditions as shown in state
Part 3 of the figure. The left-hand side ”cond” can
be a variable, but it also could be a function.

-

Algorithm 1

|

Figure 3: One-State-SFSMD

Algorithm 1, Part 1 - . @

Algorithm 1, Part 2 - . @

l cond /=0 .

Algorithm 1, Part 3 - - @
j oond=0

Figure 4: SFSMD

&>

0
0

cond
cond /

1.1.2 Structural Description

A structural description is not used for this model.
Hardware allocation and scheduling are not done at
this point (see section 2). Therefore a structural de-
scription just could be something like a general pur-
pose computer which is capable of executing the ap-
propriate program which is stored in some memory (Y-
Chart, fig. 2: structural domain, outer circle). This is
not helpful for implementing a specialized algorithm.

1.2 FSMD

In the model Finite State Machine with Datapath
(FSMD) scheduling is performed (see section 2). That
means, algorithm is divided into small pieces which are
assigned to cycles using cycle based states. FSMD-
cycles will be mapped to the cycles of the hardware
clock. However hardware cycle time is not finally set
yet. There may also be a multiplication factor in this
mapping (e.g. each FSMD cycle lasts two clock cy-
cles).

In each state two things are done:

e The operation scheduled to this state 1s executed
within one clock cycle.

e The next state for the next clock cycle is deter-
mined.

For an exact description of FSMD, some sets have to

be defined:

S: set of states

I set of nputs

V: set of storage variables
O: set of outputs

EXP: set of expressions:
functions which give results depending
on storage variables V' and operators OP:
EXP={V,OP} ={f(z,y,2,..)|z,y,z € V}
OP: set of operators used in EX P
STAT: set of status expressions:
logic relations between
two expressions from the set FX P:

STAT = {Rel(a,b)|a,b € EXP}

Referring to the above definitions, the data processing
(first item in above list) is described by function h:

h:Sx(IUSTAT UEXP) = (VUO); V0,50

There needs to be a set of initializing values V0 for
the variables V when starting the FSMD, because the
expressions in [FX P read them. There also has to be



an initial value S0 for the state.
The next state (item 2 in above list) is determined in
a similar way:

f:Sx(ITUSTAT) = S; Vo, S0

V0 and S0 are needed again, because ST AT depends
on FEXP,and EXP depends on V.

With these definitions, a FSMD is described by:

< 8,80,(IUSTAT UOP),V,V0,0,h, f >

1.2.1 Behavioral Description

The FSMD Behavioral description is shown in figure
5. Behavioral description is preferred for this model,
because of better readability. It clearly illustrates how
the code pieces are scheduled in the states. It is lo-
cated at the RTL Behavior point of the Y-Chart. The
term "RTL” (Register Transfer Level) indicates the
cycle accuracy of this description and the correspond-
ing register transfers of the final hardware:

Each variable used in this description will be assigned
to elements of the final hardware (register, memory,
input, output, delay-wire). Several variables may be
assigned to the same element as long as their lifetimes
do not overlap. However, the assignment itself is not
done in this description. It is just assumed that each
variable will have a location somewhere in the final

A <=1Inl;
B <=1n2;
O<=A*B
B <=1n2;
(59 oove

B<O

hardware.

(FSMD)

Figure 5: FSMD Behavioral

1.2.2 Structural Description

A structural description is not used for this model.
The structural description would look like figure 6,

except that control and datapath are not separated
into distinct blocks.

The following model is more suitable for a struc-
tural description.

1.3 FSM Controlling Datapath

Here, the hardware is described on the same refine-
ment level as the previous model. In contrast to
FSMD, there is splitting into a control-part, described
by a Finite State Machine (FSM) without datapath,
and a separate datapath now.

The control block controls the execution of the op-
erations while the datapath actually performs them.
That means, compared to FSMD, the computation of
the expression ST AT and EXP are done in the dat-
apath. Storage variables V| inputs I and outputs O
are also covered by the datapath.

For the control block, the set of states S remains. Ad-
ditionally, there are connections between control block
and datapath:

C': Control signals (output of control FSM)
M : Message signals (input of control FSM)

The functions for the datapath look similar to the
FSMD model. The difference is, that message and
control signals are used instead of the state:

hy :C x (IUSTATUEXP) - (VUO); V0,00

far 1 C x (IUSTAT) = M; V0,00

< C,C0,(TUSTAT UOP),V,V0,0, hyr, far >

The control block defines the relationships among mes-
sage signals M, control signals C' and states S:

he:SxM—=C

foiSx M-S
< S, M,C he, fo >

Depending on the current state, the control block
sets control signals for the datapath. These signals
tell the datapath which data are to be processed and
how they are to be processed. The datapath can in-
form the control block about special results via mes-
sage signals. See figures 6 and 8. Depending on the
message signals, the control block determines the next
state which becomes valid in the next clock cycle.

The separation into these two blocks offers new pos-
sibilities: Each can be independently described behav-
iorally or structurally.



1.3.1 Behavioral Description

A pure behavioral description of this model is not used.
When trying to describe this, there would be a second
state machine for the datapath. This would cause lot
of trouble:

If NC'is the number of control signals from the control
block to the datapath, then 7= 2¥¢ is the number of
different conditions for state transitions, which is an
”exploding” expression.

Conclusion: A behavioral description of a separate
datapath is not suitable. The model FSMD is used
instead.

1.3.2 Behavioral-Structural Description

The big advantage of the split model is the possibility
of still using a behavioral description for the control,
while describing the datapath structurally. See figure
6. The first block illustrates the states in accordance
with the Register Transfer Level while the second con-
tains the data structure: memory, registers, ALU and
so on, as well as their connections and data input-
and output ports. For example, a multiplication is
implemented by the ALU and the result is stored in
its output register. The ALU consists of pure combi-
national logic. The command signals from the FSM

control the datapath: ALU = '"11" chooses multipli-

cation and 1d_0 = ’1’ stores the result in register O.
l Start In_A In B
Id A<="1";
ldB<=1% || Register
MUX<='X"; | g A
ALU<="00"; 3‘%
1d0<=0; | im | | Register
&1 B
Id_A<='0"; H—
1dB<=1: |lgal !
MUX<="1"; Id B
ALU<="11"; [(UY
Id O<="1"; ALU
1d_O,
Id A<='0;
Id_B<='0;
MUX<='0';
ALU<="01";
cmp_res=0 1d O<=T':
cmp
Control (FSM) Datapath
J Done Out

Behavioral Description  Structural Description

Figure 6: FSM Controlling Datapath (1)

Load Reg A [ .
RF_Control [ File .
RF_Sdlect [} P B

Mem_Control n

Mem_Address J] ‘

ALU_Mode ALU
Sign_Flag 4

Mult_Enable
L0at REG_O |-

Figure 7: Multi purpose datapath

This structural representation also illustrates the
possible data flows. In figure 6, variables A and B can
be multiplied by the ALU and the result can be stored
in variable O which resides in register O.

Instead of the very specific datapath in figure 6,
also a more general datapath can be used, like the
one in figure 7. A general datapath often avoids the
necessity of creating or changing the datapath when
the control FSM is replaced or changed. On the other
hand, a general datapath is less optimized and may
contain unused overhead.

The huge amount of combinational logic is repre-
sented well in a datapath picture. For example, multi-
plier and comparator are purely combinational. That
means, they do not use the clock and they do not con-
tain any latches.

This pure structural description grows just linearly
when inserting additional components. The size of a
behavioral datapath description would have exploded.
There would also be complicated transition conditions
due to the huge amount of combinational logic.

In the control block, the situation is different:
There are no ”control data” which are modified and
then passed to other operations. There is exactly one
variable and it has special meaning: the state variable.
It needs to be written and to be read. As its value is
the basis for cycle accurate control, it has to be de-
fined by a FSM in each clock cycle. For pointing out
the state transitions and the state based interaction
with the datapath, the behavioral description on the
left-hand side in figure 6 is the best representation.

It is to say, that the split model with the con-
trol part described behaviorally and the datapath



described structurally is more difficult to read by
humans than a behavioral description of the model
FSMD. However, this approach to the final hardware
has to be taken. Physical hardware finally is obtained
by implementing a structural description. Therefore
we finally need a pure structural description. The
datapath, which 1s by far the largest part of the
design, is structural already. The behavioral control
description 1s simple and can be converted to a
structural description by a simple tool.

Conclusion: The split model with behavioral control
and structural datapath i1s a good basis for synthesis
tools which have some intelligence about how to con-
vert behavioral description into structure. The model
is still readable by humans.

1.3.3 Structural Description

Synthesis tools with no intelligence may need a pure
structural description. In figure 8, even the control
part is structural. The control block shown here, im-
plements the control FSM, too. However it reveals nei-
ther the states nor the associated actions any longer
but hides them within the logic blocks. Even looking
at the internal description of the logic blocks, pure
structure is quite less readable.

Start In_A In_B

cmp

! i _ Register
Next-State 1 A
Logic i ;

=
'3 i ] | [ Register
Clockl, | B
Reset| - ] 2| MSB
- = State Register 1d A
i i IMUX
: ALU
Datapath TS 1 S P—
Control ;
and
Output H ;
Logic N T Rege)ster
Control |7 Datapath
Done Out

Structural Description

Figure 8: FSM Controlling Datapath (2)

Conclusion: A pure structural description should be
used only if the synthesis tool or the input language
does not permit a behavioral description of the

Structural Description

control block.

1.4 FSM

A Finite State Machine (FSM) without Datapath for
describing the whole design (and not just the control)
causes an explosion of the number of states:
Using no datapath means that for all possible data a
separate state is needed. For example, a 16-bit inte-
ger variable causes 65536 different states. This has to
be done for all other variables, too. As there i1s no
datapath, a formal description of this model is simple.
There are no storage variables and expressions using
them. The only value which is stored is the state.
The functions for the next state and output are sim-
plified to:

h:SxI—0

f:SxI—=S
The FSM defining tuple is:

<S,I,O,h, f>

It is obvious, that the model FSM can only be used
for problems which are dominated by boolean vari-
ables. They should not use variables which are larger
than about 3 or 4 bits. Thus, this model is only suited
for control algorithms, which are a special case. The
FSM within the model ”FSM Controlling Datapath”
1s an example.

However, for the general case, which includes data pro-
cessing, this model can not be used reasonably.

Note: Synthesis tools may use this model for a hidden,
automatically generated intermediate format in order
to further refine the synthesis flow. But this is only
necessary if low-level IPs (Intellectual Properties) like
adder, multiplier and so on can not be provided as
plug-ins for the datapath (see previous model).

1.5 Conclusion

The above discussion points out the following models
and descriptions. They are the best in most cases for
performing High Level Synthesis with machine-human
interaction.

1. SFSMD Behavioral

(a) One-state SFSMD
(general mathematical description or pro-
gram)



(b) Multi-state SFSMD

(problem separation, structured program)

2. FSMD Behavioral

3. FSM Behavioral Controlling Datapath Struc-
tural

4. (FSM Structural Controlling Datapath Struc-
tural, if needed)

2 Scheduling, Allocation and

Binding

The assignment of code slices to states is called
scheduling. A slice of code from a FSMD Behavioral
description should be as small to be executable within
one cycle.

Exceptions can be made for some complex computa-
tions which cannot meet this constraint. They can
also use multiple states.

Parallel execution of several incremental code pieces
within one clock cycle can reduce the number of
needed cycles and thus speed up the design. However
there are two problems: One problem are the data de-
pendencies. The simplest example is the impossibility
of computing two values in parallel, if one is needed
as an input for computing the other one. Another
constraint is, that the datapath should not get too
large exceeding restrictions in size or cost. For exam-
ple, parallelizing two multiplications causes two mul-
tipliers in the datapath which significantly increases
complexity.

So, when scheduling is performed for the behavioral
description of the FSMD model, the allocation of data
and actions partially should be planed already. It is
accomplished in the structural description of the dat-
apath however. The control block for the datapath
points out the real requirements in a much more ob-
vious way. The datapath has to be equipped with
appropriate registers, memory and so on. This 1s the
real execution of allocation.

Thereafter, binding has to be performed. The con-
trol block is adjusted to assign data to the right reg-
isters, correct memory addresses and other compo-
nents.

3 VHDL Programming Struc-
ture

Generally, the ”programming” language VHDL can be
used for all the models and descriptions: Behavioral
description of SFSMD, FSMD and for the description
of a behavioral FSM controlling a structural datapath.

This section is a summary about the structure of
VHDL programs. Those, who know VHDL well, may
skip this section and proceed with section 4. For oth-
ers, it helps to remember the structure of VHDL pro-
grams and to understand the following sections and
examples better. However, this section does not teach
VHDL.

Figure 9 shows a simple general template for the
structure of VHDL-code from which the description
of the models will be derived. Some optional parts are
omitted, because they are seldom used and not needed
here.

VHDL is block-oriented and in that way uses hier-
archy. The hierarchy structure usually looks like the
one shown in figure 7: A testbench forms the top level.
It instantiates the design block which may have several
subblocks. Subblocks can have subblocks themselves.

Except the testbench, the other blocks need to have
data ports. The ports of the top level design block
implement the inputs and outputs of the algorithm.
The are independent of the currently used model and
description. Therefore VHDL separates them: The
entity covers the port declarations whereas the archi-
tecture implements the computation part.

The figure shows that the architecture consists of
a declaration part and an implementation part. The
latter one contains processes, subblock-instantiations
and concurrent statements. They are executed paral-
lelly, indicated by grayed boxes in the figure 9. Simple
concurrent statements usually are a simple logic block.
Processes behave like infinite loops of code. They tem-
porarily have to be suspended before each run of the
loop. This can be done by wait commands or by a
so-called sensitivity list. Figure 9 uses sensitivity lists
in the process heads, causing the process to wait on a
change of the listed signals.

Subblock-components; functions, procedures and
additional internal signals have to be declared in the
declaration part before they can be used in the imple-
mentation part.

A process can also use its own local variables, de-
clared inside the process which uses them (schemati-
cally indicated by ”Variable_Declaration”).

This causes the question whether to declare a global
signal or a local variable for holding a value.



Testprogram

Library_Integration;

entity Test_Block is

end Test_Block;

architecture Test of Test_Block is

Signal_Declarations;

T
I
|
I
I
|
I
I
|
I
I
|
I
|
: -- declarations for architecture --
|
|
I
|
|
I
|
|
I
|
I
I
|

: Function F1 ( Fl_input )return F1_output
| Variable_Declarations;
: begin
I
: return F1_output;
: end F1;
| Funcon F2  ( Fl_input )retun  F1_output is
|
Procedure P1  ( P1_input; P1_output ) is

|

|

: Variable_Declarations;
: begin
‘
|

|

Procedure P2 ( P1_input; P1_output ) is

: component Design_Block

, port (Reset, CIk, Start, Done,
I

|

I

Design_Input, Design_Output );
end component;

: D: Design_Block
: port map (Reset, CIk, Start, Done,
|

Design_Input, Design_Output );

timing: process
begin

(Start, Done, CIk)

end process;

test: process ( Design_Input, Design_Output);
Variable_Declarations;
begin

end process;

Concurrent_Statements;

end Test_Block;

Grayed boxes are executed parallely.

Library_Integration;

entity Design_Block is

S1: Subdesign_Block_1
(Reset, CIk, Start_1, Done_1,

port (Reset, CIk, Start, Done,
Design_Input, Design_Output );

| end Design_Block;
|
: architecture Design of Design_Block is
: -- declarations for architecture
|
: Signal_Declarations;
oo oo oo oo oo
: : Function F1 ( Fl_input ) return F1_output
I Variable_Declarations;
'} begin
1l
: | retun  F1_output;
: : end F1;
ettt taletalautats
11 Function F2 ( Fl_input )return F1_output
[
‘ .
|
|
e
: | Procedure P1  ( P1_input; P1_output ) is
| : Variable_Declarations;
: ! begin
N
) end P1;
-
- - - - - -~~~ --~~°-Z
: : Procedure P2 ( P1_input; P1_output ) is
! .
|
|
: : component Subdesign_Block_1
I, port (Reset, Clk, Start_1, Done_1,
: : Subdesign_Input_1, Subdesign_Output 2t
,1_endcomponent,
o o oo _-_C
: : component Subdesign_Block_2
! .
|
|
: -- implementation of architecture
: begin
oo oo
|
|
|
|
|

|
|
: port map
|

| S2: Subdesign_Block_2

i\ D_P1:process ( Design_Signals_1 );
Variable_Declarations;
begin

Subdesign_Input_1, Subdesign_Outqu;l: :

D_P2: process ( Design_Signals_1 );

|
|
I
|
I
I
|
I
I
|
I
L
| end process;
I
I
|
I
I
|
I
I
|
I
I
|
I

Figure 9: General VHDL program structure
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e If the value is needed outside the process, it can
only be held by a signal.

e Sequential computations within one cycle need
variables. Sequential computations means: A
process writes a value. Thereafter, the same pro-
cess reads this updated value in the same cycle.

Signals own the property of having a delta-delay,
which delays the update until the next cycle
starts. Variables do not have this property and
therefore can be used in this case.

e Otherwise:
Declare a signal, if a physical equivalent (phys-
ical signal or wire) in the final hardware is ex-
pected.
Declare a variable, if the description is too ab-
stract to have an obvious correspondence to
hardware (variables in SFSMD).

An exception to the rule of leaving the entity un-
changed is needed: When switching the models for the
algorithm to deeper refinement levels, some synchro-
nization signals like start, done and elk (clock) need
to be added in the entity. They are inevitable ports
of the final, hardware but they are not data ports.

In the figure, the words ”"Design_Input” and
"Design_Qutput” are abbreviations. They stand for
the range of all inputs and outputs of the design.

4 Describing the Models in

VHDL

Section 1 gave a view of the meaning of the hardware
description models. The following sections explain
how to model them in VHDL and discuss some
significant problems.

4.1 Abstract and Introduction
4.1.1 The State Machines Graphically

The graphical representation of the state machines in
figures 10 and 11 is according to the following rules:
The actions are attached to the states they are as-
signed or scheduled to. The kind and size of the ac-
tions is dependent on the model. The new data results
caused by the actions are not available before the next
state transition.

Among the arrows starting at the current state
there must be exactly one with a true condition.

Thisone determines the next state. All possibilities
have to be covered by the conditions and ambiguity is
not allowed.

Whereas state transitions are bound to conditions, ac-
tions are bound to states only but not to conditions.
Such state machines are called Moore Machines.

4.1.2 Translation into VHDL

The right-hand side of figures 10 and 11 show possible
VHDL descriptions, which implement the graphical
representation of the right-hand side. Figure 10 shows
how to implement a state machine inside a procedure.
Figure 11 describes the implementation inside a pro-
cess. Both versions use the VHDL-case statement for
modeling the state machine.

In the figures, the typewriter font is used for direct
VHDL code. Proportional font is used for parts
which can either be a procedure (resp. function) or
an abbreviation for a piece of code, that is:

Actions.:

Parts of the algorithm assigned to the state 1.
Actions_i can be a piece of code or a procedure. It
reads the signals/ variables represented by IN_i and
writes the variables represented by OUT_:.

Cond_ij:

Condition for the state transition from state 1 to j.
Cond_i_j may be either a function or a piece of code.
It reads variables and signals from IN_i_j. The result
value of the condition is represented by its name itself.

Next_State_i:

Sets the value of state after state 1.

Next_State_t is an expression or a procedure.

In the used syntax, it has the following parameters:
inputs: list of conditions, list of possible next states;
output: next state (STATE).

Procedure versus Process. The "procedure ver-
ston” should be used for models at a high level of ab-
straction (SFSMD) and for models which do not use
timing (SFSMD, FSMD Without Time).
Procedures are well-suited for sequential programming
style with preferred use of variables instead of signals.
This especially meets the requirements of SFSMD. Ad-
ditionally, SFSMDs can be simply concatenated by
calling one procedure after the other. This means, no
allusions to a hardware protocol are needed.

A process on the other hand does not have these
advantages. Additionally, a process is an endless loop
which 1s developed for use with a clock.



-- S_BEGIN == "procedure not running”, managed by the calling process:

P1: Process;
Variable Declarations;
Initializatio begin

= wait until (Reset="1" or Start="1")
S_BEGIN Start=0 if (Reset="1") then
A Outputl <=... ;
elsif (Start = '1’") then
behaviorl( Inputl; Outputl );
end if;

end process;

Start=1 Procedure behaviorl( in Input1; inout Outpitl
Variable Declarations;
STATE :='1";
while (STATE /= S_END) and (Reset/="1") loop
case STATE is

Actions 1 when S_1=> Actions_1(IN_1, OUT_1);
B Next_State_1(Cond_1_2(IN_1_2),
Cond_1_2 . S_1, S_8,
: STATE );

when S_2 =>

to S_BEGIN

I S _END when S_END => -- nothing

| ~ --S_END — end of "while"—= end of procedure
proc end — e T
(always) end loop

end behaviorl;

Figure 10: A state machine inside a procedure



behavi or1: Process(d ock)
Variable Declarations;
begin
if (Cock’event and Cock="1") then
if (Reset ='1") then
Initialization( OUT_1);
next STATE <= S BEG N,
el se
case next _STATE is

when S BEG N => Done <="'0’;
Initialization( OUT_1);
if Start =1’
t hen next STATE<= S 1;
el se next STATE<= S BEG N,
end if;

Done:="0' .
Initialization S_BEGIN Stat="0

Start="1

Actions_1 when S 1 => Actions 1( IN_1, OUT _1);
- Next_State 1( Cond_1_2, Cond_1_8,
Cond 1 2 S2 S8,
next_STATE );
Actions_2 when S 2 =>
Done="1 S END Stat='1 when S END => Done <= '1';
- if Start ='0
toS BEGIN U then next STATE<= S BEGQ N;

el se next _STATE<= S_END;

A end if;
|

Start="0 end if;

Figure 11: A state machine inside a process

10



Transition: Process

begi n
STATE <= next _STATE;
wait until (clock’event and clock="1");
end Process;
behavi or1: Process (STATE, Start, DP_msg, IN_1)
Variable Declarations;
begi n
if (Reset = '1") then
Initialization( OUT_1);
next STATE <= S BEG N,
el se
case STATE is
Done:='0' when S BEG N => Done <= '0";
Initialization SBEGIN Start="0 nitiaization( OUT_1);

Start="1

t hen next _STATE<= S
el se next STATE<= S
end if;

Figure 12: A state machine for controlling a separate datapath

The "process version” is preferable if the model uses
a clock (FSMD With Clock, FSM controlling datap-
ath).
Although a procedure could be used with wait state-
ments, this 1s not recommended. Such a bad style of
hidden and scattered wait statements could confuse
humans and synthesis machines. According to that,
the even worse way of using wait statements inside a
function 1s forbidden by the language already. Thus
processes are better for use with a clocked description.
The use of a sensitivity list in the process heads expose
the wait conditions very well. In figure 11 the list has
one entry: Clock.

Special Case: State Machine and Sepa-
rate Datapath. Figure 12 shows some changes
to figure 11: The activation of the next state is
done by a newly introduced process. The sec-
ond process, which contains the state machine, is
made sensitive to the state and all input signals
(process(STATE,Start,DP_msg,IN_1)). This mod-
ification i1s needed for a model which uses a separate
datapath. It compensates delays which are caused by
the datapath: In contrast to a single state machine
with ”build-in” datapath, a separate control-FSM just
gives commands and the actual computations are ex-

11

ecuted by the datapath one cycle delayed.

The modification in figure 12, however, compen-
sates this: The clock has been removed from the state
machine. Instead, datapath feedback messages now
appear in the sensitivity list of the state machine’s
process. Thus the state machine can react to changes
on these signals without waiting for the next clock
cycle. In this way the delay i1s ”compensated”. See
section 4.2.6 for more.

4.2 Examples and Guidelines

This section shows how to use and code the models
with VHDL with the help of examples. Examples are
much clearer than the abstract descriptions of the pre-
vious section. The examples can be used like tem-
plates. Figures 13 to 17 show the descriptions of the
state machines in either a procedure or a process. Fig-
ures 20 to 23 show their embedding into a complete
VHDL description. In this latter set of figures, the
declaration of all variables and signals, needed for the
examples, can be seen too.

Important rules are generalized and described. Ex-
ecutable files of the examples are available and listed
in the appendix.



4.2.1 SFSMD Behavioral

Figure 13 shows a very simple SFSMD: The super-
states S_1 and S_2 perform expensive power opera-
tions each. In superstate S_3, the results are sub-
tracted.

This is just one way of describing the algorithm. The
abstract model SFSMD provides a lot of freedom:

e The three superstates in the example may be
merged into a single one.

e Actions and conditions (conditions are not used
here, but see figure 10) can be of any complexity.

e In this example even the loop and the case state-
ment may be omitted, because there is just a
sequential computation:

begin

-- State S_1:
-- 8:= Inl ** In2; -- (power)
S:=1;
for i in In2 downto 1 loop
S:= 85 * Inil;
end loop;
-- State 5_2:
-- R:= In3 ** Ind; -- (power)
R:=1;
for i in In4 downto 1 loop
R:= R * In3;
end loop;
-- State 5_3:
-- Output

Qutli:= 8 - R;

end behaviorl;

Rules. Almost all constructs of the programming
language are allowed for use in the description of the
SFSMD model, but the following rules have to be
obeyed when modeling an SFSMD in VHDL:

o All wnputs and outputs have to be declared
clearly.

In VHDL, do not introduce ”unofficial” data
ports by reading from or writing to a file within
a procedure. All inputs and outputs should be
declared in the entity.

e Data ports have to be read and set accurately.
Other ports (control, timing) should be avoided.

An abstract description never means, that ab-
stract results are allowed. To be a valid model, it
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must occupy the data ports completely in accor-
dance to the specifications, except that time is
not handled. That means outputs are set with-
out delay.

Synchronization ports and other timing related
ports (like the clock input) are implementation
specific. They are omitted in this model because
this one is abstract and non-timing accurate.

e In this model parallelism and timing are not
used.

This means, in VHDL use only one process and
prefer to use variables instead of signals.

Use of several parallel processes would mean
switching to the model CHSFSMD (Concurrent
Hierarchic SFSMD). In that model hierarchi-
cally higher processes start other processes par-
allelly. But this is not discussed here.

Signals should not be used because signal assign-
ments used without appropriate timing delays
are not executed in the desired sequential order
(see section 3). Tt is difficult and dangerous to
use signals in this model, because a large amount
of sequential code is assigned to each superstate.
The state is a variable, too.

4.2.2 FSMD Behavioral

There are two variants of description for the model
FSMD: FSMD Behavioral Without Time (figure 14)
and FSMD Behavioral with clock (figure 15).

Timing and synchronization originally do not be-
long to this model, but introducing clock at this level
often is an advantage when using VHDL. (See section
”Discussion” below.)

The VHDL-implementations of both behavioral
variants look similar: In this example, figures 14 and
15 implement superstate S_1 of the SFSMD of fig-
ure 13. An FSMD also may implement several super-
states.

Steps. The steps to convert a SFSMD into a FSMD
are the following:

o Divide the SFSMD into slices which are meant
to become implemented by a FSMD each.

A FSMD can be the implementation of just
one superstate up to the whole SFSMD. After
testing and/or refining into the model ”FSM
Controlling Datapath”, the state machines can
be joined together again by concatenating the



states (and merging the datapaths). Alterna-
tively the state machines can remain separate
when adding communication (see section 5).

FSMD Without

Choose way of description:

Time or FSMD Wath Clock.

Usually the description with clock is preferable,
when modeling in VHDL (see section ”Discus-
sion” below).

According to section 4.1.2, FSMD Without Time
should be implemented in a procedure (figure
14). FSMD With Clock has to be implemented

in a process (figure 15).

Version without time in a procedure:

— There doe not need to be a ”when”-
statement for the state S_BEGIN in this
model.

The reason is the sequential programming
style: The state machine is alive only for
the time it 1s needed, else it does not exist.
If the code of the state machine is not exe-
cuted, this means that 1t rests in the state

S_BEGIN.
— Inside the procedure only variables are used
(assignment operator 7 :=").

(However, signals become inevitable in
communicating state machines.)

— The simple data types are adopted from the
SFSMD-model.

The example uses ”integer” for instance.

Version using clock in a process:

— The states S_BEGIN and S_END as well as

7start”- and ”done”-signals are needed for
synchronization.
In a process, a state machine is always alive.
The state machine waits in state S_BEGIN
for its "start”-signal. When the machine
finishes, it reaches the state S_END and sets
a ”done” signal.

— In the process, signals are used generally.
(Variables may be used exceptionally, if
they are not expected to have a correspond-
ing wire or register in the final hardware,
e.g. variables which model delay.)

— The hardware related data  type
std_logic_vector is used in the ex-
ample.

This seems likely because this description
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uses clock which is close to hardware,
too. Both aspects provide the possibility
of easy translation into the model "FSM
Controlling Datapath”.

e Schedule the operations:
A superstate is broken into several states for
FSMD. Each state of a FSMD lasts exactly one
cycle time. A state of a FSMD can contain as
many computations as the data dependencies al-
low. However a lot of computations in a state
cause the datapath to become large (see section

scheduling).

In the example, the superstate S_1 in figure 13 is
scheduled to the states S_1 to S_3 in figures 14
and 15. The ” power”-operation of the superstate
cannot be executed in one cycle. Hardware usu-
ally performs this operation by running a loop
of multiplications. So does this FSMD example.

4.2.3 Discussion: FSMD Behavioral
without time or with clock

The constraint of using variables for behavior input
and output is not nice. Behavior input and outputs
as well as many other value-holders! can be expected
to have a physical equivalence (wire) in the final
hardware. Therefore the use of signals would be more
accurate.

A more unpleasant circumstance is the fact, that in
a description without clock, a VHDL Simulator deter-
mines the execution time equal to zero. Therefore the
possibilities for debugging the code are limited to the
old fashioned way of running the code step by step.
When simulating hardware, displaying the data and
the clock cycles over the time may be desired. That is
not possible, because there i1s no time. This disadvan-
tage can be removed by using FSMD Behavioral with
clock. In this description a clock accurate simulation
shows much better how the design will work. (Ex-
ample: The "Waveform Viewer” provided by ”Syn-
opsys” can be employed now.) Debugging becomes
easier. Additionally, the designer already sees, where
to pay attention to possible timing problems.

Using the appropriate subset of VHDL, the model
FSMD Behavioral with clock can be even directly syn-
thesizable already (with bad results though, compared
to "FSM Controlling Datapath”).

A theoretical disadvantage of this model is the fact,
that hardware details like clock normally belong to a

! Value-holder is used as a generic term for both VHDL-
signal and VHDL-variable.



structural description instead of to a behavioral one,
because it is an implementation detail. However, this
step has to be performed anyway and besides the ad-
vantages for simulation, this makes the step to the
description ” FSM Controlling Datapath” closer.

Finally, such allusions to hardware implementa-
tions are just suggestions and not definite. It still has
to be regarded as being a behavioral description. The
used clock time may change or become a multiple of
the real system clock.

It also 1s possible to use both behavioral models,
first the one without clock and then refine it to the
one with clock.

4.2.4 FSM Behavioral Controlling Datapath
Structural

After the FSMD Behavioral description with clock is
finished, the step to a structural datapath controlled
by a FSM 1s easily described, but tedious to perform.

e A VHDL datapath file has to be created, which
binds the library components? and connects the
entity signals (data in- and outputs, control in-
puts and message outputs). See figure 16.

All computations and data assignments are re-
moved from the state machines, including com-
putations within conditions. Instead, the appro-
priate control signals, which cause the data pro-
cessing in the datapath, are set. See example in

figure 17.

The state machine is notified of the result of con-
ditions by message signals, only few bits wide
(”CMP” in figure 16).

A separate process for setting the next state has
to be introduced.

The remaining process for the FSM is not clock-
triggered any longer, but sensitive to all inputs
of the FSM. (See sensitivity list in the process’s
head.) Thus this process can react to results of
the datapath before the next clock edge arrives
and ”compensate” the delay of the datapath (see
section 4.2.6 below).

e A datapath structural description has to be got.
This is a deep refinement level. All wires and
hardware blocks are specified. Therefore only
signals have to be used and the use of variables is
forbidden here. Components of the datapath are
instantiated as shown in figure 16 by an example.

?from user libraries and /or propriatary libraries
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4.2.5 FSM Structural Controlling Datapath
Structural

In most cases, the step from behavioral FSM to struc-
tural FSM does not need to be supervised by humans.
Figure 18 shows the conversion into a structural de-
scription. Each bit of the output of the FSM is a
boolean function of all bits.

The example shows the unoptimized coding. The
size of the boolean functions should be minimized be-
fore synthesis.

4.2.6 Compensation of Datapath Delay

An FSMD does computation directly. For example, in
figure 14, the state S_2 contains Mult_temp :=0 * A.
In contrast to that, a control-FSM just gives com-
mands.

The actual computations are executed by the dat-
apath one clock cycle delayed. As a result, a FSMD
could not simply be translated into ” FSM Controlling
Datapath”. The solution 1s a modification in figure 12
which is shown in figure 17. As soon as the datapath
gives its result, the FSM is employed again within the
same clock cycle because of the feedback messages ap-
pearing in the sensitivity list. In figure 17 there is just
one feedback signal: CMP.

Thus the datapath delay is ”compensated” and
computation results can be used one cycle after they
were ordered. The behavior of ”FSM Controlling Dat-
apath” is back to the expected behavior of a state ma-
chine. It is equivalent to the behavior of the FSMD,
from which it is derived and in accordance with the
FSM architecture on the left-hand side of figure 8 in
section 1.3.3.

Note on ”compensation”:

When talking about ”compensation” here, it does not
mean a real removal of the delay. Delays and actions
are just moved closer together. This causes a decrease
of the allowed clock period time!

Warnings:

e Omitting the separation of next-state process
and state-machine process means, the delay
through the datapath will not be compensated.
This is equivalent to introducing additional out-
put latches as shown in figure 19. Doing this
is possible, but discouraged. It means a change
of common architecture agreements and the be-
havior is not equivalent to the FSMD-model.



e Introducing a separate next-state process in the
FSMD-model itself is strictly forbidden! Trying
to compensate non-existent delays means remov-
ing necessary latches. Unlatched, indetermin-
istic feedback loops may occur. Also, such a
description can never be translated into ”FSM
Controlling Datapath” any more.
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- S_BEGIN Start=0
Outl:=0 o,
Start=1
S:=

power(Inl ,In2)

R:=
power(In3, In4)

Outl:= S-R;

S_END

to S_BEGIN

A

N
Start ='0’

-- S_BEGIN == "procedure not running", managed by the calling process:
P1: Process;
begin
wait until (Reset ='1") or (Start ='1);
if (Reset="1") then
Outl <=0;
elsif (Start = '1") then
behaviorl( Inl, In2, In3, In4, Outl);
end if;
end process;

Procedure behaviorl( In1, In2, In3, In4: in integer;
signal Outl: out integer ) is
type State_Setis (S_1,S_2,S_3,S_END);

variable next_STATE: State_Set;

variable R, S: integer;

begin

next STATE :=S_1,

while (next_STATE /= S_END) and (Reset/="1") loop
case STATE is

when S_1=> -- S:=Inl1 ** In2;-- (power)

Si=1; .

for iin In2 downto 1 loop .- Example
S:= S*Inl; for FSMD

end loop;

next STATE:=S_2;

whenS_2 => -- Ri=In3 ** In4; -- (power)

R:=1,

foriin In4 downto 1 loop
R:= R*In3;

end loop;

next_STATE:= S_3;

when S_3 => Outl:= S-R;

next_ STATE:= S_END;

when S_END => -- nothing

end case;
end loop;
end behaviorl;

Figure 13: Example: SFSMD Behavioral in VHDL
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-- S_BEGIN == "procedure not running", managed by the calling process:

P1: Process;

begin
O := begin

wait until (Reset ='1’) or (Start ="1’);
— if (Reset="1") then
\/\J O _Port<=0;

elsif (Start ='1") then
behaviorl(Inl, In2, O);

end if;
end process;

Procedure behaviorl( In1, In2: in natural;
O: inout natural ) is

type State_Setis (S_1,S_2,S_3,S_END);

variable next STATE: State_Set;

variable A, B, Mult_temp: natural;

Start=1

begin

next_ STATE :=S_1,

while (next_STATE /= S_END) and (Reset/="1") loop
case next_STATE is

A=Inl, ~—N whenS 12> A=
B :=1n2; - B=| 2
. ; O =

Mult_temp:= AN oo
O*A; when S_2 => Mult_temp := O * A;
B:= B-1;

B :=B-1;
next STATE:=S_3;

O:=Mult_temp; ( S_3 when S_3 => O <= Mult_temp;
if (B > 0)
B=0 then next_STATE:=S_2;
- else next STATE:=S_END;
end if;
when S_END => -- nothing
to S_BEGIN
R
L end case;
Start =0’ end loop;

end behaviorl;

Figure 14: Example: FSMD Behavioral Without Time in VHDL
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behaviorl: Process (Clock)
begin
if (Clock’event and Clock="1") then
if (Reset = '1’) then
O <= (others=>'0");
next_STATE <= S_BEGIN;
else

case next_STATE is

when S_BEGIN => Done <="0’;
Done<='0’ S BEGIN Start ='0’
~ if Start ="'’
then next STATE<=S 1,
else next_ STATE<=S_BEGIN;

Start =1’

end if;
A<=Inl; whenS_1=> A<=1In1;
B <=1In2; B <= In2;

O<=1;

O <= conv_std_logic_vector(1, 32);

next STATE<=S_2;

Mult_temp<= % N\ T e

O*R; when S_2 => Mult_temp <= O(15 downto 0) * A;

B <= B - conv_std_logic_vector(1, 1
B <=1In2;
next STATE<=S_3;
O<=Mult_temp; when S_3 => O <= Mult_temp;
if (B > conv_std_logic_vector(0, 16
B<=0 then next_ STATE<=S_2;
<= else next STATE<= S_END;
end if;
Done<='1"; S_END Start="1’ when S_END => Done <=1}

U if Start =0’
to S_BEGIN

then next_STATE<= S_BEGIN;

‘ else next STATE<=S_END;
N edif,
L end case;
Start ='0’ end if;
end if;

end process;

Figure 15: Example: FSMD Behavioral With Clock in VHDL
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In1 In2

‘ Entity DP is
Id_A - port (Clock: in std_logic;
”””” =771 Register DP_Reset: in std_logic;
CMP: out std_logic_vector(1 downto 0);

MUX_sel: in std_logic;

Id_O: in std_logic;

Counter In1, In2: in std_logic_vector(15 downto 0);
O_Port:  out std_logic_vector(31 downto 0));

end DP;

; A Id_A, Id_B, Count_En, Count_M: in std_logic;

Architecture DP_schematic of DP is

-- connection signals

signal A, B: std_logic_vector(15 downto 0);

signal O: std_logic_vector(31 downto 0);

signal MULT_Out, MUX_Out: std_logic_vector(31 downto 0);

component Reg_16bit

Port ( Clock: in std_logic;
MULT Reset:  in std_logic;
Load: in std_logic;
Data_In: in std_logic_vector(15 downto 0);
MULT Out Data_Out: out std_logic_vector(15 downto 0));
- end component;

I
|
I
I
I
I
I
I
I
]
|
I
I
I
I
I
I
I
|
1
=
[ .
P MUX_Out begin
N
i
b
I
I

MUX /
777777 B P MUX o
Id_O . bi
,,,,,, [ T . .

1IIIIIIIIiii Reg|ster Register_A: Reg_16bit B ~ ~
Clock o e e 0O Port Map ( Clock=>Clock, Reset=>DP_Reset, Load=>Id_A,
****** - Data_In=>In1, Data_Out=>A);
DP_Rese |
—————— = i Oe

O_Port O <= O_Port;

end DP schenmat i c:

Figure 16: Example: Datapath of ”FSM Behavioral Controlling Datapath Structural”

19



Transition: Process

begin
wait until(Clock’event and Clock ='1");
STATE <= next_STATE;

end Process;

behaviorl: Process (STATE, CMP, Start)
begin
if (Reset ='1’) then

-
next_STATE <= S_BEGIN;
else
case STATE is

when S_BEGIN => Done<='0";
Done<="0" 1
. DP_Reset<="1";
DP_Reset<=1 S_BEGIN Start="0 Id_A<="0’;
Id_A<=0 N A Id_B<='0";
Id_B<="0’ Count_M<="";
Count_M<="- Count_En<='0
Count_En<='0’ MUX_sel<="0";
MUX_sel<="-' Id_O<="0;
Id_O<="0’
if Start =1’
. then next_STATE<=S_1;
Start="1 else next_STATE<= S_BEGIN;
end if;
Done<='0" @ AT T T T T T T T T T T T T T T T T S S T oSS S oSS C oSS oSS oo oo
when S_1=> Done<="0;
DP_Reset<="0’
Id_A<="1' DP_Reset<="0";
Id B<='1’ Id_A<="1
Count_M<="-’ ld_B<="1"; .
Count_En<="0’ Count_M<="-; !
MUX_sel<="0" Count_En H
Id O<="1" MUX_sel<="0";
- Id_O<="1%
next_STATE<=S_2;
[0 o | i e
DP_Reset<='0’ when S_2 => Done<="0
Id_A<="0r DP_Reset<="0";
Id_B<="0’ Id_A<="0";
Count_M<=1" Id_B<="0";
Count_En<="1" Count_M<="1";
MUX_sel<="1" Count_En<="1";
Id_O<="0r MUX_sel<="1";
Id_O<='0";
next_STATE<=S_3;
Done<='0" @ AR T T T T T T T T T T T T T T T T T T T T S TS S SSSSS oSS oSS oo
when S_3 => Done<='0;
DP_Reset<="0’
Id_A<='0’ DP_Reset<="0";
Id B<=0 Id_A<='0";
Count_M<="" Id_B<="0;
Count_En<='0’ Count_M<:
MUX_sel<="1" Count_En H
d 0<=1" MUX_sel<="1";
- ld_O<="1";
cmp(O) =1 if CMP(0) ='1"
_ then next_STATE<=S_2;
(B<=0) else next_STATE<= S_END;
V end if;
Done<="1" 2 G W
DP_Reset<=0' S_END Start="1' when S_END => Done<="1};
Id_A<="0’ \/U DP_Reset<='0’;
Id_B<="0’ 0
Count_M<="-' s
Count_En<='0
MUX_sel<="-'
Id_O<="0
if Start ='0’
then next_STATE<= S_BEGIN;
toS_BEGIN else next_STATE<= S_END;
‘ end if;
1
' end case;
Start ='0 end if:

end process;

Figure 17: Example: FSM of ”FSM Behavioral Controlling Datapath Structural”
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‘ next_STATE

(0) and not CMP

(0) )

Clock
Reset
—— "1 State Register
Enable
{sTaTE
State_Register: Process(Clock, Enable)
begin
if (Clock’event and Clock ='1’) then
if (Reset="'1") then STATE <= 000;
elsif (Enable = '1") then STATE <= next_STATE;
end if;
end if;
end Process;
DP-Control and Status Output Logic
Input DP-Control Output Status Output
ko] c o
c c <
523359
STATE N300 =3 Done
000 100-0-0 0
001 011-001 0
010 0001110 0
011 000-011 0
111 000-0-0 1
rest don't care don't care
-- Datapath-Control and Status Output Logic
-- Datapath Control Output
DP_Reset <= (not STATE(2) and not STATE(1) and not STATE(O) );
Id_A <= (notSTATE(2) and not STATE(1) and STATE(0) );
ld_B <= (not STATE(2) and not STATE(1) and STATE(0) );
Count_M <= (notSTATE(2)and STATE(1) and not STATE(O) );
Count_En <= (not STATE(2) and STATE(1) and not STATE(0) );
MUX_sel <= (not STATE(2)and STATE(1) and not STATE(0))
OR (not STATE(2) and STATE(1) and STATE(0));
Id_O <= (notSTATE(2) and not STATE(1) and STATE(0))
OR (not STATE(2) and STATE(1) and STATE(0));
-- Controller Status Output
Done <= ( STATE(2)and STATE(l)and STATE(0));
Next-State Logic
Input Output
STATE CMP Start next_STATE
000 - 0 000
000 - 1 001
001 - - 010
010 - - 011
011 -1 - 010
011 -0 - 111
111 - - 000
rest - - don’t care
-- Next-State Logic
next_STATE(2) <= (not STATE(2)and STATE(1)and STATE(0) and not CMP(0) );
next_STATE(1) <= (not STATE(2) and not STATE(1) and STATE(0))
OR (not STATE(2) and STATE(1) and not STATE(O) )
OR (not STATE(2) and STATE(1)and STATE(0)and CMP(0))
OR (not STATE(2) and STATE(1) and STATE(0) and not CMP(0) );
next_STATE(0) <= ( not STATE(2) and not STATE(1) and not STATE(0) and START )
OR (not STATE(2) and STATE(1) and not STATE(0) )
OR ( not STATE (2) and STATE (1) and STATE
Figure 18: Example: FSM of "FSM Structural Controlling Datapath Structural”
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a) Changes in FSM Behavioral Description when Using just One Process (Outputs Latched)

behaviorl: Process
begin
if (Clock’event and Clock = '1’) then
if (Reset ='1’) then

(Clock)

next_STATE <= S_BEGIN;
else
case STATE is

when S_BEGIN => Done<="0’;
Done<="0’ . DP_Reset<="1;
DP_Reset<='1’ S_BEGIN Start="0 Id_A<=0;
ld_A<="0’ o |d_B<=0";
Id_B<='0 Count_M<="";
Count_M<="- Count_En<="0’
Count_En<=0 MUX_sel<="0";
MUX_sel<="-" Id_O<="0";
Id_0<="0’
if Start ='1’
. then next_STATE<=S_1,
Start =1 else next_STATE<= S_BEGIN;
" end if;

b) Equvalent Changes in FSM Structural Description / Changes of the former Architecture (Outputs Latched)

Next_State_Register:
begin
if (Clock’event and Clock="1") then
if (Reset="1") then next_STATE <= "000";
elsif (Enable="1") then next_STATE <= next_STATE_logic;
end if;
end if;
end Process;

Process(Clock, Enable)

Output_Registers: Process(Clock, Enable)

begin Control Inputs (Start)
if (Clock’event and Clock="1") then

if (Reset="1") then IR
DP_Reset <='1’; Next-State
ld_A<=0"; Logic
Id_B<=0"; Clock
Count_M< Reset| - -
Count_En<='0’; Enab T Next-State Reg [?:ttl?
MUX_sel<: | Control
Id_O<='0’ Datapath -
Done <= Control

else and

DP_Reset <= DP_Reset_Logic;
ld_A <=1Id_A_Logic;
Id_B <=Id_B_logic;
Count_M <= Count_M_Logic;
Count_En <= Count_En_Logic;
MUX_sel <= MUX_sel_Logic;
Id_O <=1d_O_Logic;
Done <= Done_Logic;
end if;
end if;
end Process;

-- Datapath-Control and Status Output Logic

DP_Reset_Logic <= ( not STATE(2) and not STATE(1) and not STATE(O) );

Id_A_Logic <= ... ...

-- Next State Logic

Output Logic

Output Reg’s

Control Outputs (Done)

next_STATE_Logic(2) <= (not STATE(2) and STATE(1) and STATE(0) and not CMP(0) );

next_STATE_Logic(1) <= ... ...

Figure 19: Warning: Omitting separation of next-state-process causes additional output latches
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Design: SFSMD Example

Figure 20: Embedding the example SFSMD (fig. 13)

mnVv

Figure 21: Embedding the example FSMD

S

-- no library needed
Entity SFSMD_ex is

port (Reset, Start: in bit;
In1, In2, In3, In4:in integer;
Outl: out integer );

end SFSMD_ex;

Architecture SFSMD_ex_behavioral
of SFSMD_ex is

-- declarations for architecture

- 1o aua. signal deciaratons needed

Procedure behaviorl
(In1, In2, In3, In4: in integer;
signal Outl: out integer) is
type State_Setis (S_1,S_2,S_3, S_END);
variable next_STATE: State_Set;
variable R, S: integer;

begin

-- implementation of architecture
begin

i P1: proéeéé

end SFSMD_ex_behavioral;

HDL

Design: FSMD "No Time" Example

-- no library needed
Entity FSMD_no_time_ex is

port (Reset, Start: in bit;
In1, In2: in natural;
O_Port: out natural );

end FSMD_no_time_ex;

Architecture FSMD_no_time_ex_behavioral
of FSMD_no_time_ex is

-- declarations for architecture

: -- behavior outputs

signal O: natural;
Procedure behaviorl

(In1, In2: in natural;

signal O: inout natural) is
type State_Setis (S_1,S_2, S_3, S_END);
variable next_STATE: State_Set;
variable A, B: natural;
variable Mult_temp: natural;

begin

-- implementation of architecture
begin

i P1: proceéé

-- Entity Outputs
O_Port<=0;

end FSMD_no_time_ex_behavioral;

Time (fig. 14) in VADL

Without

Design: FSMD "with Clock" Example

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

Entity FSMD_clock_ex is
port (Clock: in std_logic;
Reset, Start: in std_logic;
Done: out std_logic;
In1, In2: in unsigned(15 downto 0);
O_Port: out unsigned(31 downto 0));

end FSMD_clock_ex;

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Architecture FSMD_clock_ex_behavioral :
of FSMD_clock_ex is !

|

-- declarations for architecture :

‘ signal O: unsigned(31 downto 0); : :
© signal Mult_temp: unsigned(31 downto 0); I
. type State_Set is (S_BEGIN, S_1, S_2, ol
‘ S_3, S_END); |
i signal next_STATE: State_Set; |
i signal A, B: unsigned(15 downto 0); I
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

-- implementation of architecture
begin

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: : behaviorl: process (Clock)
|

|
|
|
|
|

-- Entity Outputs
: O_Port<=0;

: end FSMD_clock_ex_behavioral;

Figure 22: Embedding the example FSMD With Clock
(fig. 15) in VHDL
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Design: FSM plus Datapath FSM

library |IEEE;
use IEEE.std_logic_1164.all;
use |IEEE.std_logic_arith.all;

library |IEEE;
use IEEE.std_logic_1164.all;
use |EEE.std_logic_arith.all;

—  Entity FSM is

Entity FSM_plus_DP is Port (Clock: in std_logic;
~lock- i . Reset, Start: in std_logic;
Port (Clock: in std_logic; Done: out std_Togic:

Reset, Start: in std_logic;
Done: out std_logic;
In1, In2:in

DP_Reset:  out std_logic;
Id_A, Id_B, Count_En, Count_M:
out std_logic;
CMP: in std_logic_vector(1 downto 0);
MUX_sel: out std_logic;
Id_O: out std_logic );

std_logic_vector(15 downto 0);
O_Port: out

std_logic_vector(31 downto 0));
end FSM;
Architecture FSM_behavioral of FSM is
type State_Set is (S_BEGIN, S_1,S_2,

|

|

|

|

|

|

I

|

|

|

|

|

|

|

|

:

end FSM_plus_DP; :
1
S_3,S_4, S_END); 3
|
I
|
|
|
|
|
|
I
|
|
|
|
|
|
I
|
|
|
|
|
|

Architecture Design of Design_Block is

-- declarations for architecture signal next_STATE, STATE: State_Set;

signal Id_A,Id_B, Count_En, Count_M: std_logic;
signal CMP:  std_logic_vector(1 downto 0);
signal MUX_sel: std_logic;

signal Id_O:  std_logic;

signal DP_Reset: std_logic;

transition: process
begin

wait until (Clock’event and Clock="1");
STATE <= next_STATE;
end process;

|
|

|

|

|

! |
! |
| |
| |
! |
! |
! |
| |
| |
| |
! |
! |
| |
! |
| |
! |
! |
! |
! |
| [ .
I i -- connection signals : begin
|

! |
! |
| |
! |
| |
! |
| |
| |
! |
! |
! |
| |
! |
| |
! |
! |
! |
! |
|

|

|

|

|

: component FSM : | behaviorl: process (STATE, CMP, Start)

I port  (Clock: in std_logic; o begin o

! Reset, Start: in std_logic; ! : if (Reset="1") then ...

‘ Done: out std_logic; o else case STATE is ...

| DP_Reset: out std_logic; ! )

I Id_A,ld_B, Count_En, Count_M: r‘_‘ end process;

! out std_logic; | .

| CMP: in std_logic_vector(1 downto 0); b end FSM_behavioral;

| MUX_sel: out std_lpgic; | : ****************************
: Id_O: out std_logic); : i Datapath

| end component; | : ———————————————————————————————————— ‘

library |IEEE;

port (Clock: in std_logic; . .
DP_Reset: in std_logic; POE')'lp R (C|100k1 ) lntS('jtdl_|09IC;
Id_A,ld_B, Count_En, Count_M: _Reset: in std_logic; _ )
- Oui?@tdn |o§;)igr1 - Id_A,ld_B, Count_En, Count_M: in std_logic;
Ve ( -~ CMP: out std_logic_vector(1 downto 0);
MUX_sel: in std_logic; MUX_sel:  in std_logic;
Id_O: in std_logic; Id_O: in std_logic;

In1, In2: in std_logic_vector(15 downto 0);
O_Port: out std_logic_vector(31 downto 0));
end DP;

In1,In2: in std_logic_vector(15 downto 0);
O_Port: out std_logic_vector(31 downto 0));

| |
| |
| |
| |
I
| |
| |
: CMP: out std_logic_vector(1 downto 0); r
| |
| |
|
| |
|
: end component; I

Architecture FSM_behavioral of FSM is
signal A, B: std_logic_vector(15 downto );
signal O:  std_logic_vector(31 downto 0);
signal MULT_Out, MUX_Out:
std_logic_vector(31 downto 0);

begin

|
|
.
— ® Entity DP is
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| o

| [

: port map ( Clock=>Clock, : |

I Reset =>Reset, Start => Start, | :

| Done => Done, DP_Reset=> DP_Reset, o —
} dA =>Id A Id B =>IdB,

I Count_En=> Count_En, Count_M => Count_M,

: CMP  =>CMP, MUX_sel =>MUX_sel,

|

Id_O=>ld_O );
| - L L L L L L L L L L L L L L e e oo
r-—-r—~>~>~""~""~"~"~>"~>"~"~"~"~"~"~>~"~"~"~"~"~"~"~*>"®>"=>~"~"“~"=~"= === — =, |
Control: DP
port map ( Clock=>Clock,

I
1
: DP_Reset=>DP_Reset,

| Id_A =>Id_A, Id_B=>Id_B,

| Count_En=>Count_En, Count_M => Count_M,
} CMP =>CMP, MUX_sel => MUX_sel,

| Id_O=>1d_0O,

! In1 =>1In1, In2 => In2,

: O_Port=>0_Port );

|
: O_Port<=0; |
I end DP_schematic; |

Figure 23: Embedding the example "FSM Controlling Datapath” (fig. 16 and 17) in VHDL
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5 Communication
of State Machines

State machines may have to exchange data. There can
be different reasons for having state machines which
need to communicate:

e A large super state machine can be divided into
smaller state machines in order to get smaller
problems.

e Separate state machines can be designed, which
solve common problems. They may be required
for use in connection with other state machines
like ” plug-ins”.

e A state machine may have to be divided, when
it contains problems with different demands of
the implementation platform. Each piece then
can run on the platform which is best.

In all these cases, data exchange between the several
state machines is necessary and an appropriate pro-
tocol needs to come along with it. In the following
subsections, the simple method of handshaking is dis-
cussed, which is sufficient for many problems. Single
handshake can be used, if the communicating state
machines have the same cycle time. However double
handshake 1s recommended, since it works with all odd
cycle times and even if there is no assigned cycle time
(SFSMD and FSMD Without Time).

A data sending machine may produce bursts of data
with delays between the bursts. Also the receiving
machine may consume the data irregularly. In these
cases a buffer comes in handy, which can be a queue or
a memory for instance. The design of state machines,
exchanging data via a queue or memory, is shown in
the later sections.

5.1 Single Handshake

A prerequisite for single handshake is that each state
machine is either a FSMD, which uses clock, or a FSM,
both working with the same clock.

Figure 24 shows the usage of signals for single hand-
shake between two state machines. Set-output and
read actions are adapted to FSMD or FSM according
to the table below the figure. If the sender (A) is a
FSMD, the Output is set in state S_c directly. If it is
a FSM, the associated datapath sets the output one
cycle delayed, in state S_d. The signal A_Ready_B is
set to ’1°, when the state machine has set the output
or just sets it. This means, one cycle after A_Ready_B
was set, the data can be read by the receiver (B). The

25

receiver gives the acknowledge signal B_Ackn_A when
it reads the data.

Note, that the receiver may reach state S_w earlier
than data is send. Then it reads invalid data. But, the
signal A_Ready is 0’ as long as the data is invalid.
This causes the receiver to read the data again and
again until it finally reads valid data.

If the receiver is an FSM, reading is delayed by
the datapath, too. However, reading the data in state
S_x is early enough, since both state machines work
synchronously with the same clock.

Figures 25 to 28 show the order of events and
switching of states for all possibilities: Figures for
FSMD-FSMD, FSM-FSM, FSM-FSMD and FSMD-
FSM each contain diagrams for the following three
cases: A is earlier than B, A and B reach the commu-
nication states at the same time, B is earlier than A
(where A is sender and B is receiver).

Black arrows show how ready and acknowledge signals
cause state transitions. A FSMD model cannot recog-
nize the setting of a signal within the same cycle but
only in the next cycle. This causes the large ”scissors”
in figure 25.

In the model ”FSM Controlling Datapath”, a side ef-
fect of compensating the datapath-delay is the early
reaction to the input signals. The results are the
smaller, narrow ”scissors” in figure 26.

Figures 27 and 28 show the connection of FSM with
FSMD, resulting in a mixture of the two types of ”scis-
sors” .

In the FSMs, thin gray arrows indicate the wait pe-
riod for setting and reading data by the datapath. The
compensation of the datapath delay, stated in section
4.2.6, does not apply for synchronous data-transfer via
the ports. The compensation just compensates a de-
layed reaction of the FSM within the same design.

Thick gray arrows point out, how many cycles after
the actual setting of the data, it is read. This number
must be greater than or equal to one, meaning the ar-
row must point downwards. A horizontal arrow is not
allowed. If the thick arrows point downwards through
several states, the output data has to be kept in these
states.

The timing diagrams show the functionality of the
construct in figure 24.

The appendix contains figures with statemachines
transmitting data via a queue by single handshake.
This is not discussed further, because the focus is set
on the more robust and adaptive double handshake.
For explanation about a queue, refer to section 5.3.2.



A
Set Output Action G_B G_D

d Sw

B_Ackn A='0' A_Ready B='0'
(keep Output) S Read Input Action
A_Ready B<="1 A\_= =/ B_Ackn A<="1

B_Ackn A='T A_Ready B="1'

A_Ready B<='0 6_9 6_9 B_Ackn A<='0'

‘ FSMD (with clock) FSM (of FSM+Datapath)
Set / Read Ports Load Registers
Set Output Action | Data AB <= ... Ld Data AB<="1
Read Output Actioh B_Data A <= Data AB Ld B_Data A <="1

Figure 24: Single Handshake
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a) FSMD A reaches

communication state earlier
FSMD A FSMD B

Data AB<=...

A_Ready B<='1'
(keep Data_AB)

B_Ackn A="'0’

A_Ready B<='1'
(keep Data_AB)

B_Ackn_A<="1'
..<=Data AB

B_Ackn A='0'

A_Ready B<="1'
(keep Data_AB)

B_Ackn A='T

A_Ready B<='0'

b)FSMD A and B reach
communication state at same time

FSMD A FSMD B

Data AB<=...
A_Ready B<='1' B_Ackn A<='T'
(keep Data_AB) ..<=Data AB
B_Ackn_A="0' A_Ready B='0'
A_Ready B<="1' B_Ackn_A<="1
(keep Data_AB) ..<=Data AB
B_Ackn A="T" A_Ready B="1'
A_Ready_B<='0' B_Ackn_A<='0'

c) FSMD B reaches
communication state earlier

FSMD A FSMD B

Figure 25: Cases, when using Single Handshake with two FSMD

a) FSM A reaches
communication state earlier

FSM A FSM B

Ld Data AB<='0' -
B_Ackn_A='0'

A_Ready B<="1
Ld Data AB<='

B_Ackn A='1'

A_Ready B<='0'

b)FSM A and FSM B reach
communication state at same time

FSM A

FSM B

A_Ready B<='0'
Ld Data AB<="1'

A_Ready B<='1 wi—B_Ackn_A<="1'
Ld_Data AB<='0' Ld_B_Data A<="1'
B_Ackn A='1' A_Ready B='1'
A_Ready B<='0' B_Ackn A<="0'

- B_Ackn A<="1'
Data AB<=.. .<=Data AB
A_Ready B='0'
A_Ready B<='1' B_Ackn A<='1l'
(keep Data_AB) ..<=Data AB
B_Ackn A="1' A_Ready B='0’
B_Ackn A<="1'
...<=Data_AB
A_Ready B='1'
A_Ready_B<='0' B_Ackn_A<='0'
¢) FSM B reaches
communication state earlier
FSM A FSM B
A_Ready B<="0' Sw B_Ackn A<='T

~'Ld_B Data A<='T'
A_Ready B='0'

‘" B_Ackn_A<="T1'
Ld B Data A<='1'

A_Ready B="1

B_Ackn A<='0"

Figure 26: Cases, when using Single Handshake with two FSM

27



a) FSM A reaches b)FSM A and FSMD B reach ¢) FSMD B reaches
communication state earlier communication state at same time communication state earlier

FSM A FSMD B FSM A FSMD B FSM A FSMD B

A_Ready B<='0'

B_Ackn_A<="1'
Ld Data AB<="1'

Ld Data AB<="0' Ld Data AB<="T' ...<=Data AB

B_Ackn A='0' A_Ready B='0'

B_Ackn A<="1" A_Ready B<='1
...<=Data AB Ld_Data AB<='

B_Ackn A<="1'" A_Ready B<="Il' B_Ackn_A<="T1'

Ld Data AB<='0' ...<=Data AB Ld_Data AB<='0 ...<=Data AB

B_Ackn_A="1' A_Ready B='1' B_Ackn_A='1' A_Ready B="0' B_Ackn_A="1' A_Ready B="0'
A_Ready B<='0' B_Ackn A<='0'  A_Ready B<='0' BACNA<T'L" A Reaty B<='0 B_ACkn A<='1'
... <= Data AB ... <= Data AB
A_Ready B='1' A_Ready B='1'
B_Ackn_A<="0’ B_Ackn_A<='0’

Figure 27: Cases, when using Single Handshake with a FSM transmitting to a FSMD

a) FSMD A reaches b)FSMD A and FSM B reach ¢) FSM B reaches
communication state earlier communication state at same time communication state earlier
FSMD A FSM B FSMD A FSM B FSMD A FSM B
A_Ready B<='0’
Data AB<=...
A_Ready B<='1' A_Ready B<='0' . | (e B_Ackn A<='1'
(keep Data_AB) Data AB <= ... Data AB<=... — Ld B_Data A<="T
B_Ackn A='0' A_Ready_B="0'
A_Ready B<Z'1 B_Ackn_A<='1' A_Ready B<"'1' W—B_Ackn A<='T" A_Ready B<=T Sw) B_Ackn A<='T’
(keep Data_AB) Ld B Data A<="1' (keep Data_AB) Ld_B_Data A<="1' (keep Data_AB) _ Ld_B_Data A<="1'
B_Ackn A='0’ A_Ready B='1' B_Ackn A='0' A_Ready B='1' B_Ackn_A='1' A_Ready B='1'
A_Reay B<='1 B_Ackn A<='0'  A_Ready B<='l' B_Ackn A<=0' A_Ready B<="0' B_Ackn_A<='0’
(keep Data_AB) (keep Data_AB)
B_Ackn A="1' B_Ackn_A='1'

A_Ready B<='0’ @

Figure 28: Cases, when using Single Handshake with a FSMD transmitting to a FSM
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5.2 Double Handshake

Double handshaking makes the data exchange much
more robust and works with all kinds of cycle times.

See figure 30. First, similar to the simple hand-
shake, the sender puts data on its output port and
sets the ready signal (A_Ready_B=’1"). The receiver
reads the data and acknowledges it by B_Ackn_A=’1".
Then a second handshake follows: The sender sets
A_Ready_Bto ’0’ and waits for a B_Ackn_A=0" from
the receiver. This assures that none of the state ma-
chines can run ahead of the other one:

If the receiver would not wait in state S_w for
A_Ready_B to become ’0’ again, it would not be able
to know when the sender has noticed that the data
has been received. There is the danger of removing
the received confirmation signal B_Ackn_A too early.

If the sender would not wait in state S_d for B_Ackn_A
to be ’0? again, it may start another data exchange
in some other state and read the old B_Ackn_A="1".

Figure 30 assures, that the signal

A_Ready_B=’1’ at earliest 1s set one cycle after
the output signal has been set. Both signals cannot
be set at the same time, because in an asynchronous
communication, it is unknown which one would be
recognized first by the receiver.
In the same way, the output signal must remain
valid until the next receiver-cycle after the read
operation. In figure 30, this 1s not done by moving
B_Ackn_A <= ’1’ to a later cycle. Instead the output
of A 1s held until B_Ackn_A = ’0’. Doing so saves
additional states.

The reaction delay of a datapath makes it necessary
to move the ”set output operation” within state ma-
chine A from state S_b to state S_a. State S_a can be
used as a “generalized set output state”, which works
for all models.

The delay of the datapath has to be considered in the
receiving state machine, too. Here, a "generalized”
state is impossible without introducing another state
(figure 29). If no extra state is introduced, the output
action has to be moved, depending on the used model
(see figure 30):

SFSMD, FSMD: use state S_w: B_Data_A<=Data_AB;
FSM: use state S_v: 1d_B_Data_A<=’1".

Figures 31 and 32 demonstrate the timing problems
which may occur, if output action and input action are
not scheduled at the right state.

Figure 32b also shows that a FSMD determines
its next state when entering a state. An FSM, how-
ever, updates its "next state”-value continuously dur-
ing the the current cycle. Thus, communication be-
tween FSMs uses less clock cycles. Double handshake

also
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does not guarantee a specific number of cycles. It just
assures a safe exchange of data.

only for FSMI:
|d_B_Data A<="1'

Read Input Action

B_Ackn_A<="1
for FSMD and SFSMD:
B_Data A<=Data AB

Figure 29: Insertion of a ”General State” in the re-
ceiving state machine of figure 30



A B

Set Output Action @

(keep Output) 6—9

only for FSM:
ld_B_Data A<="1

A_Ready B<='1T

(keep Output) B_Ackn A='0'

B_Ackn A="1 Sw) B_Ackn A <=1
for FSMD and SFSMID:

B_Data A<=Data AB
A_Ready B <=0 @
(keep Output) B_Ackn A='1'
B_Ackn_A="0 6_9 B_Ackn A<="0
sy

SFSMD / FSMD FSM (of FSM+D)

Set / Read Ports Load Registers
Set Output Action Data AB <=... Ld Data AB<="1
Read Output Action | B_Data A <= Data AB Ld B _Data A<="1

Figure 30: Double Handshake
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a) For the state machines being FSM's, assume the write command is given in state S_b instead of state S a.
The following problem may occur, if the reading machine runs much faster than the writing machine:

State Sender Sa S_b Sc S_d
State Receiver Su Sv Sv Sv Sv Sv Sw Sw Sw S X Sy
Id_Data AB
Output valid
A_Ready B
Id B_Data A
Input_read
Output may not be valid when it is read again for the final time.
Figure 31: Timing problem when writing
a) For the state machines being FSMs, assume the read command is given in state S w instead of state S_v.
The following problem is caused, if the writing machine runs much faster than the reading machine:
State Sender Sa Sbh Sc Sc Sc Sd Sd Sd Se Sf Sg
State Receiver S_V S_V S_W ! S_X
Id_Data AB ;
Output valid
Id_B_Data A i 3
Input_read
read time
_ cycletime ~
b) For the state machines being FSMDs assume reading isdonein state S v instead of S_w.
The following problem is caused, if the writing machine runs much faster than the reading machine again:
State Sender S .. S .. Sa Sb Sc Sc Sc Sc Sc Sd Sd
State Receiver S_V S_V S_V S_W
Data ABvalid
B Data_Aread
wrong data read

(and will not be read again in a new cycle)

Figure 32: Timing problems when receiving
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5.3 Examples:
Data-Transfer
VHDL

This section presents complete graphical descriptions
of the three most important and simple constructions
for data-transfer. For all these examples executable
VHDL code is provided in the appendix.

In all cases, double handshake is used.

Constructions in

e Direct data-transfer:
A construction of two state machines with data-
transfer

— Sender (FSMD)
— Receiver (FSMD)

- Sender (FSM Controlling Datapath)
— Receiver (FSM Controlling Datapath)

e Data-transfer via queue:
Data-transfer from sender to queue and from
queue to receiver

— Sender (FSMD)
— Queue (FSMD)
— Receiver (FSMD)

- Sender (FSM Controlling Datapath)
— Queue (FSM Controlling Datapath)
— Receiver (FSM Controlling Datapath)

e Data-transfer via memory:
An arbiter first grants sender to store data in a
memory, then it grants the receiver to read the
data.

- Sender (FSM Controlling Datapath)
— Memory || Arbiter (FSM) 3
— Receiver (FSM Controlling Datapath)

There are no examples of FSMD and ”FSM Con-
trolling Datapath” being mixed, just because giving
examples for all possibilities would mean too many
repetitions. The models can be mixed easily. They
just have to be exchanged in the examples. For exam-
ple refer to the example of sender, queue and receiver,
all being FSMDs (figure 35 some pages forward). The
FSMD-sender simply can be removed and replaced by
the sender which is described by ”"FSM Controlling
Datapath”. There are no changes in the connection
wires (e.g compare figure 35 and figure 37). In the fig-
ures, which show the state machines, the differences
in FSMD and FSM are mentioned for sender and re-
ceiver.

3The arbiter is arranged parallely to the memory. It is con-
nected to sender and receiver but not to the memory.
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For each FSMD, there are two versions of VHDL
files in the appendix: FSMD described inside a proce-
dure (meant for use without timing) and FSMD in a
process (meant for use with clock). Refer to sections
4.1.2 and 4.2.3 for the meaning of these two versions.

The model SFSMD is not provided in the exam-
ples for data exchange, because double handshake
for SFSMD 1is identical to double handshake for the
procedure-version of FSMD.

Direct data-transfer (first item) implements the ba-
sic form of double handshake as described in section
5.2.

When transferring data via a queue, the described
double handshake is modified on the receiver side.
This 1s, because the queue controller is passive and
does not give a write request or an "output data
ready” signal to the receiver. Instead the receiver
transmits a read request signal to the queue.

In the data-transfer via memory, double handshake
is used in a different way. Double handshake does not
supervise the transfer of each word of data any more.
This is done by sender and receiver themselves now,
when the memory access has been granted to them
via double handshake by an arbiter. The arbiter talks
to sender and receiver. There is no connection to the
memory. Thus, the arbiter always is a simple FSM
and there 1s no FSMD version of it.

The following conventions apply for correspondence
between the figures and the VHDL code:

The figures show the logical hierarchy of the construc-
tions, using block elements with solid thick borders.
They are given an explanatory name, printed in big
letters (e.g. in figure 33 ”FSMD A”), except the outer
block which covers everything. Each block element
corresponds to a VHDL entity. Its name is given in
small letters enclosed in parenthesis. Also some signal
names are given in small letters. A name is attached
to each wire in the figures. In VHDL, the same name
is used in the entity-/architecture pair which corre-
sponds to the block in the figure, which has the signal
name printed in?. If a wire is labeled outside a block,
it has the same or a similar name inside the block.
In the state machine figures, the real VHDL signal
names are used, too.

Figure 40 uses thick wires. They represent busses.

4Except sometimes the trailing word ”...Port” is omitted in
the signal names in the figures.



5.3.1 Direct Data-Transfer

The following two figures show the block diagrams of the implementation of simple direct data-transfer under
cover of the double handshake as described in section 30.

Qo
[=]
(ﬁ\
0 lis)
< g < <
! 4] < Il o
g g < 8 8 g
o S
[= FSMD B_Ackn A A_Ready B FSMD /@
. A B
I
—é (FSMD_A_dHS no_time _ex) (FSMD_B_dHS _no_time_ex)
ke (FSMD_A_dHS clock_ex) (FSMD_B_dHS clock_ex)
&
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0
N
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A_Ready B )
m B_Ackn_A 2]
i _ACKN_/
il
£ | |
o v v
<\ om Q)
< < 5’5
o | g g
8 g 3 9
g bul
® >
[a (o]
| Clock_B (FSMD_dHS no_time_ex_top)
(FSMD_dHS _clock_ex_top)

Figure 33: Direct data-transfer with Double Handshake: Block structure for FSMDs

State Machines: See figure 30 for the state machines for direct data-transfer via simple handshake.
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Figure 34: Direct data-transfer with Double Handshake: Refinement to FSMs and datapaths
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5.3.2 Data-Transfer via Queue

Figure 35 shows how the queue is inserted in the trans-
mission path. Between FSMD A and the queue, the
familiar double handshake is used unchanged®. The
handshake between queue and receiver (B) is modi-
fied however. It also is a double handshake, but it
does not start with a ”data ready” signal from the
queue. As the queue is passive, the receiver has to
start with a read request. The state machines in fig-
ure 36 show more details: The read request signal
B_Rd_Req_QC=’1" is set in receiver state S_v. When
the data is ready to be read, the queue gives the signal
QC_Ready_B=’1". The receiver reads the data in state
S_w and acknowledges with B_Rd_Req_QC="0’, which
causes the queue to release QC_Ready_B again.

It may appear to be dangerous, that the receiver
gives the acknowledge signal (B_LRA_Req_QC=’0’) at
the same time i1t reads the data, which causes the
queue to go to its idle state 0 again. Doing so in
an asynchronous design looks dangerous, because the
provider of the data may catch the acknowledge a delta
time too early. This queue however, has an output
buffer and will not discard the data. It keeps the
data until the receiver reads another data word. It
even keeps the data when the sender sends data to
the queue in the meantime.

But: The contexts of the previous paragraph are
not the reason for the introduction of an output buffer:
Common FIFOs for queuing data, usually discard the
read set of data with the next clock cycle. This does
not meet the requirements in this asynchronous data
exchange, because the receiver may be slower than the
queue. Therefore the queue output has to be buffered
(see also figure 38).

There needs to be a control, which avoids data writ-
ing when the queue is full and data reading when the
queue is empty. An initial control 1s build into the
queue control: When the queue is empty, the read cy-
cle 1s not started and QC_Ready_B=’1" will not be set.
This avoids the receiver from reading data. It waits
in state S_v. The queue control does not start a write
cycle when the queue is full and A_Ready_QC=1" will
not be signaled to the sender. This simple manage-
ment, provided by the queue controller, allows a safe
functionality, even if sender and receiver do not recog-
nize ”full” and ”empty” signals. This makes it possible
to insert a queue between two state machines in a late
state of development by doing just minimal changes.

However, the state machines may be large and able

5Except from renaming the signal names: The letter "B”,
which stood for the receiver B, is replaced by "Q” for "queue”
or "QC” for "queue control”, respectively.
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to do other tasks instead of waiting in a state for data
exchange. Then, they should ask for the signals ”full”
and ”ready”, which tell them the reason for their wait-
ing. The signal ”Q_Full” in figures 35 and 37 would be
connected to the sender A and the signal ”Q_Empty”
would be connected to the receiver B.

Figure 37 shows the refinement into FSMs and dat-
apaths.

In figure 39, the state machine for the queue is
changed into a simple FSM for controlling a datap-
ath. Figure 38 is the datapath for this refined model.
It shows the buffering built around an original FIFO-
queue. The original queue used here is taken from
the book ”"Gajski: Principles of Digital Design” (see
references)®.

Figure 38 does not specify the data width. The
depth 1s assumed to be four. The associated VHDL
files of the queue datapath are fully generic, which
means, depth and width can be specified by param-
eters. Thus, these VHDL files also provide an inter-
esting example on how to write generic designs at low
structural level. When the datapath is instantiated
for connection with the FSM however, the depth is
chosen to be four and the data width is 32.

6The author of this book says, this design is meant for small
queues. He recommends an implementation of large queues by
usage of a memory and address pointers.
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Figure 35: Data-transfer via queue with Double Handshake: Block structure for FSMDs
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A

Set Output Actio @

A_Ready_QC='0’
Vv

A_Ready_QC="1", Q_Empty="1
Vv

B_Rd_Req_QC='0
Vv

B_Rd_Req_QC='1", Q_Full="

Q_Full='0
A_Ready_QC <='1' S-¢ A_Ready_QC="1'
(keep Output) QC_Ackn_A="0'
Q(i):=Q(i-1), i:D-1..1
Q(0) := Data_AQ
QC_Ackn_A="1' 'W-2) QC_Ackn A <=1’
A_Ready_QC="1" Q_Empty <= (C=-1)
Q_Full <= (C=D-1)
A_Ready_QC <="0" Sd A_Ready_QC="0]
(keep Output) QC_Ackn_A="1" |
QC_Ackn_A="0’ 1/ 0 \/) QC_Ackn_A <=0
Figure 36

Queue FSMD

Reset

QC_Ackn_A <=0’
QC_Ready_B<="0

Buffer_OB <= Q(C)
C=C-1

QC_Ready_B<="1"
Q_Empty <= (C=-1)
Q_Full <= (C=D-1)

QC_Ready_B <= 0" 0 \/)
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B_Rd_Req_QC='0’

Q_Empty="0'
B_Rd_Req_QC="1"

B
S v
QC_Ready_B='0"
QC_Ready_B="1
B_Rd_Req_QC="1'

QC_Ready_B='1"

QC_Ready_B="0'

: Data-transfer via queue with Double Handshake: FSMDs

only for FSM:
|d_B_Data_Q<="1"
B_Rd_Req_QC<='1"

for FSMD and SFSMD:
...<=Buffer_QB

B_Rd_Req_QC <='0’
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Figure 37: Data-transfer via queue with Double Handshake: Refinement to FSMs and Datapaths
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The inner queue is taken from the book “Principles of Digital Design” by D. Gajski. The picture is slightly modified withgessdh functionality or general
structure. The following explanation of the queue is taken from that book:

"... Whenever data is queued, the shift register shifts data to the right and the counter is incremented. On the otheméhardiatédis read out, the data at the
bottom of the queue is selected by the selector and the counter is decremented. Notice that data is not really distéirdedhatttrether is invalidated by
decrementing the counter...."

[Write operation is selected by Q_Wr="1" and Q_En="1",

Read operation is selected by Q_Wr="0"and Q_En="1"]

"... During a read operation, the content of the shift register will not change and the counter will count down by 1.eDariteydheration, however, the shift
register will shift one position to the right and the counter will count up by 1. The counter also controls selectioropéttdata during the read operation. As
arule it would be set to 1111 during the initialization, so that its content will be zero when the first data is in thEhégiragative bias of 1 in counting is
necessary to accommodate the selector control, which requires a value of 00, 01, 10, or 11 in order to select onerdjutpushifte
[The signals] Full and Empty ... [are] indicating that the queue is empty whenever the counter content is all 1's, anpli¢het ih\éull whenever the counter
content is equal to 011. ..."

Figure 38: Datapath of buffered queue
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A

Queue Control FSM

B
Set Output Action
AﬁReadyf\?C:’O’ § Q En<="0r
A_Ready_QC='1', Q_Empty='1 ¢ QWr<="
v QC_Ackn_A<="0’
@ BfRdeequCz'o QC_Ready B <="0’
B_Rd_Req_QC="1", Q_Full=" Buffer_ld <=0’
Q_Full="0’ Q_Empty=0' o Pata Q<=1
A_Ready_Qc <=1\ 7_Ready_QC="1) Q_En<='1" B _Rd Req QC=T" SY) & Rd_Req_QC <=1
(keep Output) QC_Ackn_A="0’ QEn<='1 QWr<="0' QC_Ready_B='0’
Q Wre=1' QC_Ready_B <=0’
W_1 QC_Ackn_A<="0' Buffer_Id <="1"
Q_En<='00
Q Wr<="0'
QC_Ready B <=0’
Buffer_ld <=0’
Q_En<="0 QEn<="0
QC_Ackn_A="1" W_} Q_Wr <= . Q_Wr <= QC_Ready_B=1
A_Ready_QC=1' QEAMRA =T Qe _Ready B <=1 B_Rd_R Cc="1'
-Ready_QC= Buffer_Id <='0" _Rd_Req_QC= for FSMD and SFSMD:
| . B_Data_Q<=Q_Buffel
A_Reaty_QC <= 0 G‘d AReadQes0 BRefeaQe=o S—) B_Rd_Req QC <='0'
(keep Output) QC_Ackn_A="1' | QEn<=0 QEn<="0 | QC_Ready_B=1"
e T QUWr<=2 Qwr<="" /7y B
QC_Ackn_A=0 f)/ ' QC_Ackn_A<='0'  QC_Ready B <= 0"\ ;O/ QC_Ready_B=0
Buffer_ld <=0
(3
Figure 39: Data-transfer via queue with Double Handshake: FSMs
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5.3.3 Data-Transfer via Memory

Two design possibilities come to mind:

One way of modeling a data-transfer via memory is
to use a similar mechanism like for the queue design:
Sender and receiver request write and read of each
data word after selecting a memory address. This so-
lution means using double handshake for each data
word. As aresult a data-transfer will have a lot of pro-
tocol overhead, when the sender sends several words
of data continuously or when the receiver reads several
words continuously.

Therefore a different solution is presented here: An
arbiter grants either the sender or the receiver the per-
mission to access the memory (figure 40). With the
permission, the sender or receiver can access the mem-
ory directly without any additional protocol overhead.
Sender and receiver are connected to the memory by

busses (figure 40):
e Command bus: nWE, nOE
e Address bus: Addr
e Data bus: Data_and_Stop’

Outputs of the FSMs and datapaths, which are con-
nected to a bus, are tristate outputs. When a state ma-
chine does not access the memory, the tristate driver
sets the port to ”high-impedance” (which is repre-
sented by ’Z’’s in VHDL). As a result, a non-active
state machine behaves indifferently on the bus and an
active one can set the bus values. The chip select sig-
nal nCs (negative logic) is handled differently. Tt is
driven by an AND-gate instead of being connected to
a bus. As soon as A_nCS or B_nCS becomes ’0°, chip
select nCS will become 20’ (= active), too. If A_nCS
and B_nCS both are *1°, then nCS will become ’1°,
which switches off all memory ports. This could not
be done by nCS being high-impedant (*Z?).

The implementation of data-transfer via memory
as provided here also has a disadvantage: Sender and
receiver are responsible for correct timing when ac-
cessing the memory. When increasing the sender’s or
the receiver’s clock frequency, at some point the data
exchange will fail. This can only be avoided with a lot
of additional effort and protocol overhead.

Figure 45 in the appendix shows a graphical tem-
plate, which is sufficient for simple memory types. In
that figure, the memory access control state machine

Tthis is called Data_and_Stop, because a stop signal is at-
tached to the data, which signals whether this is the last data
word to process or not (see datapath A in figure 40).
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assures the correct timing. Many additional hand-
shakes are needed to handle this. The signals printed
bold had to be added. The grayed circles are the states
where the data is transmitted to or from the memory,
finally. For example, the sender starts writing the data
by A_WE<=’0’. This causes the access control machine
to make the transition to the grayed dotted circle. The
dotted circle stands for several states which are passed
through for counting the necessary setup time for the
memory. When the setup time is counted, the access
control gives an OK to the receiver (AC_nWE_0K=’1").
There are two more (ungrayed) dotted circles in the
receive branch of the access control machine. They
represent states which count for address and chip en-
able times (setup time and recovery time). The re-
ceiver side works respectively.

Using such an extended memory access management,
the clock cycles of sender and receiver can be increased
without trouble. No problems for the data-transfer
timing will occur.



A_nCS B_nCS Data_and_Stop J
< -
a2 ul
< 8 8 NWE, nOE (Bus) @ 2
! o o ] 5 o o
£ 1= S < < 2 JAddr(Bus) & !
@ I B_Rd Reg QC | £
:[ FsM and Datapath A | | |} X ¢|  FSM and Datapath B | |2
= an alapal ‘ il (FSM_and_D_B_dHS mem ¢ o
(FSM_and_D_A_dHS mem_clock_ex) g < ncs _and_D_B_dHS_mem _c ?Ok,ex) o
: 1
< 1 l Arbiter 5 l Data B
5] & ;
2l [Fsv Al Datapath A (Memory <IESYIN| Datapath B
DP) (FSM_A_dHS_clock_ex)
(FSM_A_dHS_clock_ex)
Control) M emory 1d A}
(Mem_Grant_Control) (Citziiy D8Y) o lsg)?;
| | ALU M_]
1d_0_,)
e | _A_tri_en_,)
A_Td_Addr
% i % A Tnc_Addr: i
£ Address i Address
1] | Stop_Msg} Counter/ N . _Stop_Msg} é:gnlg;%/r
Generator
|} Register_O (Counter_4) ° 0 - (Counter_4)
<, (Reg_326it) -
| -
E | DP Reset | |Trista1e| 3 ! HolR Rz T'('tf‘i)a’e
oflk--,! (tri) o s
tri " Clock] [8) tri lock
T | g of T
Pa— ]
L[ & B |
o 9
[SUNC)
2 g A 8 2
§‘ Data AM_and_Stop, 8‘ 8‘ g‘|
[*] "4 o =]
<‘ <(‘ = g ml III
< g2 2 o
2 E
—»] Clock B Data_and_Stop (Bus)
_w] Clock_M

(FSM_and_D_dHS _mem_clock_ex_top)

Figure 40:
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Data-transfer via memory with Double Handshake: Structure




A Memory Access Control FSM B

(A_CS<="1T) @
A_Req AC='0

AC Grant A<="0'
AC Grant_ B<="0

A_Req AC<="1 B_Req AC<="1
- A_Req AC='T' B_Req AC='T' -
A_ld_Addr <="1' 9 Req AC _Req AC B_Id Addr<="1
AC _Grant A <='0" AC_Grant B<="0"
AC_Grant A="1 W) AC Grant A<='I'  AC Grant B<='1 AC_Grant B="T
AldAddr<="0 | A_Req AC='"T' B_Req AC='T' Ty BdAdir<="0

B_CS<='0'
B_tri_en<="1
B_inc_Addr<='0"

A _CS<='0
A_tri_en<="1

A_inc_Addr<="0 2

Read Input Action (FSM)

B OE<='T

<='1
A_WE<="1 (S 7 Read Input Action (FSVID)

B_inc_Addr<="1'

Sop Criterion Sop Criterion
A_tri_en<="0 B_tri_en<="0'
A_Req AC="0 B_Req AC='0 —
A_Req AC<='0' e e B_Req AC<='0'
AC_Grant B="1

;7N ;7N

10} ACGrat A<='0"  ACGrat B<="0"10") AC_Grant B='0'
- -

A_CS<='1 B_CS<='1

Figure 41: Data-transfer via memory with Double Handshake: FSMs
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6 Describing the Models

VHDL
— Summary of Problems
and Conclusions

This section collects the advantages and disadvantages
of using VHDL for describing the models for High
Level Hardware Synthesis: SFSMD, FSMD and ”FSM
Controlling Datapath”.

Some problems are not caused by the language
VHDL but actually reside within the models them-
selves. However a VHDL description has to cope with
these problems, too. For a general overview of the
models, their usage and suitability in the High Level
Synthesis design flow, refer to section 1.

6.1
6.1.1

Single Models in VHDL
SFSMD and FSMD Without Time

These models do not handle time. They are described
in procedures instead of a processes in this report,
because a process has its focus on designing with time.

The abstract model SFSMD usually is described
by a structured executable high level program. The
only relation to hardware is a declaration of input and
output ports.

FSMD without time is the original FSMD-model.
Scheduling is done, but the description is still executed
in zero time.

Advantages of VHDL description. VHDL meets
the above mentioned requirements for structured pro-
cedural programming. It provides high level program-
ming language-constructs and data types. Compared
to other programming languages, VHDL provides a
nicer way to declare the inputs and outputs of the
algorithm by using an entity.

Disadvantages of VHDL description. Using
VHDL as a general purpose programming language,
things may become a little complicated, because
VHDL is quite unflexible: The programmer is forced
to use many hardware-related constructs, even if he
does not describe hardware. For example, he has to
start with an ”architecture” and at least one process
in it.

For type conversions, often rigid library functions with
varying syntax are needed.

Low level programming for FSMD is easier than high
level for SFSMD, however.
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In these single state machines, there are just mi-
nor difficulties. But when exchanging data between
several of them, problems become severe (see below).

6.1.2 FSMD With Clock

The usage of ”FSMD With Clock” is advantageous for
VHDL descriptions and it helps handling the models
in general, too. A model using time is described in a
process. (A description in a procedure is possible but
not recommended.)

A dvantages of this model This clocked model can
be used instead of the model without time, or, it can
be used as a refinement after the model without time.
Using FSMD with clock, some timing problems may
become obvious in advance and the step towards the
model "FSM Controlling Datapath” becomes easier
(also see below).

Disadvantages of this model. This model is not
the original FSMD model. Usually, time is not re-
garded at this point.

Advantages of VHDL description. In many
VHDL systems, using a clock with a specific cycle time
enables additional possibilities for debugging. A full
simulation can be done, displaying signals over time
and cycles. Also, using the right subset of VHDL, this
model may be synthesizable already. Then, a prelimi-
nary implementation on a FPGA is possible for testing
purposes.
Intelligent high level synthesis tools can turn this
model into an optimized model ”FSM Controlling
Datapath”, which would not be possible if the model is
described without timing and in a procedure. (An ex-
ample is the "Behavioral Compiler”® by ”Synopsys”.)
On top of this, a data exchange between state ma-
chines causes less trouble, when they are described in
a process and use a clock.

Disadvantages of VHDL description. There are
no significant VHDL related disadvantages or prob-

lems.

6.1.3 FSM Controlling Datapath

In this model the state machine does not do the com-
putation, but gives the appropriate command to a dat-
apath.

8which can also do rescheduling



Problems of the model. After a command for the
datapath is set, it needs one more cycle for the dat-
apath to execute it. This delay is not present in the
model FSMD. In order to retain behavioral equiva-
lence between the models, the delay has to be com-
pensated by an early reaction of the FSM to the dat-
apath’s results. A resulting problem is the decrease of
the allowed clock time.

Once this model-related problem is solved, there is
no problem describing it in VHDL. It is done by a
separate next state process.

Advantages of VHDL description. VHDL pro-
vides a good possibility to block structure the design
(FSM, datapath with subblocks) by use of separate de-
scriptions with entities. Many helpful constructs are
provided by the language to describe hardware at this
refinement level.

Disadvantages of VHDL description. There are

no problems.

6.2 Communicating Models in VHDL

In this report, communication means data exchange

with hand shake.

6.2.1 SFSMD and FSMD Without Time

Problems of the model Here, handshaking is tried
without using timing, because theoretically, hand-
shaking just is based on causality, not timing.

Disadvantages of VHDL description. Only sig-
nals can handle ports and communication. Therefore,
many of them have to be used in addition to variables.
Variables are still needed for sequential computation.
For communication, a procedure must be able to catch
the change of a signal while i1t is running. There is
also the problem, that a signal can not be passed to a
procedure, if the parameters are declared as variables.
Due to these facts, the procedures need to access sev-
eral signals directly, like acessing a ”global variable”.
Coexistence and mixing of signals and variables as well
as their different meanings and properties is confusing
at these levels of abstraction.

Additionally, VHDL fails to provide a description
which really does not use timing. Wail statements
become necessary because of the signal’s delta-delay
property. This confuses even more.
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Conclusion: Describing handshake in VHDL with-
out using timing is not recommended. For the model
SFSMD, sequentialize the procedures of the state ma-
chines instead. For FSMD do the same, or switch over
to ”FSMD with clock”.

6.2.2 FSMD With Clock

Introducing handshake into the model ”FSMD with
clock” 1s not difficult, because the model is simple:
Each model consists of just one process and all ac-
tions of a state are executed by this one process. So,
communication can be inserted easily. In the following
model, there are problems, however.

6.3 FSM Controlling Datapath

When introducing a data exchange with handshaking
between two of these models, the handshake signals
are connected between the FSMs and the data is ex-
changed between the datapaths.

Problems of the model In this model, the FSM is
used to compensate the delay of the datapath. How-
ever, firstly, the data which is exchanged, is not read
by a FSM but by another datapath. So, a data ex-
change via the data ports is not compensated. Sec-
ondly, the FSMs compensate a non-existent delay of
the handshake signals.

As of these facts, timing of double handshake is
diffrent between "FSM Controlling Datapath” and
FSMD. This makes the step from the first model to the
second complicated and confusing. But these general
problems are solved and the solutions can be reused.

Disadvantages of VHDL description. There are

no additional VHDL related problems.

6.4 Final Conclusion

In general, for each model, a corresponding VHDL
description can be written. However, VHDL is suited
better for low level clocked models than for abstract
ones. A communication between state machines,
which do not use a clock, should be avoided in VHDL.

The delay of data processing, which comes along
with the introduction of a datapath, causes many
problems. These are solved by this report in a generic
way. Templates and examples are provided.
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A Queue with Single Handshake

A.1 FSMD
A Queue FSMD B
A_Ready="0"
) \%
Set Output Action @ A_Ready_QC=1", Q_Empty="1 Reset @
Vv

BfAcknfgC: 0 QC_Ready_B<='0

B_Rd_Req_QC='1", Q_Full="1 QC_Ackn_A<="0

Q_Full="0’
A_Ready_QC=1’

Q_Empty="0’ only for FSM:

A_Ready_QC <= Id_B_Data_Q<="1'
Ready_Q B_RdReq_QC="1" s_c) d-B-bams

Cc
(keep Output) \_—

QC_Ackn_A="0 QC_Ready_B=0' B_Rd_Req_QC<='1
QC_Ackn_A="1" W_1) QC_Ackn_A <=1’ QC_Ready B <="1(R_1 QC_Ready B='1
for FSMD and SFSMD:
A_Ready_QC <="0' G_E A_Ready_QC='0] B_RdReq_QC=0' GE B_Data_Q<=Q_Out
B_Rd_R C<="0
Q(3) <=Q(2) _Rd_Req_Q
Q(2) <=Q(1) ~
W_2 Q(1) <= Q(0) C<=C-1(R_2
Q(0)<=Q_In
C<=C+1

’ N ’ N
1 0 )] QC_Ackn_A<='0" QC_Ready B<='0" 0 |
\ \ 7’

Figure 42: Statemachines for Single Handshake via Queue (FSMD)
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A.2 FSM for "FSM

A

Set Output Action ( S_b

A_Ready_QC <='1
(keep Output)

&

QC_Ackn_A="1"

A_Ready_QC <=0 <_>

QC_Ackn_A='0"

(s9

Figure 43:

Controlling Datapath”

Queue Control FSM
O

A_Ready="0’
IV Reset
A_Read c="1" Empty="1
_Ready_Q »Q_ "QPV QEn<=0
B_Ackn_QC="0’ Q_Wr<="-
v QC_Ready_B<='0
B_Rd_Req_QC="1", Q_Full= & Ackn A <= 0
Q_Full="0’ Q_Empty="0'
A _Ready QC=1’ B_RdReq_QC=1’

Q_En<="1
Q_ Wr<="1'
QC_Ackn_A<="1'

Q_ En<="1
Q_Wr<="0’
QC_Ready_B<="1'

A_Ready_QC='0]
Q En<='0’

QWr<="0’
QC_Ackn_A<="0"

Q_En<="0"
Q_Wr<="0’
QC_Ready B <=0’

Q_Wr<="0'

’ QC_Ackn_A<="0 QC_Ready_B <="0’
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Q_En<="0 ,

B_RdReq_QC="0’

0 )

N

B

(s9)

QC_Ready_B='0"

QC_Ready_B="1

only for FSM:
Id_B_Data_Q<="1"

B_Rd_Req_QC <=1’

for FSMD and SFSMD:
B_Data_Q<=Q_Out

B_Rd_Req_QC<="0

S

(s9)

Statemachines for Single Handshake via Queue (FSM Controlling Datapath)



B Extended Ways of Buffered Datatransfer
B.1 FSM for Queue with Simultaneous Read/Write

A Queue Control FSMs B
Set Output Action @
@ Q_E/UH:Y g QWr En<="0" | | QRiEn<=10 Q_Evmpty:’ y
. - _.of7 ~QC Reaty B<='0' .
A_Ready_QC='0 QC_Ackn_A <="0 DL Buffer ld<="0 B_Rd_Req QC='0
Vo - only for FSM:
(keep Output) Sc [ Sy Id_B_Data Q<="1'
A_Ready QC<="1 \_— A_Ready_QC='1" | QRdEn<='T B_Rd_Req QC='1' —/ B_Rd Req QC<="1'
QC_Ackn_A="0' | | QC_Rexy B<='0 QC_Ready B="0'
QWrEn<=''" | Buffer ld<="1
QC_Ackn A<='0"}
! Q Rd_En<='0'
! | QC_Ready B<='0
b Buffer Id<="0'
o Q Wr En<='0 Lo Q Rd_En<="0 .
QC_Ackn_A="1 OC Adn A<='1 | | QC_Ready B<='T QC_Ready_B='1'
A_Ready_QC='1 P Bufeld<='0 B_Rd_Req QC='1 for FSMD and SFSMID:
(keep Output) Lo B_Data Q<=Q_Buffer
S.d A_Ready QC='0' b B_Rd_Req QC='0' Sw
A_Ready_QC <=0 A= -Ready Q Do AR Q ") B_Rd Req QC<='0'
QC_Ackn A='1' R, QC_Ready B='1'
B N STV RGEE e 11 QRA_En<='0 A
N QWrEn<='00 11 ! RSN
QC_Ackn A="0' W_0) gE ;;k: <A P - QC_Ready B <="0'{R-0) QC_Ready B="0'
o SEEEETT L Bufferld<=10 e
e )

Figure 44: Statemachines for Doublehandshake via Queue with simultaneous Read/Write
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B.2 Extended Timing for Memory

A Memory Access Control FSM B

B CS<='1
B_Addr_Set="0

'ﬁ AC_nOE_OK<='0

(A_CS<='1)
€ AC_NWE_OK<='0'

AA N A_Req AC="0
_Addr_Set="0 B Reg AC='0 AC_Addr_OK<="0'
AC_Grant A<="0
AC_Grant B<="0
A_Req AC<="1 B_Req AC<="1
- A_Reqg AC="1 B_Req AC="1 -
A_ld Addr<="1' _Req / _Red / B_d_Addr<="1

AC_Grant A <="0' AC _Grant B<="0'

AC_Grant A="1 AC_Grant_B<="1 AC_Grant_B="1

W_1) AC_Grant A<="1

Alpds =0 A Addr_Set=0 B_Addr_Set=0 B 10 Addr <=0
Atri_en<='1 B_Addr_Set='’ B_CS<="0

A_Addr_Set="1' = >
Addr N TN

AC_Addr_OK='1' ll 3

AC_Addr_OK="1" @ AC_Addr_OK<="1"

. A_WE="T

Set Output Action @
A_WE<='0 @ AWE='0' |
A_Addr_Set="0' Y
AC_NWE_OK='0' :

AC_nWE_OK='1'

B_tri_en<="1
B_inc_Addr<="0'
B_Addr_Set<="1'

A_inc_Addr<="0'

A_Addr_Set <="1 AC_Addr_OK='0

AC_Addr_OK="1'

B OE<='0
B_Addr_Set<='0

AC_nWE_OK<='1" :AC_nOE_OK<='1l'

AC_Ai K<='0" AC_Ai K<="0'
C_Addr_OK<='0 C_Addr_OK<=0 Read Input Action (FSM)

B_OE<="T

A_WE<="1 7 _¢
e - Read Input Action (FSVID)

AC_nWE_OK='1'

AC_nWE_OK='0 _..) AC_nWE_OK<='0 AC_nOE_OK<='0 AC_nOE_OK='0 1

A_Addr_Set="0’
A_Req AC='T'

w}cnteﬂon

B_Addr: Set="0'
B_Req AC='T'

B_Addr_Set="1’

A_inc Addr<="1 (S8 A_Addr_Set="1'

Stop Criterion
A_tri_en<="0
. A_Req AC='0 B_Req AC='0
A Req AC<='0' @ -Req AC="0 _Req AC
AC Grant A="1 AC Grant_ B="1

’ RN i RN

AC_Grant A="0 N 0 ) AC Grant A<='0' AC_Grant B<="0' " 0

~-7 7’

A_CS<='T @

Figure 45: Statemachines with Extended Timing Properties for Doublehandshake via Memory (FSM)
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C VHDL examples

This appendix lists only the main files.
Tesbench files and datapath components are not listed. A directory of computer files belongs to this report.
There, all files can be found and the examples can be executed.

C.1 Single Finite State Machines
e Single SFSMD

Single FSMD without time

Single FSMD using clock
Single FSM Controlling Datapath

- FSM
— Datapath
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C.1.1 Single SFSMD

VHDL/plain_SMs/SFSHD/SFSMD_ex .vhd
—— example of a SFSMD inherent in a procedure

Entity SFSMD_ex is

port ( Reset, Start: in bit;
[ Inl, In2, In3, In4: in integer;
Outl: out integer);

end SFSMD _ex;

10 Architecture SFSMD _ex_behavioral of SFSMD._ex is

Procedure behaviorl(Inl, In2, In3, In4: in integer;
signal Outl: out integer) is
type State_Set is (S.1, S_2, S_.3, SEND);
15 —— S_BEGIN is represented by ” Procedure not running”.
variable next STATE: State_Set;
variable R, S: integer;

begin
20 next STATE:= S_1;
while (next STATE/=SEND) and ( Reset/='1") loop
case next STATE is

when S_1 => —— S:= Inl xx In2; —— (power)
25 S:= 1;
for i in In2 downto 1 loop
S:= SxIn1l;
end loop;
30 next STATE:= S_2;
when S_2 => —— R:= In3 xx In4; —— (power)
R:= 1;
for i in In4 downto 1 loop
35 R:= RxIn3;
end loop;

next STATE:= S_3;
40 when S_3 => Outl<= S-R;
next STATE:= S_END;
when SEND=> —— nothing (Procedure gquits)
45
end case;

end loop;

end behaviorl;
50

begin —— Architecture

P1: Process

55 begin
wait until (Reset = '1") or (Start = "17);
if (Reset = '1") then
Outl <= 0;
elsif (Start = '1’) then
60 behaviorl (Inl, In2, In3, In4, Outl);
end if;

end process;
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end SFSMD _ex_behavioral;
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C.1.2 Single FSMD without time

VHDL/plain_SMs/FSMD_no_time/FSMD_no_time_ex.vhd
—— ezample of a FSMD ( Without time) inherent in a procedure

Entity FSMD_no_time_ex is

port ( Reset, Start: in bit;
[ Inl, In2: in integer;
O_Port : out integer);

end FSMD _no_time_ex;

10 Architecture FSMD _no_time_ex_behavioral of FSMD_no_time_ex

Procedure behaviorl(Inl, In2: in integer;
O: inout integer) is
type State_Set is (S.1, S_2, S_.3, SEND);
15 —— S_BEGIN is represented by ” Procedure not running”.
variable next STATE: State_Set;
variable A, B: integer;
variable Mult_temp: integer;

20 begin
next STATE:= S_1;
while (next STATE/=SEND) and ( Reset/='1") loop
case next STATE is

25 when S_1 => A := Inl;
B := In2;
O := 1;

next STATE:= S_2;

30
when S_2 => Mult_temp := O * A;
B:= B-1;
next STATE:= S_3;
35
when S_3 => O := Mult_temp;
if (B > 0)
then next STATE:= S_2;
40 else next STATE:= S_END;
end if ;
when SEND=> —— nothing (Procedure gquits)
45 end case;
end loop;
end behaviorl;
50
begin —— Architecture
P1: Process
variable O: integer;
55 begin
wait until (Reset = '1") or (Start = "17);
if (Reset = '1") then
O_Port <= 0;
elsif (Start = '1’) then
60 behaviorl (Inl, In2, O); O_Port <= O;
end if;

end process;

54
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end FSMD _no_time_ex_behavioral ;
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C.1.3 Single FSMD using clock

VHDL/plain_SMs/FSMD_clock/FSMD_clock_ex.vhd

—— ezample of a FSMD (using clock ) inherent in a process
library IEEE;

use IEEE. std_logic_1164 .all;

use IEEE.std_logic_arith . all;
use IEEE. std_logic_unsigned . all;

Entity FSMD _clock_ex is

port ( Clock: in std_logic ;
Reset, Start: in std_logic ;
Done: out std_logic ;
Inl, In2: in std_logic_vector (15 downto 0);
O_Port : out std_logic_vector (31 downto 0));

end FSMD _clock_ex ;

Architecture FSMD _clock_ex_behavioral of FSMD _clock_ex is

—— behavior outputs

signal O: std_logic_vector (31 downto 0);

signal Mult_temp: std_logic_vector (31 downto 0);
type State_Set is (S_BEGIN, S_.1, S_2, S.3, SEND);
signal next STATE: State_Set ;

signal A, B: std_logic_vector (15 downto 0);

begin —— Architecture

behaviorl: Process(Clock)
begin
if (Clock’event and Clock = '1’) then
if (Reset = '1") then
O <= (others=>"0");
next STATE <= S_BEGIN;
else

case next STATE is
when S_.BEGIN => Done <= '0";

if Start = "1’
then next STATE <= S_1;
else next STATE <= SBEGIN;

end if ;
when S_1 => A <= In1;
B <= In2;
O <= conv_std_logic_vector (1, 32);
next STATE<= S_2;

when S_2 =>  Mult_temp <= O(15 downto 0) x A;
B<=B-conv_std_logic_vector (1, 16);

next STATE<= S_3;

when S_3 => O <= Mult_temp;

if (B > conv_std_logic_vector (0, 16))

then next STATE<= S_2;
else next STATE<= S_END;
end if ;

when S END=> Done <= "1";
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if Start = '0’

65 then next STATE <= S_BEGIN;
else next STATE <= S_END;
end if ;

end case;
70
end if;
end if;
end process;

75 O_Port <= O;

end FSMD_clock_ex_behavioral;
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C.1.4 Single FSM Controlling Datapath

VHDL/plain_SMs/FSM_structural/FSM_and_D_ex.vhd

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

Entity FSM_plus_DP is

Port ( Clock: in std_logic ;
Reset, Start: in std_logic ;
Done: out std_logic ;
Inl, In2: in std_logic_vector (15 downto 0);
O_Port : out std_logic_vector (31 downto 0));

end FSM_plus_DP;
Architecture FSM_plus_DP_behavioral of FSM_plus_.DP is

—— connection signals

signal 1d_A, 1d_-B, Count_En, CountM: std_logic ;

signal CMP: std_logic_vector (1 downto 0);
signal MUX_sel: std_logic ;
signal 1d4.0: std_logic ;
signal DP_Reset: std_logic ;
component FSM
Port ( Clock: in std_logic ;
Reset, Start: in std_logic ;
Done: out std_logic ;
DP _Reset : out std_logic ;

Id_ A, 1Id_-B, CountEn, CountM: out std_logic ;

CMP: in std_logic_vector (1 downto 0);
MUX _sel : out std_logic ;
1d_O: out std_logic );

end component;

component DP
port ( Clock: in std_logic ;
DP _Reset : in std_logic ;
Id_A, 1d_.B, CountEn, CountM: in std_logic ;

CMP: out std_logic_vector (1 downto 0);
MUX _sel : in std_logic ;

1d_O : in std_logic ;

Inl, In2: in std_logic_vector (15 downto 0);
O_Port : out std_logic_vector (31 downto 0));

end component;
begin

Control : FSM

Port map ( Clock=>Clock,
Reset=>Reset,
Start=>Start,
Done=>Done,
DP_Reset=>DP _Reset,
Id_A=>Id_A,
ld_B=>Id_B,
Count En=>Count_En,
Count M=>Count_M,
CMP=>CMP,
MUX_sel=>MUX _sel,
1d_0=>Id_0 );

Datapath : DP
Port map ( Clock=>Clock,
DP_Reset=>DP _Reset,
Id_A=>Id_A,
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ld_B=>Id_B,

Count En=>Count_En,
Count M=>Count_M,
CMP=>CMP,
MUX_sel=>MUX _sel,
1d_0=>1d_0O,
In1=>In1,

In2=>In2,
O_Port=>0O_Port );

end FSM_plus_DP_behavioral;
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C.1.5 FSM
VHDL/plain_SMs/FSM_structural/FSM_ex.vhd

—— example of a FSM inherent in a process

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

Entity FSM is

port ( Clock: in std_logic ;
Reset, Start: in std_logic ;
Done: out std_logic ;
DP _Reset : out std_logic ;

Id_ A, 1Id_-B, CountEn, CountM: out std_logic ;

CMP: in std_logic_vector (1 downto 0);
MUX _sel : out std_logic ;
1d_O: out std_logic );

end FSM;

Architecture FSM_behavioral of FSM is

—— behavior outputs

signal STATE, next STATE: std_logic_vector (2 downto 0);
signal Enable: std_logic ;

begin —— Architecture

Enable <= "1";

State_Register: Process(Clock, Enable)

begin
if (Clock’event and Clock = '1’) then
if (Reset = "1’) then STATE <= "000";
elsif (Enable = '1') then STATE <= next STATE;
end if;
end if;

end Process;

—— Datapath—Control and Status Output Logic

—— Datapath Control Output:

DP_Reset <= ( not STATE(2) and not STATE(1) and not STATE(0) );
1d_A <= ( not STATE(2) and not STATE(1) and STATE(0) );
1d_B <= ( not STATE(2) and not STATE(1) and STATE(0) )
Count M <= ( not STATE(2) and STATE(1) and not STATE(0) );
Count En <= ( not STATE(2) and STATE(1) and not STATE(0) );
MUX_sel <= ( not STATE(2) and STATE(1) and not STATE(0) )
OR ( not STATE(2) and STATE(1) and STATE(0) );
1d_0 = ( not STATE(2) and not STATE(1) and STATE(0) )
OR ( not STATE(2) and STATE(1) and STATE(0) );
—— Controller Status Output
Done <= ( STATE(2) and STATE(1) and STATE(0) )
—— Nexzt State Logic
next STATE(2)<=(not STATE(2) and STATE(1) and STATE(0) and not CMP(0));
next STATE(1)<=(not STATE(2) and not STATE(1) and STATE(0) )
OR (not STATE(2) and STATE(1) and not STATE(0) )
OR (not STATE(2) and STATE(1) and STATE(0) and CMP(0))
OR (not STATE(2) and STATE(1) and STATE(0) and not CMP(0));
next STATE(0)<=(not STATE(2) and not STATE(1) and not STATE(0) and START )
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OR (not STATE(2) and
OR (not STATE(2) and

end FSM_behavioral;

STATE(1) and not STATE(0) )

STATE(1) and
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STATE(0) and not CMP(0));
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C.1.6 Datapath

VHDL/plain_SMs/Datapath/DP.vhd
—— Datapath (DP) for FSM

library IEEE;

use IEEE. std_logic_1164 .all;
s use IEEE.std_logic_arith . all;

Entity DP is
port ( Clock:
DP _Reset :

in std_logic ;
in std_logic ;

Id_A, 1d_.B, CountEn, CountM: in std_logic ;

CMP:

MUX _sel :

1d_O:

In1, In2:

O_Port :
end DP ;

out std_logic_vector (1 downto 0);
in std_logic ;

in std_logic ;

in std_logic_vector (15 downto 0);
out std_logic_vector (31 downto 0));

Architecture DP_schematic of DP is

—— connection signals
signal A, B: std_logic_vector (15 downto 0);

signal O: std_logic_vector (31 downto 0);

signal MULT_Out, MUX_Out: std_logic_vector (31 downto 0);
signal zerol6: std_logic_vector (15 downto 0);

signal one32: std_logic_vector (31 downto 0);

component Reg_16bit
Port ( Clock:
Reset :
Load :
Data_In :
Data_Out :
end component;

component Reg_32bit
Port ( Clock:
Reset :
Load :
Data_In :
Data_Out :
end component;

component Counter
Port ( Clock:

Reset :
Load :
Enable:
Mode:
Data_In :
Data_Out :

end component;

component Comp_16bit
Port ( Data_Inl:
Data_In2:
Result :
end component;

component Multiplier
Port ( Clock:

Data_In1 :

Data_In2:

in
in
in
in

std_logic ;
std_logic ;
std_logic ;
std_logic_vector (15 downto 0);

out std_logic_vector (15 downto 0) );

in
in
in
in

std_logic ;
std_logic ;
std_logic ;
std_logic_vector (31 downto 0);

out std_logic_vector (31 downto 0) );

in
in
in
in
in
in

std_logic ;
std_logic ;
std_logic ;
std_logic ;
std_logic ;
std_logic_vector (15 downto 0);

out std_logic_vector (15 downto 0) );

in std_logic_vector (15 downto 0);
in std_logic_vector (15 downto 0);
out std_logic_vector (1 downto 0) );

in std_logic ;
in std_logic_vector (15 downto 0);
in std_logic_vector (15 downto 0);
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Data_Out : out std_logic_vector (31 downto 0) );
65 end component;

component MUX _2x32bit

Port ( Sel: in std_logic ;
Data_In1 : in std_logic_vector (31 downto 0);
70 Data_In2 : in std_logic_vector (31 downto 0);
Data_Out : out std_logic_vector (31 downto 0) );

end component;

begin
75
zerol6 <= (others=>'0");
one32 <= (0=>"1", others=>'0");

Register_A : Reg_16bit
80 Port Map ( Clock=>Clock, Reset=>DP_Reset, Load=>Id_A,
Data_In=>Inl, Data_Out=>A);

Counter_B: Counter
Port Map ( Clock=>Clock, Reset=>DP_Reset, Load=>1d_B,
85 Enable=>Count_En, Mode=>Count_M,
Data_In=>In2, Data_Out=>B);

COMP: Comp_16bit
Port Map ( Data_Inl=>zerol6, Data_In2=>B, Result=>CMP);
90
MULT: Multiplier
Port Map ( Clock=>Clock, Data_-Inl1=>A, Data_In2=>0(15 downto 0),
Data_Out=>MULT_Out);

95 MUX: MUX_2x32bit
Port Map ( Sel=>MUX_sel, Data_Inl=>one32,
Data_In2=>MULT_Out,
Data_Out=>MUX_Out);

100 Register_.O : Reg_32bit
Port Map ( Clock=>Clock, Reset=>DP_Reset, Load=>1d_O,
Data_In=>MUX_Out, Data_Out=>0);

O_Port <= O;

105
end DP_schematic;

63



C.2 Double Handshake
e A (FSMD without time) — B (FSMD without time)

— FSMD A
— FSMD B

e A (FSMD using clock) = B (FSMD using clock)

— FSMD A
— FSMD B

e A (FSM Controlling Datapath) — B (FSM Controlling Datapath)

— FSM Controlling Datapath A

* FSM of A
* Datapath of A (identical B)

— FSM Controlling Datapath B

* FSM of B
* Datapath of B (see B, identical B)
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C.2.1 A (FSMD without time) - B (FSMD without time)

VHDL/doubleHS_SMs/FSMD_dHS_no_time/FSMD_dHS_no_time_ex_top.vhd
—— File : FSMD_dHS _no_time_ex_top . vhd

—— bounding the two parts of the example
—— for Ezample: FSMD (A) ——> FSMD (B)
using double handshake

protocol

library IEEE;

use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;
use STD. textio. all ;

entity FSMD_dHS _no_time_ex_top is

port ( Reset, Start: in bit;
TB_Ready_ A, TB_AcknB: in bit;
A_Ackn.TB, B_Ready_TB: out bit;
Inl, In2: in integer;
In_Stop: in bit;
Outl_Port: out integer;
Outl_Stop_Port : out bit );

end FSMD_dHS no_time_ex_top;

architecture FSMD_dHS_no_time_ex_top_arch of FSMD_dHS _no_time_ex_top

Component FSMD_A_dHS _no_time_ex

port ( Reset, Start:

in bit;

TB_Ready_ A, B_Ackn_A: in bit;
A_Ackn.TB, A_Ready_B: out bit;
Inl, In2: in integer;
In_Stop: in bit;
Data_AB_Port : out integer;
Data_AB_Stop_Port : out bit );

end Component;

Component FSMD_B_dHS_no_time_ex

port ( Reset, Start: in bit;

A _Ready_ B, TB_AcknB: in bit;
B_Ackn_A, B_Ready_TB: out bit;
Data_AB: in integer;
Data_AB_Stop: in bit;
Outl_Port: out integer;
Outl_Stop_Port : out bit );

end Component;

signal B_Ackn_A, A_Ready_B: bit;

signal Data_ AB: integer;

signal Data_AB_Stop: bit ;

begin

FSMD_A_dHS_no_time_I: FSMD_A_dHS_no_time_ex
port map ( Reset=>Reset, Start=>Start,

TB_Ready_ A=>TB_Ready_A, B_Ackn_A=>B_Ackn_A,
A_Ackn TB=>A_Ackn_.TB, A_Ready_B=>A_Ready_B,
In1=>In1, In2=>In2,
In_Stop=>In_Stop,
Data_AB_Port=>Data_AB,
Data_AB_Stop_Port=>Data_AB_Stop );

FSMD_B_dHS_no_time_I: FSMD_B_dHS_no_time_ex
port map ( Reset=>Reset, Start=>Start,
A _Ready_B=>A _Ready_B, TB_Ackn B=>TB_Ackn B,
B_Ackn_ A=>B_Ackn_A, B_Ready_TB=>B_Ready.TB,
Data_AB=>Data_AB,
Data_AB_Stop=>Data_AB_Stop,
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Outl_Port=>Outl_Port,
Outl_Stop_-Port=>0Outl1_Stop_Port

end FSMD_dHS_no_time_ex_top.arch;

)i
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C.2.2 FSMD A

VHDL/doubleHS_SHs/FSMD_dHS_no_time/FSMD_dHS_no_time_ex_A
—— File : FSMD_dHS _no_time_ex_A . vhd

—— implements : FSMD A

—— of Model: FSMD (without using time)

—— for Ezample: FSMD (A) ——> FSMD (B)
- — using double handshake protocol

Entity FSMD_A_dHS_no_time_ex is
port ( Reset, Start: in bit;
TB_Ready_ A, B_Ackn_A: in bit;
A_Ackn.TB, A_Ready_B: out bit;

Inl, In2: in integer;
In_Stop: in bit;
Data_AB_Port : out integer;
Data_AB_Stop_Port : out bit );

end FSMD_A_dHS_ no_time_ex;

Architecture FSMD_A_dHS_no_time_ex_behavioral of FSMD_A_dHS _no_time_ex

—— behavior outputs
signal Data_AB: integer;
signal Data_AB_Stop: bit;

Procedure behaviorl(signal TB_Ready A, B_Ackn_A
signal A_Ackn_TB, A_Ready_B
signal Inl, In2: in integer
signal In_Stop: in bit;

.vhd

: in bit;
: out bit;

)

signal Data_AB: inout integer;
signal Data_AB_Stop: out bit) is

type State_Set is (S.1, S_2, S3, S4, S5, S.6

, SEND);

—— S_BEGIN is represented by ” Procedure not running”.

variable next STATE: State_Set;
variable A, B: integer;
variable Stop: bit;

begin

next STATE:= S_1;
Data_AB <= 0;
Data_AB_Stop <= '0";
A_Ackn TB<='0";
A_Ready_ B<="0";

while (next STATE/=SEND) and ( Reset/='1") loop
case next STATE is
when S_1 =>

if (TB_Ready_ A='1")
then next STATE:=

else next STATE:=
end if ;

when S_2 => A := Inl;
B := In2;
Stop := In_Stop;
A_Ackn TB<="1";

if (TB_Ready_ A='0")
then next STATE:=
else next STATE:=
end if ;

S_3;
S_2;

when S_3 => Data_AB <= A — B;
Data_AB_Stop <= Stop;
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A_Ackn TB<='0";

next STATE:= S_4;
when S_4 =>
next STATE:= S_5;
when S_5 => A _Ready_ B<="1";
if (B_Ackn A="1")
then next STATE:=S_6;
else next STATE:=S_5;
end if ;
when S_6 => A _Ready_B<="0";
if (B_Ackn A="0")
then if (Stop='1")
then next STATE:=S_END;
else next STATE:=S_1;
end if;
else next STATE:=S5_6;
end if ;
when SEND=> —— nothing (Procedure gquits)
end case;
wait for 1 ns; —— Synopsys needs wait > 0 ns
end loop;
end behaviorl;
begin —— Architecture
P1: Process
begin
wait until (Reset = '1") or (Start = "17);
if (Reset = '1") then
Data_AB <= 0;
A_Ackn TB<="0";
A _Ready_B<="0";
elsif (Start = '1’) then

behaviorl (TB_Ready A, B_Ackn_A, A_Ackn.TB, A_Ready.B,
Inl, In2, In_Stop, Data_AB, Data_.AB_Stop);

end if;
end process;

—— Entity Outputs
Data_AB_Port <= Data_AB;
Data_AB_Stop_-Port <= Data_AB_Stop;

end FSMD_A_dHS_no_time_ex_behavioral;
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C.2.3 FSMD B

VHDL/doubleHS_SHMs/FSMD_dHS_no_time/FSMD_dHS_no_time_ex_B.vhd

—— File : FSMD_dHS_no_time_ex_B . vhd
—— implements : FSMD B
—— of Model: FSMD (without using time)

—— for Ezample: FSMD (A) ——> FSMD (B)

- using double handshake protocol
Entity FSMD_B_dHS_no_time_ex is
port ( Reset, Start: in bit;

A _Ready_ B, TB_AcknB: in bit;
B_Ackn_A, B_Ready_TB: out bit;
Data_AB: in integer;
Data_AB_Stop: in bit;
Outl_Port: out integer;
Outl_Stop_Port : out bit );

end FSMD_B_dHS _no_time_ex;

Architecture

—— behavior
signal Outl:
signal Outl_Stop:

outputs
integer;

bit ;

Procedure behaviorl(signal
signal
signal
signal
signal

A _Ready_ B, TB_AcknB:
B_Ackn_A, B_Ready_TB:
Data_AB: in integer;
Data_AB_Stop: in bit;
Outl: inout integer;

FSMD_B_dHS_no_time_ex_behavioral of FSMD_B_dHS_no_time_ex

in bit;
out bit ;

signal Outl_Stop: out bit) is
type State_Set is (S.1, S_2, S.3, S4, S5, S6, SEND);
—— S_BEGIN is represented by ” Procedure not running”.
variable next STATE: State_Set;
variable C: integer;
variable Stop: bit;

begin

next STATE:= S_1;
Outl <= 0;
Outl_Stop <= '0";
B_Ackn_ A<="0";
B_Ready TB<="0";

while (next STATE/=SEND) and ( Reset/="1")
case next STATE is
when S_1 =>

loop

if (A_Ready_-B="1")
then next STATE:
else next STATE:
end if ;

=S
=S

when S_2 => C := Data_AB;
Stop Data_AB_Stop;
B_Ackn_ A<="1";

if (A_Ready_-B='0")
then next STATE: ;
else next STATE: 2
end if ;

when S_3 => Outl <= 2 *x C;
Outl_Stop <= Stop;

B_Ackn_ A<="0";
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next STATE:= S_4;
when S_4 =>
next STATE:= S_5;
when S_5 => B_Ready TB<="1";
if (TB_Ackn.B="1")
then next STATE:=S_6;
else next STATE:=S_5;
end if ;
when S_6 => B_Ready TB<="0";
if (TB_Ackn.B='0")
then if (Stop='1")
then next STATE:=S_END;
else next STATE:=S_1;
end if;
else next STATE:=S5_6;
end if ;
when SEND=> —— nothing (Procedure gquits)
end case;
wait for 1 ns; —— Synopsys needs wait > 0 ns
end loop;
end behaviorl;
begin —— Architecture
P1: Process
begin
wait until (Reset = '1") or (Start = "17);
if (Reset = '1") then
Outl <= 0;
B_Ackn_ A<="0";
B_Ready TB<='0";
elsif (Start = '1’) then
behaviorl (A_Ready_ B, TB_Ackn B, B_Ackn_A, B_Ready_TB,
Data_AB, Data_AB_Stop, Outl, Outl_Stop);
end if;
end process;

—— Entity Outputs
Outl_Port <= Outl;
Outl_Stop_Port <= Outl_Stop;

end FSMD_B_dHS_no_time_ex_behavioral;
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C.2.4 A (FSMD using clock) —» B (FSMD using clock)

VHDL/doubleHS_SMs/FSMD_dHS_clock/FSMD_dHS_clock_ex_top.vhd
—— File : FSMD_dHS_clock_ex_top . vhd

—— bounding the two parts of the example
—— for Ezample: FSMD (A) ——> FSMD (B)
- — using double handshake protocol

library IEEE;

use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;
use STD. textio. all ;

entity FSMD_dHS _clock_ex_top is
port ( Reset, Start: in std_logic ;
Clock_A, ClockB: in std_logic ;

TB_Ready-A, TB_AcknB: in std_logic ;

A_Ackn.TB, B_Ready_TB: out std_logic ;
Inl, In2: in integer;
In_Stop: in std_logic ;
Outl_Port: out integer;
Outl_Stop_Port : out std_logic );

end FSMD_dHS _clock._ex_top;
architecture FSMD_dHS _clock_ex_top_arch of FSMD_dHS clock_ex_top

Component FSMD_A_dHS _clock_ex
port ( Reset, Start: in std_logic ;
Clock_A : in std_logic ;
TB_Ready_A, B_Ackn_A: in std_logic ;
A_Ackn.TB, A_Ready_B: out std_logic;

Inl, In2: in integer;
In_Stop: in std_logic ;
Data_AB_Port : out integer;
Data_AB_Stop_Port : out std_logic );

end Component;

Component FSMD_B_dHS _clock_ex
port ( Reset, Start: in std_logic ;
Clock B : in std_logic ;
A_Ready_ B, TB_AcknB: in std_logic ;
B_Ackn_A, B_Ready_TB: out std_logic ;

Data_AB: in integer;
Data_AB_Stop: in std_logic ;
Outl_Port: out integer;
Outl_Stop_Port : out std_logic );

end Component;

signal B_Ackn_ A, A_Ready_B: std_logic ;

signal Data_ AB: integer;
signal Data_AB_Stop: std_logic ;
begin

FSMD_A_dHS_clock_.I: FSMD_A_dHS_clock_ex
port map ( Reset=>Reset, Start=>Start, Clock_A=>Clock_A,

TB_Ready_ A=>TB_Ready_A, B_Ackn_A=>B_Ackn_A,
A_Ackn TB=>A_Ackn_.TB, A_Ready_B=>A_Ready_B,
In1=>In1, In2=>In2,
In_Stop=>In_Stop,
Data_AB_Port=>Data_AB,
Data_AB_Stop_Port=>Data_AB_Stop );

FSMD_B_dHS _clock_I: FSMD_B_dHS_clock_ex

port map ( Reset=>Reset, Start=>Start, Clock.B=>Clock B,
A _Ready_B=>A _Ready_B, TB_Ackn B=>TB_Ackn B,
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B_Ackn_ A=>B_Ackn_A, B_Ready_TB=>B_Ready.TB,
65 Data_AB=>Data_AB,

Data_AB_Stop=>Data_AB_Stop,
Outl_Port=>Outl_Port,
Outl_Stop_Port=>Outl_Stop_Port );

70 end FSMD_dHS_clock_ex_top_arch ;
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C.2.5 FSMD A
VHDL/doubleHS_SHMs/FSMD_dHS_clock/FSMD_dHS_clock_ex_A.vhd

—— File : FSMD_dHS_clock_ex_A . vhd
—— implements : FSMD A
—— of Model: FSMD (using clock )

—— for Ezample: FSMD (A) ——> FSMD (B)
- — using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

—— FSMD A of ewample of two FSMD ( Without time ) ezchanging data

Entity FSMD_A_dHS clock_ex is
port ( Reset, Start: in std_logic ;
Clock_A : in std_logic ;
TB_Ready_A, B_Ackn_A: in std_logic ;
A_Ackn.TB, A_Ready_B: out std_logic;

Inl, In2: in integer;

In_Stop: in std_logic ;
Data_AB_Port : out integer;
Data_AB_Stop_Port : out std_logic );

end FSMD_A_dHS _clock_ex;

Architecture FSMD_A_dHS_clock_ex_behavioral of FSMD_A_dHS_clock_ex
—— outputs

signal Data_AB: integer;

signal Data_AB_Stop: std_logic ;

—— internal signals

type State_Set is (S.BEGIN, S_.1, S_.2, S.3, S4, S5, S.6, SEND);
signal next STATE: State_Set ;

signal A, B: integer;

signal Stop: std_logic ;

begin —— Architecture

behaviorl: process(Clock_A)
begin
if (Clock_A’event and Clock_.A='1") then
if (Reset = '1") then
Data_AB <= 0;
Data_AB_Stop <= '0";
A_Ackn TB<='0";
A _Ready_B<="0";
next STATE <= S_BEGIN;
else
case next STATE is

when S_BEGIN => Data AB <= 0;
Data_AB_Stop <= '0";
A_Ackn TB<="0";
A _Ready_B<="0";

if Start = "1’
then next STATE <= S_1;
else next STATE <= SBEGIN;

end if ;
when S_1 =>

if (TB_Ready_ A='1")
then next STATE<= S_2;
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else next STATE<= S_1;

end if ;

when S_2 => A <= In1;
B <= In2;
Stop <= In_Stop;
A_Ackn TB<="1";

if (TB_Ready A='0")

then next STATE<= S_.3;
else next STATE<= S_2;

end if ;
when S_3 => Data_AB <= A — B;
Data_AB_Stop <= Stop;
A_Ackn TB<='0";
next STATE<= S_4;
when S_4 =>
next STATE<= S_5;

when S_5 => A _Ready_B<="1";

if (B_Ackn_A='1")

then next STATE<=S_6;
else next STATE<=S_5;

end if ;
when S_6 => A _Ready_B<="0";

if (B_Ackn.A='0")
then if (Stop='1")

then next STATE<=S_END;
else next STATE<=S_1;

quits )

end if ;
else next STATE<=S_6;
end if ;
when SEND=> —— nothing (Procedure
end case;
end if ;
end if;

end process;

—— Entity Outputs
Data_AB_Port <= Data_AB;
Data_AB_Stop_-Port <= Data_AB_Stop;

end FSMD_A_dHS_clock_ex_behavioral;
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C.2.6 FSMD B

VHDL/doubleHS_SHMs/FSMD_dHS_clock/FSMD_dHS_clock_ex_B.vhd

—— File : FSMD_dHS _clock_ex_B . vhd
—— implements : FSMD B
—— of Model: FSMD (using clock )

—— for Ezample: FSMD (A) ——> FSMD (B)
- — using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

—— FSMD B of ewample of two FSMD ( Without time) ezchanging data

Entity FSMD_B_dHS_clock_ex is
port ( Reset, Start: in std_logic ;
Clock B : in std_logic ;
A_Ready_ B, TB_AcknB: in std_logic ;
B_Ackn_A, B_Ready_TB: out std_logic ;

Data_AB: in integer;
Data_AB_Stop: in std_logic ;
Outl_Port: out integer;
Outl_Stop_Port : out std_logic );

end FSMD_B_dHS_clock_ex;

Architecture FSMD_B_dHS_clock_ex_behavioral of FSMD_B_dHS_clock_ex
—— outputs

signal Outl: integer;

signal Outl_Stop: std_logic ;

—— internal signals

type State_Set is (S.BEGIN, S_.1, S_.2, S.3, S4, S5, S.6, SEND);
—— S_BEGIN is represented by ” Procedure not running”.

signal next STATE: State_Set ;

signal C: integer;

signal Stop: std_logic ;

begin —— Architecture

behaviorl: process(Clock B)

begin
if (Clock B’'event and Clock B='1"') then
if (Reset = '1") then
Outl <= 0;

Outl_Stop <="0";

B_Ackn_ A<="0";

B_Ready TB<="0";

next STATE <= S_BEGIN;
else

case next STATE is

when S_BEGIN => Outl <= 0;
Outl_Stop <="0";
B_Ackn_ A<="0";
B_Ready TB<="0";

if Start = "1’
then next STATE <= S_1;
else next STATE <= SBEGIN;

end if ;
when S_1 =>

if (A_Ready.B="1")
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when S_2 =>
when S_3 =>
when S_4 =>
when S_5 =>
when S_6 =>

when S_END=>
end case;
end if ;
end if;
end process;

—— Entity Outputs
Outl_Port <= Outl;

then next STATE<= S_2;
else next STATE<= S_1;
end if ;

C <= Data_AB;
Stop <= Data_AB_Stop;
B_Ackn_ A<="1";

if (A_Ready.B="0")
then next STATE<= S_.3;
else next STATE<= S_2;
end if ;

Outl <= 2 * C;
Outl_Stop <= Stop;
B_Ackn_ A<="0";

next STATE<= S_4;

next STATE<= S_5;
B_Ready_ TB<="1";

if (TB_AcknB='1")
then next STATE<=S_6;
else next STATE<=S_5;
end if ;

B_Ready TB<='0";

if (TB_AcknB='0")
then if (Stop='1")
then next STATE<=S_END;
else next STATE<=S_1;
end if ;
else next STATE<=S_6;
end if ;

—— nothing (Procedure quits)

Outl_Stop_Port <= Outl_Stop;

end FSMD_B_dHS_clock_ex_behavioral ;
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C.2.7 A (FSM Controlling Datapath) — B (FSM Controlling Datapath)

VHDL/doubleHS_SMs/FSM_dHS_clock/FSM_and_D_dHS_clock_ex_top.vhd
—— File : FSM_and_D_dHS_clock_ex_top .vhd

—— bounding the two parts of the example

—— for Ezample: FSM,DP (A) ——> FSM,DP (B)

- — using double handshake protocol

library IEEE;

use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;
use STD. textio. all ;

entity FSM_and_D_dHS_clock_ex_top is
port ( Reset, Start: in std_logic ;
Clock_A, ClockB: in std_logic ;

TB_Ready-A, TB_AcknB: in std_logic ;

A_Ackn.TB, B_Ready_TB: out std_logic ;

Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;

Outl_Port: out std_logic_vector (31 downto 0);
Outl_Stop_Port : out std_logic );

end FSM_and_D_dHS_clock_ex_top;

architecture FSM_and_D_dHS _clock_ex_top_arch of FSM_and_D_dHS _clock_ex_top

Component FSM_and_D_A_dHS _clock_ex
port ( Reset, Start: in std_logic ;
Clock_A : in std_logic ;
TB_Ready_A, B_Ackn_A: in std_logic ;

A_Ackn.TB, A_Ready_B: out std_logic;

Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;

Data_AB_Port : out std_logic_vector (31 downto 0);
Data_AB_Stop_Port : out std_logic );

end Component;

Component FSM_and_D_B_dHS _clock_ex
port ( Reset, Start: in std_logic ;
Clock B : in std_logic ;
A_Ready_ B, TB_AcknB: in std_logic ;

B_Ackn_A, B_Ready_TB: out std_logic ;

Data_AB : in std_logic_vector (31 downto 0);
Data_AB_Stop: in std_logic ;

Outl_Port: out std_logic_vector (31 downto 0);
Outl_Stop_Port : out std_logic );

end Component;

signal B_Ackn_ A, A_Ready_B: std_logic ;
signal Data_ AB: std_logic_vector
signal Data_AB_Stop: std_logic ;

begin

)

)

)

(31 downto 0);

FSM_and_D_A_dHS _clock I: FSM_and_D_A_dHS _clock_ex

port map ( Reset=>Reset, Start=>Start,

Clock _A=>Clock_A ,

TB_Ready_ A=>TB_Ready_A, B_Ackn_A=>B_Ackn_A,
A_Ackn TB=>A_Ackn_.TB, A_Ready_B=>A_Ready_B,

In1=>In1, In2=>In2,
In_Stop=>In_Stop,
Data_AB_Port=>Data_AB,
Data_AB_Stop_Port=>Data_AB_Stop );

FSM_and_D_B_dHS clock_I: FSM_and_D_B_dHS _clock_ex

port map ( Reset=>Reset, Start=>Start,

Clock _B=>Clock B,

A _Ready_B=>A _Ready_B, TB_Ackn B=>TB_Ackn B,
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B_Ackn_ A=>B_Ackn_A, B_Ready_TB=>B_Ready.TB,
65 Data_AB=>Data_AB,

Data_AB_Stop=>Data_AB_Stop,
Outl_Port=>Outl_Port,

Outl_Stop_Port=>Outl_Stop_Port );

70 end FSM_and_D_dHS _clock_ex_top_.arch ;
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C.2.8 FSM Controlling Datapath A

VHDL/doubleHS_SHMs/FSM_dHS_clock/FSM_and_D_dHS_clock_ex_A.vhd

—— File : FSM_and_-D_dHS_clock_ex_A . vhd
—— implements : bounding of FSM A and Datapath A
—— of Model: FSM and separate Datapath (FSM + D)

—— for Ezample: FSM,DP (A) ——> FSM,DP (B)
- — using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

—— FSM_and_.D A of ewample of two FSM_and D ( Without time) ezchanging data

Entity FSM_and_D_A_dHS _clock._ex is
port ( Reset, Start: in std_logic ;
Clock_A : in std_logic ;
TB_Ready_A, B_Ackn_A: in std_logic ;
A_Ackn.TB, A_Ready_B: out std_logic;

Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;

Data_AB_Port : out std_logic_vector (31 downto 0);
Data_AB_Stop_Port : out std_logic );

end FSM_and_D_A_dHS _clock._ex;

Architecture FSM_and_D_A_dHS_clock_ex_structural of FSM_and_D_A_dHS _clock_ex
—— outputs

signal Data_AB: std_logic_vector (31 downto 0);

signal Data_AB_Stop: std_logic ;

signal DP_Reset: std_logic ;

signal 1d_A, 1d_.B, Id_Stop: std_logic ;
signal StopMsg: std_logic ;

signal ALUM: std_logic_vector (1 downto 0);
signal 1d_O: std_logic ;

signal CMP: std_logic_vector (1 downto 0);
signal MUX_sel: std_logic ;

Component DP

port ( Clock: in std_logic ;
DP _Reset : in std_logic ;
Id_.A, Id_B, 1d_Stop: in std_logic ;
StopMsg: out std_logic ;
ALUM: in std_logic_vector (1 downto 0);
1d_O : in std_logic ;
Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;
O_Port : out std_logic_vector (31 downto 0);
Out_Stop: out std_logic );
end Component;
Component FSM_A_dHS clock_ex
port ( Reset, Start: in std_logic ;
Clock_A : in std_logic ;

TB_Ready_A, B_Ackn_A: in std_logic ;

A_Ackn.TB, A_Ready_B: out std_logic;

DP _Reset : out std_logic ;

Id_A, Id_B, 1d_Stop: out std_logic;

StopMsg: in std_logic ;

ALUM: out std_logic_vector (1 downto 0);
1d_O: out std_logic );

end Component;

begin —— Architecture
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DP_A_I: DP
65 Port Map ( Clock=>Clock_A, DP_Reset=>DP _Reset,
Id_ A=>Id_ A, 1d_.B=>Id_.B, ld_Stop=>ld_Stop,
StopMsg=>StopMsg, ALUNM=>ALUM, 1d_.O=>Id_O,
In1=>In1, In2=>In2,
In_Stop=>In_Stop,
70 O_Port=>Data_AB, Out_Stop=>Data_AB_Stop);

FSM_A_dHS clock.I: FSM_A_dHS_clock_ex
Port Map ( Reset=>Reset, Start=>Start,
Clock _A=>Clock_A ,
75 TB_Ready_ A=>TB_Ready_A, B_Ackn_A=>B_Ackn_A,
A_Ackn TB=>A_Ackn_.TB, A_Ready_B=>A_Ready_B,
DP_Reset=>DP _Reset,
Id_ A=>Id_ A, 1d_.B=>Id_.B, ld_Stop=>ld_Stop,
StopMsg=>StopMsg, ALUM=>ALUM, 1d_0=>1d_0O );
80
—— Entity Outputs
Data_AB_Port <= Data_AB;
Data_AB_Stop_-Port <= Data_AB_Stop;

8s end FSM_and_D_A_dHS_clock_ex_structural;
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C.2.9 FSM of A

VHDL/doubleHS_SHMs/FSM_dHS_clock/FSM_dHS_clock_ex_A.vhd

—— File : FSM_dHS clock_ex_A . vhd

—— implements : FSM A

—— of Model: FSM and separate Datapath

—— for Ezample: FSM,DP (A) ——> FSM,DP (B)

- — using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

Entity FSM_A_dHS _clockex is

port ( Reset, Start: in std_logic ;

Clock_A : in std_logic ;

TB_Ready_A, B_Ackn_A: in std_logic ;

A_Ackn.TB, A_Ready_B: out std_logic;

DP _Reset : out std_logic ;

Id_A, Id_B, 1d_Stop: out std_logic;

StopMsg: in std_logic ;

ALUM: out std_logic_vector (1 downto 0);
1d_O: out std_logic );

end FSM_A_dHS clock_ex;

Architecture

FSM_A_dHS _clock_ex_behavioral of FSM_A_dHS clock_ex

type State_Set is (S.BEGIN, S_.1, S_.2, S.3, S4, S5, S.6, SEND);
signal next STATE, STATE: State_Set ;
begin —— Architecture
transition : Process
begin
wait until ( Clock_A’event and Clock_ A = "17);

STATE <= next STATE;
end process;

behaviorl: process (STATE, Start, TB_Ready_A, B_Ackn_A, StopMsg)

begin
if (Reset = '1") then
DP_Reset <= '1";
A_AcknTB <= "0";
A_Ready B <= "0";
I1d_A <="0";
1d_B <="0";
Id_Stop <='0";
ALU_M <: 77__77;
1d_O <="0";
next STATE <= S_BEGIN;
else

case STATE is

when S_BEGIN => DP_Reset

A_Ackn_TB
A_Ready_B

I1d_A
1d_B
Id_Stop
ALUM
1d_O

if Start

then next STATE <
else next STATE <

<=
<=
<=
<=
<=
<=
<=
<=

1y

717;
707;
707;
707;
707;
707;
n__n,
’

707;

1

= S 5
= SBEGIN;
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when S_1 =>

when S_2 =>

when S_3 =>

when S_4 =>

when S_5 =>

end if ;

DP_Reset <= '0";

A_Ackn.TB <= '0";
A _Ready B <= '0";
I1d_A ='0";
1d_B ='0";
Id_Stop ='0";
ALU_M — 77__77;
1d_O <="'0";

if (TB_Ready_ A='1")
then next STATE<= S_2;
else next STATE<= S_1;
end if ;

DP_Reset <= '0";

A_AcknTB <= "1";
A _Ready B <= '0";
I1d_A ='1";
1d_B ='1";
Id_Stop =17
ALUM <= "117";
1d_O <="'0";

if (TB_Ready_-A='0")
then next STATE<= S_.3;
else next STATE<= S_2;
end if ;

DP_Reset <= '0";
A_Ackn.TB <= '0";
A _Ready B <= '0";

I1d_A <="'0";
1d_B <="'0";
Id_Stop <='0";
ALUM <= "117";
1d_O <="1";

next STATE<= S_4;

DP_Reset <= '0";
A_Ackn.TB <= '0";
A _Ready B <= '0";

I1d_A <="'0";
1d_B <="'0";
Id_Stop <='0";
ALUM <= ==
1d_O <="'0";

next STATE<= S_5;

DP_Reset <= '0";
A_Ackn.TB <= '0";
A_Ready B <= "1";

I1d_A <="'0";
1d_B <="'0";
Id_Stop <='0";
ALUM <= ==
1d_O <="'0";

if (B_Ackn A="1")
then next STATE<=S_6;
else next STATE<=S_5;
end if ;

82



130

135

140

145

150

when S_6 =>

when S_END=>

end case;
end if ;

end process;

DP _Reset ='0";
A_Ackn.TB <= '0";
A _Ready B <= '0";
I1d_A ='0";
1d_B <="'0";
Id_Stop <='0";
ALU_M <: 77__77;
1d_O <="'0";

if (B_Ackn_A='0")

then if

(StopMsg="1")
then next STATE<=S_END;
else next STATE<=S_1;

end if ;
else next STATE<=S_6;

end if ;

—— nothin

g (Procedure quits )

end FSM_A _dHS_clock_ex_behavioral;

83



C.2.10 Datapath of A (identical B)

VHDL/doubleHS_SMs/Datapath/DP.vhd

—— File : DP. vhd
—— implements : Datapath (instanced twice: for A and for B)
—— for Ezample: FSM,DP (A) ——> FSM,DP (B)

- — using double handshake protocol
library IEEE;

use IEEE. std_logic_1164 .all;

use IEEE.std_logic_arith . all;

10 Entity DP is

port ( Clock: in std_logic ;

DP _Reset : in std_logic ;
Id_.A, Id_B, 1d_Stop: in std_logic ;
StopMsg: out std_logic ;

15 ALUM: in std_logic_vector (1 downto 0);
1d_O : in std_logic ;
Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;
O_Port : out std_logic_vector (31 downto 0);

20 Out_Stop: out std_logic );

end DP ;

Architecture DP_schematic of DP is

25 —— connection signals
signal A, B, O: std_logic_vector (31 downto 0);
signal ALU_Out: std_logic_vector (31 downto 0);
signal Stop: std_logic ;

30 component Reg_32bit

Port ( Clock: in std_logic ;
Reset : in std_logic ;
Load: in std_logic ;
Data_In: in std_logic_vector (31 downto 0);
35 Data_Out: out std_logic_vector (31 downto 0) );

end component;

component Latch_impl

Port ( Clock: in std_logic ;

40 Reset : in std_logic ;
Load: in std_logic ;

Data_In : in std_logic ;

Data_Out: out std_logic );
end component;

45
component ALU_32
Port ( Mode: in std_logic_vector (1 downto 0);
Data_In1 : in std_logic_vector (31 downto 0);
Data_In2 : in std_logic_vector (31 downto 0);
50 Data_Out : out std_logic_vector (31 downto 0) );
end component;
begin

55 Register_A : Reg_32bit
Port Map ( Clock=>Clock, Reset=>DP_Reset, Load=>Id_A,
Data_In=>Inl, Data_Out=>A);

Register_B : Reg_32bit
60 Port Map ( Clock=>Clock, Reset=>DP_Reset, Load=>1d_B,
Data_In=>In2, Data_Out=>B);

Latch_Stop: Latch_impl
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Port Map ( Clock=>Clock, Reset=>DP_Reset, Load=>ld_Stop,
65 Data_In=>In_Stop, Data_Out=>Stop);

ALU: ALU_32
Port Map ( Mode=>ALUM, Data_Inl1=>A, Data_In2=>B,
Data_Out=>ALU_Out);
70
Register_.O : Reg_32bit
Port Map ( Clock=>Clock, Reset=>DP_Reset, Load=>1d_O,
Data_In=>ALU_Out, Data_Out=>0);

75 O_Port <= O;
Out_Stop <= Stop;
StopMsg <= Stop;

end DP_schematic;
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C.2.11 FSM Controlling Datapath B
VHDL/doubleHS_SHMs/FSM_dHS_clock/FSM_and_D_dHS_clock_ex_B.vhd

—— File : FSM_and_-D_dHS_clock_ex_B.vhd
—— implements : bounding of FSM B and Datapath B
—— of Model: FSM and separate Datapath (FSM + D)
—— for Ezample: FSM,DP (A) ——> FSM,DP (B)

5 —— using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

10
Entity FSM_and_D_B_dHS clock_ex is
port ( Reset, Start: in std_logic ;

Clock B : in std_logic ;
A_Ready_ B, TB_AcknB: in std_logic ;

15 B_Ackn_A, B_Ready_TB: out std_logic ;
Data_AB : in std_logic_vector (31 downto 0);
Data_AB_Stop: in std_logic ;
Outl_Port: out std_logic_vector (31 downto 0);
Outl_Stop_Port : out std_logic );

20 end FSM_and_D_B_dHS _clock._ex;

Architecture FSM_and_D_B_dHS_clock_ex_behavioral of FSM_and_D_B_dHS _clock_ex is
—— outputs

signal Outl: std_logic_vector (31 downto 0);

signal Outl_Stop: std_logic ;

2

o

signal DP_Reset: std_logic ;
signal 1d_A, 1d_.B, Id_Stop: std_logic ;

30 signal StopMsg: std_logic ;
signal ALUM: std_logic_vector (1 downto 0);
signal 1d_O: std_logic ;
signal CMP: std_logic_vector (1 downto 0);
signal MUX_sel: std_logic ;

35
Component DP
port ( Clock: in std_logic ;

DP _Reset : in std_logic ;
Id_.A, Id_B, 1d_Stop: in std_logic ;

40 StopMsg: out std_logic ;
ALUM: in std_logic_vector (1 downto 0);
1d_O : in std_logic ;
Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;

45 O_Port : out std_logic_vector (31 downto 0);
Out_Stop: out std_logic );

end Component;

Component FSM_B_dHS _clock_ex
50 port ( Reset, Start: in std_logic ;
Clock B : in std_logic ;
A_Ready_ B, TB_AcknB: in std_logic ;
B_Ackn_A, B_Ready_TB: out std_logic ;

DP _Reset : out std_logic ;
55 Id_A, Id_B, 1d_Stop: out std_logic;
StopMsg: in std_logic ;
ALUM: out std_logic_vector (1 downto 0);
1d_O: out std_logic );
end Component;
60
begin —— Architecture
DP.B.: DP

Port Map ( Clock=>Clock_B, DP_Reset=>DP _Reset,
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Id_ A=>Id_ A, 1d_.B=>Id_.B, ld_Stop=>ld_Stop,
65 StopMsg=>StopMsg, ALUNM=>ALUM, 1d_.O=>Id_O,

In1=>Data_AB, In2=>Data_AB,

In_Stop=>Data_AB_Stop,

O_Port=>0Outl, Out_Stop=>Outl_Stop);

70 FSM_B_dHS _clock.I: FSM_B_dHS _clock_ex
Port Map ( Reset=>Reset, Start=>Start,

Clock _B=>Clock B,
A _Ready_B=>A _Ready_B, TB_Ackn B=>TB_Ackn B,
B_Ackn_ A=>B_Ackn_A, B_Ready_TB=>B_Ready.TB,

75 DP_Reset=>DP _Reset,
Id_ A=>Id_ A, 1d_.B=>Id_.B, ld_Stop=>ld_Stop,
StopMsg=>StopMsg, ALUM=>ALUM, 1d_0=>1d_0O );

—— Entity Outputs
80 Outl_Port <= Outl;
Outl_Stop_Port <= Outl_Stop;

end FSM_and_D_B_dHS_clock_ex_behavioral;
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C.2.12 FSM of B
VHDL/doubleHS_SHMs/FSM_dHS_clock/FSM_dHS_clock_ex_B.vhd

—— File : FSM_dHS_clock_ex_B.vhd
—— implements : FSM B
—— of Model: FSM and separate Datapath

—— for Ezample: FSM,DP (A) ——> FSM,DP (B)
- — using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

Entity FSM_B_dHS clock_ex is
port ( Reset, Start: in std_logic ;
Clock B : in std_logic ;
A_Ready_ B, TB_AcknB: in std_logic ;
B_Ackn_A, B_Ready_TB: out std_logic ;

DP _Reset : out std_logic ;

Id_A, Id_B, 1d_Stop: out std_logic;

StopMsg: in std_logic ;

ALUM: out std_logic_vector (1 downto 0);
1d_O: out std_logic );

end FSM_B_dHS clock_ex;

Architecture FSM_B_dHS_clock_ex_behavioral of FSM_B_dHS _clock_ex

type State_Set is (S.BEGIN, S_.1, S_.2, S.3, S4, S5, S.6, SEND);
signal next STATE, STATE: State_Set ;

begin —— Architecture

transition : Process

begin
wait until (ClockB’event and Clock B = "17);
STATE <= next STATE;

end process;

behaviorl: process (STATE, Start, A_Ready_ B, TB_AcknB, StopMsg)
begin
if (Reset = '1") then
DP_Reset <= '1";
B_Ackn A <="'07;
B_Ready TB<= '0";

I1d_A <="0";
1d_B <="0";
Id_Stop <='0";
ALUM <= "7
1d_O <="0";
next STATE <= S_BEGIN;

else
case STATE is

when S BEGIN => DP_Reset <= '1";
B_Ackn_ A <= "'0";
B_Ready_ TB<= '0";

I1d_A <="'0";

1d_B <="'0";

Id_Stop <='0";

ALU_M <: 77__77;

1d_O <="'0";

if Start = "1’
then next STATE <= S_1;
else next STATE <= SBEGIN;
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when S_1 =>

when S_2 =>

when S_3 =>

when S_4 =>

when S_5 =>

end if ;

DP_Reset <= '0";
B_Ackn A <="'0";
B_Ready_ TB<= '0";

I1d_A <="1";
1d_B <="1";
Id_Stop <='1";
ALUM <= "=
1d_O <="0";

if (A_Ready.B="1")
then next STATE<= S_2;
else next STATE<= S_1;
end if ;

DP_Reset <= '0";
B_Ackn A <= "'1";
B_Ready TB<= '0";

Id_A <="0";
1d_B <="0";
Id_Stop <="'0";
ALUM <= "10";
1d_O <="0";

if (A_Ready.B="0")
then next STATE<= S_.3;
else next STATE<= S_2;
end if ;

DP_Reset <= '0";
B_Ackn A <= "'0";
B_Ready TB<= '0";

Id_A <="0";
1d_B <="0";
Id_Stop <="'0";
ALUM <= "10";
1d_O <="1";

next STATE<= S_4;

DP_Reset <= '0";
B_Ackn A <= "'0";
B_Ready TB<= '0";

Id_A <="0";
1d_B <="0";
Id_Stop <="'0";
ALUM <= "=y
1d_O <="0";

next STATE<= S_5;

DP_Reset <= '0";
B_Ackn A <= "'0";
B_Ready TB<= "1";

Id_A <="0";
1d_B <="0";
Id_Stop <="'0";
ALUM <= "=y
1d_O <="0";

if (TB_AcknB='1")
then next STATE<=S_6;
else next STATE<=S_5;
end if ;
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when S_6 => DP_Reset <= '0";
B_Ackn A <= "'0";
B_Ready TB<= '0";

Id_A <="0";
1d_B <="0";
Id_Stop <="'0";
ALUM <= "=y
1d_O <="0";

if (TB_AcknB='0")
then if (StopMsg='1")
then next STATE<=S_END;
else next STATE<=S_1;
end if ;
else next STATE<=S_6;
end if ;

when SEND=> —— nothing (Procedure quits )

end case;
end if ;

end process;

end FSM_B_dHS_clock_ex_behavioral;
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C.2.13 Datapath of B

The datapath for the receiver B is identical to the datapath of the sender A. — See datapath for sender A.
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C.3 Transfer via Queue with Double Handshake
e A (FSMD without time) = Queue (FSMD without time) — B (FSMD without time)

— FSMD A
— FSMD Queue
— FSMD B

e A (FSMD using clock) = Queue (FSMD using clock) — B (FSMD using clock)

— FSMD A
— FSMD Queue
— FSMD B
e A (FSM Controlling Datapath) — Queue (FSM Controlling Datapath)
— B (FSM Controlling Datapath)
— FSM Controlling Datapath A

* FSM of A
* Datapath of A (identical B)

— FSM Controlling Datapath Queue

* FSM of Queue
* Datapath of Queue (Buffered)
- Datapath of Unbuffered Queue

— FSM Controlling Datapath B

* FSM of B
* Datapath of B identical to A (see A)
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C.3.1 A (FSMD without time) — Queue (FSMD without time) - B (FSMD without time)

VHDL/doubleHS_queued_SMs/FSMD_dHS_q_no_time/FSMD_dHS_q_no_time_ex_top.vhd

—— File : FSMD_dHS_q_no_time_ex_top . vhd

—— bounding the three parts of the example

—— for Ezample: FSMD (A) ——> FSMD( Queue) ——> FSMD (B)
- — using double handshake protocol

library IEEE;

use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;
use IEEE.std_logic_signed .ALL;

entity FSMD_dHS_q_no_time_ex_top is

port ( Reset, Start: in bit;
TB_Ready_ A, TB_AcknB: in bit;
A_Ackn.TB, B_Ready_TB: out bit;

In1, In2: in integer;
In_Stop: in bit;
Outl_Port: out integer;
Outl_Stop_Port : out bit );

end FSMD_dHS_q_no_time_ex_top;

architecture FSMD_dHS_q_no_time_ex_top_arch of FSMD_dHS_q_no_time_ex_top

Component FSMD_A_dHS_q_no_time_ex
port ( Reset, Start: in bit;

TB_Ready A, QC_Ackn_A: in bit;
A_Ackn TB, A_Ready QC: out bit;
Inl, In2: in integer;
In_Stop: in bit;
Data_AQ_Port : out integer;
Data_AQ_Stop_Port: out bit );

end Component;

Component FSMD_Queue_dHS_no_time_ex
generic (W, D: integer);
port ( Reset, Start: in bit;
A _Ready QC, B_Rd_ReqQC: in bit;
QC_Ackn_A, QC_ReadyB: out bit;
Q_Empty_Port, Q_Full_Port: out bit;
Data_AQ: in bit_vector (W-1 downto 0);
Buffer_QB_Port : out bit_vector (W-1 downto 0));
end Component;

Component FSMD_B_dHS_q_no_time_ex
port ( Reset, Start: in bit;
QC_Ready B, TB_AcknB: in bit;
B_Rd_Req-QC, B_Ready_TB: out bit;

Buffer QB : in integer;
Buffer . QB_Stop : in bit;
Outl_Port: out integer;
Outl_Stop_Port : out bit );

end Component;

signal A_Ready QC, B_Rd_Req-QC: bit;
signal QC_Ackn_ A, QC_ReadyB: bit;

signal Data AQ: integer;

signal Data_AQ_bit_v: bit_vector (31 downto 0);
signal Data_AQ_Stop: bit ;

signal Buffer_ QB : integer;

signal Buffer_QB_bit_v: bit_vector (31 downto 0);
signal Buffer_QB_Stop : bit ;

begin
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FSMD_A_dHS_gq-no_time_I: FSMD_A_dHS_q_no_time_ex

65 port map ( Reset=>Reset, Start=>Start,
TB_Ready _ A=>TB_Ready_ A, QC_Ackn_A=>QC_Ackn_A,
A_Ackn TB=>A_Ackn_TB, A_Ready QC=>A_Ready_QC,
In1=>In1, In2=>In2,
In_Stop=>In_Stop,

70 Data_AQ_Port=>Data AQ,
Data_AQ_Stop_Port=>Data_AQ_Stop );

FSMD_Queue_.dHS_no_time_I: FSMD_Queue_.dHS_no_time_ex
generic map ( W=>33, D=>4)

75 port map ( Reset=>Reset, Start=>Start,
A _Ready QC=>A_Ready_QC, B_Rd_Req-QC=>B_Rd_Req-QC,
QC_Ackn_A=>QC_Ackn_A, QC_Ready B=>QC_Ready B,
Q_Empty_Port=>open, Q_Full_Port=>open,
Data_AQ(31 downto 0)=>Data_AQ_bit_v,

80 Data_ AQ(32)=>Data_AQ_Stop,
Buffer_QB_Port (31 downto 0)=>Buffer_QB_bit_v,

Buffer_QB_Port (32)=>Buffer_QB_Stop );

FSMD_B_dHS_q-no_time_I: FSMD_B_dHS_q_no_time_ex

85 port map ( Reset=>Reset, Start=>Start,
QC_Ready B=>QC_Ready B, TB_Ackn_B=>TB_Ackn B,
B_Rd_Req-QC=>B_Rd_Req_-QC, B_Ready_-TB=>B_Ready_TB,
Buffer QB=>Buffer_.QB,
Buffer . QB_Stop=>Buffer_ QB_Stop,

90 Outl_Port=>Outl_Port,
Outl_Stop_Port=>Outl_Stop_Port );

Data_.AQ_bit_v <= To_BitVector (conv_std_logic_vector ( Data AQ, 32 ))s

Buffer QB <= conv_integer (To_StdLogicVector ( Buffer_QB_bit_v ));
95

end FSMD_dHS_q_no_time_ex_top.arch;

94



10

15

20

25

30

35

40

50

55

60

C.3.2 FSMD A

VHDL/doubleHS_queued_SMs/FSMD_dHS_q_no_time/FSMD_dHS_q_no_time_ex_A.vhd
—— File : FSMD_dHS_

—— implements : FSMD A

g-no_time_ex_A . vhd

—— of Model: FSMD (without using time)
—— for Ezample: FSMD (A) ——> FSMD( Queue) ——> FSMD (B)
- — using double handshake protocol

Entity FSMD_A_dHS_q_no_time_ex is

port ( Reset, Start:

in bit;

TB_Ready A, QC_Ackn_A: in bit;
A_Ackn TB, A_Ready QC: out bit;

In1, In2:
In_Stop:
Data_AQ_Port :

in integer;
in bit;
out integer;

Data_AQ_Stop_Port: out bit );
end FSMD_A_dHS_q_no_time_ex;

Architecture FSMD_A_dHS_q_no_time_ex_behavioral

—— behavior outputs
signal Data AQ: integer;
signal Data_AQ_Stop: bit;

Procedure behaviorl(signal
signal
signal
signal
signal
signal

TB_Ready A, QC_Ackn_A: in bit;
A_Ackn_TB, A_Ready QC: out bit;
Inl, In2: in integer;

In_Stop: in bit;

Data_AQ: inout integer;
Data_AQ_Stop: out bit) is

type State_Set is (S.1, S_2, S.3, S4, S5, S6, SEND);

—— S_BEGIN is represented

by ” Procedure not running”.

variable next STATE: State_Set;

variable A, B: integer;
variable Stop: bit;

begin

next STATE:= S_1;
Data AQ <= 0;
Data_AQ_Stop <= "'0";
A_Ackn TB<='0";

A _Ready QC<="0";

while (next STATE/=SEND) and ( Reset/='1") loop

case next STATE is
when S_1 =>

if (TB_Ready_A="1
then next STATE:
else next STATE:

end if ;

L

when S_2 => A := Inl;
B := In2;

Stop :=

In_Stop;

A_Ackn TB<="1";

if (TB_Ready_ A='0")
then next STATE:=
else next STATE:=

end if ;

S_3;
S_2

)

when S_3 => Data AQ <= A — B;

Data_AQ._

Stop <= Stop;

95

of FSMD_A_dHS_q_no_time_ex
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A_Ackn TB<='0";

next STATE:

S_4;

when S_4 =>

next STATE:= S_5;
when S_5 => A _Ready QC<="1";

if (QC_Ackn_A='1")

then next STATE:=S_6;
else next STATE:=S_5;

end if ;
when S_6 => A _Ready QC<="0";

if (QC_Ackn_A="0")
then if (Stop='1")

then next STATE:=S_END;
else next STATE:=S_1;

end if;
else next STATE:=S5_6;
end if ;
when SEND=> —— nothing (Procedure

end case;
wait for 1 ns; —— Synopsys needs wait
end loop;

end behaviorl;

begin —— Architecture

P1: Process

begin
wait until (Reset = '17) or ( Start =
if (Reset = '1") then

Data AQ <= 0;
Data_AQ_Stop <= "'0";
A_Ackn TB<="0";
A _Ready QC<="0";

elsif (Start = '1’) then

behaviorl (TB_Ready A, QC_Ackn_A, A_Ackn.TB, A_Ready QC,
Inl, In2, In_Stop, DataAQ, Data_.AQ_Stop);

end if;
end process;

—— Entity Outputs
Data_AQ_Port <= Data_ AQ;
Data_AQ_Stop_Port <= Data_AQ_Stop;

end FSMD_A_dHS_q_-no_time_ex_behavioral;

quits )

> 0 ns

717);
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C.3.3 FSMD Queue
VHDL/doubleHS_queued_SMs/FSMD_dHS_q_no_time/FSMD_dHS_q_no_time_ex_Queue.vhd

—— File : FSMD_dHS_q_-no_time_ex_Queue . vhd
—— implements : Queue
—— of Model: FSMD (without using time)

—— for Ezample: FSMD (A) ——> FSMD( Queue) ——> FSMD (B)
- — using double handshake protocol

Entity FSMD_Queue_dHS_no_time_ex is
generic (W, D: integer);
port ( Reset, Start: in bit;
A _Ready QC, B_Rd_ReqQC: in bit;
QC_Ackn_A, QC_ReadyB: out bit;
Q_Empty_Port, Q_Full_Port: out bit;
Data_AQ: in bit_vector (W-1 downto 0);
Buffer_QB_Port : out bit_vector (W-1 downto 0));
end FSMD_Queue_dHS _no_time_ex ;

Architecture FSMD_Queue_dHS_no_time_ex_behavioral of FSMD_Queue_.dHS _no_time_ex

is

—— queue outputs
signal Q_Empty, Q_Full: bit;
signal Buffer QB: bit_vector (W-1 downto 0);

Procedure Queue(signal Reset, Start: in bit;
signal A_Ready QC, B_Rd_ReqQC: in bit;
signal QC_Ackn_ A, QC_Ready B: out bit;
signal Q_Empty, Q_Full: inout bit;
signal Data AQ: in bit_vector (W-1 downto 0);
signal Buffer QB : out bit_vector (W-1 downto 0)) is
type State_Set is (S.0, W1, W2, R.1, R2, R.3, SEND);
—— S_BEGIN is represented by ” Procedure not running”.
variable next STATE: State_Set;
type fifo_array is ARRAY(D-1 downto 0) of bit_vector (W-1 downto 0);
variable Q: fifo_array ;
variable C: integer range —1 to D-1;

begin

next STATE:= S_0;
QC_Ackn_ A <= "0";
QC_Ready B <= '0";
Ci= —1; —— empty;
Q-Empty <= "1";
Q_Full <= "'0";

while (next STATE/=SEND) and ( Reset/='1") loop
case next STATE is
when S 0 => QC_Ackn_ A <= "0";
QC_Ready B <= "0";

if (QEmpty="0" and B_Rd_ReqQC="1")
then next STATE:= R_1;

elsif (Q_Full="0" and A_Ready QC='1")
then next STATE:= W_1;

end if ;

when W_1 => C:= C41;
next STATE:= W_2;
when W2 => for i in D-1 downto 1 loop

Q(i):= Q(i-1);

end loop;
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Q(0):= Data AQ;
65 if (C=-1)

then Q_Empty <= "1";

else
Q-Empty <= "0";
end if ;
70 if (C=D-1)

then Q_Full <= "1’;

else
Q_Full <= "'0";
end if ;
75 QC_Ackn_ A <= "1"7;

if (A_Ready.QC='0")

then next STATE:= S_0;
else
80 next STATE:= W_2;
end if ;
when R_1 => —— needed for conversion into "FSM plus
85 next STATE:= R_2;
when R_2 => Buffer QB <= Q(C);
C:= C-1;
90 next STATE:= R_3;
when R_.3 => QC_Ready B <= "1"7;
if (C=-1)
then Q_Empty <= "1";
95 else
Q-Empty <= "0";
end if ;
if (C=D-1)
then Q_Full <= "1";
100 else
Q_Full <= "'0";
end if ;
if (B.RdReqQC='0")
105 then next STATE:= S_0;
else
next STATE:= R_3;
end if ;
110 when SEND=> —— nothing (Procedure gquits)

—— (will never happen though )

end case;
wait for 1 ns; —— Synopsys needs
115 end loop;

end Queue;

120 begin —— Architecture

Q1: Process

wait > 0 ns

begin
wait until (Reset = '1") or (Start = "17);
126 if (Reset = '1’) then

QC_Ackn_ A <= "0";
QC_Ready B <= "0";
Q-Empty <= "0";
Q_Full <= "'0";

98

Datapath”



130 elsif (Start = '1’) then
Queue( Reset, Start,

A _Ready QC, B_Rd_Req_-QC,
QC_Ackn_A, QC_Ready. B,
Q-Empty, Q_Full,

135 Data_AQ, Buffer QB);

end if;
end process;

—— Entity Outputs

140 Q_Empty Port <= Q_Empty;
Q_Full_Port <= Q_Full;
Buffer_.QB_Port <= Buffer_.QB;

end FSMD_Queue_.dHS_no_time_ex_behavioral;
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C.3.4 FSMD B
VHDL/doubleHS_queued_SMs/FSMD_dHS_q_no_time/FSMD_dHS_q_no_time_ex_B.vhd

—— File : FSMD_dHS_q_no_time_ex_B.vhd
—— implements : FSMD B
—— of Model: FSMD (without using time)

—— for Ezample: FSMD (A) ——> FSMD( Queue) ——> FSMD (B)
- — using double handshake protocol

Entity FSMD_B_dHS_q_no_time_ex is
port ( Reset, Start: in bit;
QC_Ready B, TB_AcknB: in bit;
B_Rd_Req-QC, B_Ready_TB: out bit;

Buffer QB : in integer;
Buffer . QB_Stop : in bit;
Outl_Port: out integer;
Outl_Stop_Port : out bit );

end FSMD_B_dHS_q_no_time_ex;

Architecture FSMD_B_dHS_q_-no_time_ex_behavioral of FSMD_B_dHS_q_-no_time_ex

—— behavior outputs
signal Outl: integer;
signal Outl_Stop: bit;

Procedure behaviorl(signal QC_Ready B, TB_Ackn. B: in bit;
signal B_Rd_Req-QC, B_Ready_ TB: out bit;
signal Buffer_ QB: in integer;
signal Buffer_.QB_Stop: in bit;
signal Outl: inout integer;
signal Outl_Stop: out bit) is

type State_Set is (S.1, S_2, S.3, S4, S5, S6, SEND);

—— S_BEGIN is represented by ” Procedure not running”.

variable next STATE: State_Set;

variable C: integer;

variable Stop: bit;

begin
next STATE:= S_1;
Outl <= 0;

Outl_Stop <= '0";
B_Rd_Req-QC<="0";
B_Ready TB<="0";

while (next STATE/=SEND) and ( Reset/='1") loop
case next STATE is
when S_1 => B.Rd_Req.QC <= '1°;

if (QC_ReadyB='1")
then next STATE:=

else next STATE:=
end if ;

when S_2 => C := Buffer.QB;
Stop := Buffer_.QB_Stop;
B_Rd_Req-QC<="0";

then next STATE: ;
else next STATE: 2
end if ;

if (QC_ReadyB='0")

when S_3 => Outl <= 2 *x C;
Outl_Stop <= Stop;
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next STATE:= S_4;
when S_4 =>
next STATE:= S_5;
when S_5 => B_Ready TB<="1";
if (TB_Ackn.B="1")
then next STATE:=S_6;
else next STATE:=S_5;
end if ;
when S_6 => B_Ready TB<="0";
if (TB_Ackn.B='0")
then if (Stop='1")
then next STATE:=S_END;
else next STATE:=S_1;
end if;
else next STATE:=S5_6;
end if ;
when SEND=> —— nothing (Procedure gquits)
end case;
wait for 1 ns; —— Synopsys needs wait > 0 ns
end loop;
end behaviorl;
begin —— Architecture
P1: Process
begin
wait until (Reset = '1") or (Start = "17);
if (Reset = '1") then
Outl <= 0;
Outl_Stop <= '0";
B_Rd_Req-QC<="0";
B_Ready TB<='0";
elsif (Start = '1’) then

behaviorl (QC_Ready B, TB_AcknB, B_RdReq-QC, B_Ready TB,

Buffer QB , Buffer_QB_Stop,
end if;
end process;
—— Entity Outputs
Outl_Port <= Outl;
Outl_Stop_Port <= Outl_Stop;

end FSMD_B_dHS_q_no_time_ex_behavioral ;

Outl,

Outl_Stop);
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C.3.5 A (FSMD using clock) —» Queue (FSMD using clock) - B (FSMD using clock)

VHDL/doubleHS_queued_SMs/FSMD_dHS_q_clock/FSMD_dHS_q_clock_ex_top.vhd

—— File : FSMD_dHS_q_clock_ex_top . vhd

—— bounding the three parts of the example

—— for Ezample: FSMD (A) ——> FSMD( Queue) ——> FSMD (B)
- — using double handshake protocol

library IEEE;

use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;
use STD. textio. all ;

entity FSMD_dHS_qg_clock_ex_top is
port ( Reset, Start: in std_logic ;
Clock_A, Clock B, Clock_Q: in std_logic ;

TB_Ready-A, TB_AcknB: in std_logic ;

A_Ackn.TB, B_Ready_TB: out std_logic ;

Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;

Outl_Port: out std_logic_vector (31 downto 0);
Outl_Stop_Port : out std_logic );

end FSMD_dHS_q_clock_ex_top;
architecture FSMD_dHS_q_clock_ex_top_arch of FSMD_dHS_q_clock_ex_top

Component FSMD_A _dHS_q_clock_ex
port ( Reset, Start: in std_logic ;
Clock_A : in std_logic ;
TB_Ready-A, QC_Ackn_A: in std_logic ;
A_Ackn.TB, A_ReadyQC: out std_logic ;

Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;

Data_AQ_Port: out std_logic_vector (31 downto 0);
Data_AQ_Stop_Port: out std_logic );

end Component;

Component FSMD_Queue_dHS_clock_ex
generic (W, D: integer);
port ( Reset, Start: in std_logic ;
Clock_Q : in std_logic ;
A_Ready QC, B_Rd_ReqQC: in std_logic ;
QC_Ackn_ A, QC_Ready B: out std_logic ;
Q-Empty_Port, Q_Full_Port: out std_logic ;
Data AQ: in std_logic_vector (W-1 downto 0);
Buffer_QB_Port: out std_logic_vector (W-1 downto 0));
end Component;

Component FSMD _B_dHS_q_clock_ex
port ( Reset, Start: in std_logic ;
Clock B : in std_logic ;
QC_Ready B, TB_AcknB: in std_logic ;
B_Rd_Req-QC, B_Ready_TB: out std_logic ;

Buffer QB : in std_logic_vector (31 downto 0);
Buffer . QB_Stop : in std_logic ;

Outl_Port: out std_logic_vector (31 downto 0);
Outl_Stop_Port : out std_logic );

end Component;

signal A_Ready QC, B_Rd_Req-QC: std_logic ;
signal QC_Ackn_ A, QC_Ready B: std_logic ;

signal Data AQ: std_logic_vector (31 downto 0);
signal Data_AQ_Stop: std_logic ;

signal Buffer QB: std_logic_vector (31 downto 0);
signal Buffer_.QB_Stop: std_logic ;
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65
FSMD_A_dHS _q_clock.I: FSMD_A_dHS_q_clock_ex
port map ( Reset=>Reset, Start=>Start, Clock_A=>Clock_A,
TB_Ready _ A=>TB_Ready_ A, QC_Ackn_A=>QC_Ackn_A,
A_Ackn TB=>A_Ackn_TB, A_Ready QC=>A_Ready_QC,
70 In1=>In1, In2=>In2,
In_Stop=>In_Stop,
Data_AQ_Port=>Data AQ,
Data_AQ_Stop_Port=>Data_AQ_Stop );

75 FSMD _Queue_dHS _clock_I: FSMD_Queue_dHS_clock_ex
generic map (W=>33, D=>4)
port map ( Reset=>Reset, Start=>Start, Clock-Q=>Clock_Q,
A _Ready QC=>A_Ready_QC, B_Rd_Req-QC=>B_Rd_Req-QC,
QC_Ackn_A=>QC_Ackn_A, QC_Ready B=>QC_Ready B,
80 Q_Empty_Port=>open, Q_Full_Port=>open,
Data_AQ(31 downto 0)=>Data_AQ,
Data_ AQ(32)=>Data_AQ_Stop,
Buffer_QB_Port (31 downto 0)=>Buffer QB,
Buffer_QB_Port (32)=>Buffer_QB_Stop );
85
FSMD_B_dHS_q_clockI: FSMD_B_dHS_q_clock_ex
port map ( Reset=>Reset, Start=>Start, Clock.B=>Clock B,
QC_Ready B=>QC_Ready B, TB_Ackn_B=>TB_Ackn B,
B_Rd_Req-QC=>B_Rd_Req_-QC, B_Ready_-TB=>B_Ready_TB,
90 Buffer QB=>Buffer_.QB,
Buffer . QB_Stop=>Buffer_ QB_Stop,
Outl_Port=>Outl_Port,
Outl_Stop_Port=>Outl_Stop_Port );

9s end FSMD_dHS_q_clock_ex_top_arch;

103



10

15

20

25

30

35

45

50

55

60

C.3.6 FSMD A

VHDL/doubleHS_queued_SMs/FSMD_dHS_q_clock/FSMD_dHS_q_clock_ex_A.vhd

—— File : FSMD_dHS_q_clock_ex_A . vhd
—— implements : FSMD A
—— of Model: FSMD (using time)

—— for Ezample: FSMD (A) ——> FSMD( Queue) ——> FSMD (B)

- using double handshake protocol

library IEEE;

use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;
use IEEE.std_logic_signed . all;

Entity FSMD_A_dHS_q_clock_ex is
port ( Reset, Start: in std_logic ;
Clock_A : in std_logic ;
TB_Ready-A, QC_Ackn_A: in std_logic ;
A_Ackn.TB, A_ReadyQC: out std_logic ;

Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;
Data_AQ_Port: out std_logic_vector (31 downto 0);

Data_AQ_Stop_Port:
end FSMD_A_dHS_q_clock_ex;

Architecture FSMD_A_dHS _q_clock_ex_behavioral of FSMD_A_dHS_q_clock_ex

—— outputs
signal Data AQ: std_logic_vector (31 downto 0);
signal Data_AQ_Stop: std_logic ;

—— internal signals

type State_Set is (S.BEGIN, S_.1, S_.2, S.3, S_4,
signal next STATE: State_Set ;

signal A, B: std_logic_vector (31 downto 0);
signal Stop: std_logic ;

begin —— Architecture

behaviorl: process(Clock_A)
begin
if (Clock_A’event and Clock_.A='1") then
if (Reset = '1") then
Data AQ <= (others=>'0");
Data_AQ_Stop <= "'0";
A_Ackn TB<='0";
A _Ready QC<="0";
next STATE <= S_BEGIN;
else
case next STATE is

when S_BEGIN => Data AQ <= (others=>'0"
Data_AQ_Stop <= "'0";
A_Ackn TB<="0";
A _Ready QC<="0";

if Start = "1’
then next STATE <
else next STATE <
end if ;

=S
=S

when S_1 =>

if (TB_Ready_ A='1")
then next STATE<= S_2;
else next STATE<= S_1;

out std_logic );

S5,

)i

1:

BEGIN;
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when

when

when

when

when

when S_END=>

S_2 =>
S_.3 =>
S_ 4 =>
S5 =>
S_6 =>

end case;

end if ;
end if;

end process;

—— Entity Outputs
Data_AQ_Port <= Data_ AQ;
Data_AQ_Stop_Port <= Data_AQ_Stop;

end if ;

A <= In1;

B <= In2;

Stop <= In_Stop;
A_Ackn TB<="1";

if (TB_Ready_-A='0")
then next STATE<= S_.3;
else next STATE<= S_2;
end if ;

Data AQ <= A — B;
Data_AQ_Stop <= Stop;
A_Ackn TB<='0";

next STATE<= S_4;

next STATE<= S_5;
A _Ready QC<="1";

if (QC_Ackn_A="1")
then next STATE<=S_6;
else next STATE<=S_5;
end if ;

A _Ready QC<="0";

if (QC_Ackn_A="0")
then if (Stop='1")
then next STATE<=S_END;
else next STATE<=S_1;
end if ;
else next STATE<=S_6;
end if ;

—— nothing (Procedure quits)

end FSMD _A_dHS_q_clock_ex_behavioral ;
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C.3.7 FSMD Queue
VHDL/doubleHS_queued_SMs/FSMD_dHS_q_clock/FSMD_dHS_q_clock_ex_Queue.vhd

—— File : FSMD_dHS_q_clock_ex_Queue . vhd
—— implements : Queue
—— of Model: FSMD (using clock )

—— for Ezample: FSMD (A) ——> FSMD( Queue) ——> FSMD (B)
- — using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

Entity FSMD_Queue_dHS _clock_ex is
—— pragma template
generic (W, D: integer);
port ( Reset, Start: in std_logic ;
Clock_Q : in std_logic ;
A_Ready QC, B_Rd_ReqQC: in std_logic ;
QC_Ackn_ A, QC_Ready B: out std_logic ;
Q-Empty_Port, Q_Full_Port: out std_logic ;
Data AQ: in std_logic_vector (W-1 downto 0);
Buffer_.QB_Port : out std_logic_vector (W-1 downto 0));
end FSMD_Queue_dHS _clock_ex;

Architecture FSMD_Queue_.dHS_clock_ex_behavioral of FSMD_Queue_dHS_clock_ex

is

—— queue outputs

signal Q_Empty, Q_Full: std_logic ;

signal Buffer QB: std_logic_vector (W-1 downto 0);

type State_Set is (S.0, W1, W2, R.1, R2, R.3, SEND);

—— S_BEGIN is represented by ” Procedure not running”.

signal next STATE: State_Set ;

type fifo_array is ARRAY(D-1 downto 0) of std_logic_vector (W-1 downto 0);
signal Q: fifo_array ;

signal C: integer range —1 to D-1;

begin

Queue: Process(Clock_Q)
begin
if (Clock-Q’ ' event and Clock_.Q='1") then
if (Reset = '1") then
next STATE<= S_0;
QC_Ackn_ A <= "0";
QC_Ready B <= '0";
C<=—-1; —— empty;
Q-Empty <= "1";
Q_Full <= "'0";
else
case next STATE is
when S 0 => QC_Ackn_ A <= "0";
QC_Ready B <= '0";

if (Q-Empty="0" and B_Rd_ReqQC="1")
then next STATE<= R_1;

elsif (Q_Full="0" and A_Ready QC='1")
then next STATE<= W_1;

end if;

when W_1 => C<= C+1;
for i in D-1 downto 1 loop
Q(i)<=Q(i-1);

end loop;
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next STATE<= W_2;
65
when W2 => Q(0)<= Data AQ;
if (C=-1)
then Q_Empty <= "1";
else
70 Q-Empty <= "0";
end if;
if (C=D-1)
then Q_Full <= "1";
else
75 Q_Full <= "'0";
end if;
QC_Ackn_ A <= "1"7;

if (A_Ready QC='0")
80 then next STATE<= S_0;
else
next STATE<= W_2;
end if;

85 when R_.1 => —— needed for conversion into "FSM plus
next STATE<= R_2;

when R_2 => Buffer QB <= Q(C);
90 C<=C-1;

next STATE<= R_3;

when R.3 => QC_Ready B <= "17;
95 if (C=-1)
then Q_Empty <= "1";
else
Q-Empty <= "0";
end if;
100 if (C=D-1)
then Q_Full <= "1";
else
Q_Full <= "'0";
end if;
105
if (BRd_Req-QC="0")
then next STATE<= S_0;
else
next STATE<= R_3;
110 end if;

when SEND=> —— nothing (Procedure quits )
—— (will never happen though )

115 end case;
end if;
end if;
end process;

120 Buffer_.QB_Port <= Buffer_ QB;

end FSMD_Queue_dHS _clock_ex_behavioral ;
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C.3.8 FSMD B

VHDL/doubleHS_queued_SMs/FSMD_dHS_q_clock/FSMD_dHS_q_clock_ex_B.vhd

—— File : FSMD_dHS_q_clock_ex_B . vhd
—— implements : FSMD B
—— of Model: FSMD (using clock )

—— for Ezample: FSMD (A) ——> FSMD( Queue) ——> FSMD (B)
- — using double handshake protocol

library IEEE;

use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;
use IEEE.std_logic_signed . all;

—— FSMD B of ewvample of two FSMD (with clock ) ewchanging data over a queue

Entity FSMD_B_dHS_g_clock_ex is
port ( Reset, Start: in std_logic ;
Clock B : in std_logic ;
QC_Ready B, TB_AcknB: in std_logic ;
B_Rd_Req-QC, B_Ready_TB: out std_logic ;

Buffer QB : in std_logic_vector (31 downto 0);
Buffer . QB_Stop : in std_logic ;

Outl_Port: out std_logic_vector (31 downto 0);
Outl_Stop_Port : out std_logic );

end FSMD_B_dHS_q_clock_ex;

Architecture FSMD_B_dHS _q_clock_ex_behavioral of FSMD_B_dHS _q_clockex is
—— outputs

signal Outl: std_logic_vector (31 downto 0);

signal Outl_Stop: std_logic ;

—— internal signals

type State_Set is (S.BEGIN, S_.1, S_.2, S.3, S4, S5, S.6, SEND);
—— S_BEGIN is represented by ” Procedure not running”.

signal next STATE: State_Set ;

signal C: std_logic_vector (31 downto 0);

signal Stop: std_logic ;

begin —— Architecture

behaviorl: process(Clock B)
begin
if (Clock B’'event and Clock B='1"') then
if (Reset = '1") then
Outl <= (others=>'0");
Outl_Stop <="0";
B_Rd_Req-QC<='0";
B_Ready TB<="0";
next STATE <= S_BEGIN;
else
case next STATE is

when S BEGIN => Outl <= (others=>'0");
Outl_Stop <="0";
B_Rd_Req-QC<="0";
B_Ready TB<="0";

if Start = "1’
then next STATE <= S_1;
else next STATE <= SBEGIN;

end if ;

when S_1 => B_Rd_Req.QC <='1";
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if (QC_ReadyB="1")
then next STATE<= S_2;
else next STATE<= S_1;
end if ;

when S_2 => C <= Buffer_.QB;
Stop <= Buffer_QB_Stop;
B_Rd_Req-QC<="0";

if (QC_ReadyB='0")
then next STATE<= S_.3;
else next STATE<= S_2;
end if ;

when S_.3 =>  Outl <= C(28 downto 0) = "010";
Outl_Stop <= Stop;

next STATE<= S_4;
when S_4 =>
next STATE<= S_5;
when S_5 => B_Ready_ TB<="1";
if (TB_AcknB='1")
then next STATE<=S_6;
else next STATE<=S_5;
end if ;
when S_6 => B_Ready TB<='0";
if (TB_AcknB='0")
then if (Stop='1")

then next STATE<=S_END;
else next STATE<=S_1;

end if ;
else next STATE<=S_6;
end if ;
when SEND=> —— nothing (Procedure quits )
end case;
end if ;
end if;

end process;

—— Entity Outputs
Outl_Port <= Outl;
Outl_Stop_Port <= Outl_Stop;

end FSMD _B_dHS_q_clock_ex_behavioral ;
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C.3.9 A (FSM Controlling Datapath) — Queue (FSM Controlling Datapath)
— B (FSM Controlling Datapath)

VHDL/doubleHS_queued_SMs/FSM_dHS_q_clock/FSM_and_D_dHS_q_clock_ex_top.vhd

—— File : FSM_and_-D_dHS_q_clock_ex_top . vhd

—— bounding the three parts of the example

—— for Ezample: FSM,DP (A) ——> FSM, DP( Queue) ——> FSM, DP (B)
- — using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

entity FSM_and_D_dHS_q_clock_ex_top is
port ( Reset, Start: in std_logic ;
Clock_A, Clock B, Clock_Q: in std_logic ;

TB_Ready-A, TB_AcknB: in std_logic ;
A_Ackn.TB, B_Ready_TB: out std_logic ;

Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;
Outl_Port: out std_logic_vector (31 downto 0);
Outl_Stop_Port : out std_logic );

end FSM_and_D_dHS_q_clock_ex_top;
architecture FSM_and_D_dHS_q_clock_ex_top_arch of FSM_and_D_dHS_q_clock_ex_top

Component FSM_and_D_A_dHS_q_clock_ex
port ( Reset, Start: in std_logic ;
Clock_A : in std_logic ;
TB_Ready-A, QC_Ackn_A: in std_logic ;
A_Ackn.TB, A_ReadyQC: out std_logic ;

Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;

Data_AQ_Port: out std_logic_vector (31 downto 0);
Data_AQ_Stop_Port: out std_logic );

end Component;

Component FSM_and_D_Queue_dHS _clock_ex
generic (QW, QD, SW: integer);
port ( Reset, Start: in std_logic ;
Clock_Q : in std_logic ;
A_Ready QC, B_Rd_ReqQC: in std_logic ;
QC_Ackn_ A, QC_Ready B: out std_logic ;
Q-Empty_Port, Q_Full_Port: out std_logic ;
Data AQ: in std_logic_vector (QW—1 downto 0);
Buffer_QB_Port: out std_logic_vector (Q-W-—1 downto 0));
end Component;

Component FSM_and_D_B_dHS_q_clock_ex
port ( Reset, Start: in std_logic ;
Clock B : in std_logic ;
QC_Ready B, TB_AcknB: in std_logic ;
B_Rd_Req-QC, B_Ready_TB: out std_logic ;

Buffer QB : in std_logic_vector (31 downto 0);
Buffer . QB_Stop : in std_logic ;

Outl_Port: out std_logic_vector (31 downto 0);
Outl_Stop_Port : out std_logic );

end Component;

signal A_Ready QC, B_Rd_Req-QC: std_logic ;

signal QC_Ackn_ A, QC_Ready B: std_logic ;

signal Data AQ: std_logic_vector (31 downto 0);

signal Data_AQ_Stop: std_logic ;

signal Data_AQ_w_Stop: std_logic_vector (32 downto 0);
signal Buffer QB: std_logic_vector (31 downto 0);
signal Buffer_.QB_Stop: std_logic ;
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signal Buffer_QB_w_Stop: std_logic_vector (32 downto 0);
65 begin

FSM_and_D_A_dHS_q_clock_I: FSM_and_D_A_dHS_q_-clock_ex
port map ( Reset=>Reset, Start=>Start, Clock_A=>Clock_A,
TB_Ready _ A=>TB_Ready_ A, QC_Ackn_A=>QC_Ackn_A,
70 A_Ackn TB=>A_Ackn_TB, A_Ready QC=>A_Ready_QC,
In1=>In1, In2=>In2,
In_Stop=>In_Stop,
Data_AQ_Port=>Data AQ,
Data_AQ_Stop_Port=>Data_AQ_Stop );
75
FSM_and_D_Queue_dHS _clock_I: FSM_and_D_Queue_dHS _clock_ex
generic map (QW=>33, QD=>4, S.W=>2)
port map ( Reset=>Reset, Start=>Start, Clock-Q=>Clock_Q,
A _Ready QC=>A_Ready_QC, B_Rd_Req-QC=>B_Rd_Req-QC,
80 QC_Ackn_A=>QC_Ackn_A, QC_Ready B=>QC_Ready B,
Q_Empty_Port=>open, Q_Full_Port=>open,
Data_ AQ=>Data_AQ_w_Stop,
Buffer_ QB_Port=>Buffer_.QB_w_Stop );

85 Data_AQ_w_Stop <= Data_AQ_Stop & Data_AQ;
Buffer QB <= Buffer_.QB_w_Stop (31 downto 0);
Buffer_QB_Stop <= Buffer_QB_w_Stop(32);

FSM_and_D_B_dHS_q_clock_I: FSM_and_D_B_dHS_q_clock_ex

90 port map ( Reset=>Reset, Start=>Start, Clock.B=>Clock B,
QC_Ready B=>QC_Ready B, TB_Ackn_B=>TB_Ackn B,
B_Rd_Req-QC=>B_Rd_Req_-QC, B_Ready_-TB=>B_Ready_TB,
Buffer QB=>Buffer_.QB,
Buffer . QB_Stop=>Buffer_ QB_Stop,

95 Outl_Port=>Outl_Port,
Outl_Stop_Port=>Outl_Stop_Port );

end FSM_and_D_dHS_q_clock_ex_top_arch;
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C.3.10 FSM Controlling Datapath A

VHDL/doubleHS_queued_SMs/FSM_dHS_q_clock/FSM_and_D_dHS_q_clock_ex_A.vhd

—— File : FSM_and_D_dHS_q_clock_ex_A .vhd

—— implements : bounding of FSM A and Datapath A

—— of Model: FSM and separate Datapath

—— for Ezample: FSM,DP (A) ——> FSM, DP( Queue) ——> FSM, DP (B)
5 —— using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

10
Entity FSM_and_D_A_dHS_g_clock_ex is
port ( Reset, Start: in std_logic ;

Clock_A : in std_logic ;
TB_Ready-A, QC_Ackn_A: in std_logic ;

15 A_Ackn.TB, A_ReadyQC: out std_logic ;
Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;
Data_AQ_Port: out std_logic_vector (31 downto 0);
Data_AQ_Stop_Port: out std_logic );

20 end FSM_and_D_A_dHS_q_clock_ex;

Architecture FSM_and_D_A _dHS_q_clock_ex_structural of FSM_and_D_A_dHS_g_clock_ex is
—— outputs

signal Data AQ: std_logic_vector (31 downto 0);

signal Data_AQ_Stop: std_logic ;

2

o

signal DP_Reset: std_logic ;
signal 1d_A, 1d_.B, Id_Stop: std_logic ;

30 signal StopMsg: std_logic ;
signal ALUM: std_logic_vector (1 downto 0);
signal 1d_O: std_logic ;
signal CMP: std_logic_vector (1 downto 0);
signal MUX_sel: std_logic ;

35
Component DP
port ( Clock: in std_logic ;

DP _Reset : in std_logic ;
Id_.A, Id_B, 1d_Stop: in std_logic ;

40 StopMsg: out std_logic ;
ALUM: in std_logic_vector (1 downto 0);
1d_O : in std_logic ;
Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;

45 O_Port : out std_logic_vector (31 downto 0);
Out_Stop: out std_logic );

end Component;

Component FSM_A_dHS_q_clock_ex
50 port ( Reset, Start: in std_logic ;
Clock_A : in std_logic ;
TB_Ready-A, QC_Ackn_A: in std_logic ;
A_Ackn.TB, A_ReadyQC: out std_logic ;

DP _Reset : out std_logic ;
55 Id_A, Id_B, 1d_Stop: out std_logic;
StopMsg: in std_logic ;
ALUM: out std_logic_vector (1 downto 0);
1d_O: out std_logic );
end Component;
60
begin —— Architecture
DP_A_I1: DP

Port Map ( Clock=>Clock_A, DP_Reset=>DP _Reset,
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Id_A=>Id_A, 1d.B=>Id_B, ld_Stop=>ld_Stop,
StopMsg=>StopMsg, ALUNM=>ALUM, 1d_.O=>Id_O,
In1=>In1, In2=>In2,

In_Stop=>In_Stop,

O_Port=>Data AQ, Out_Stop=>Data_AQ_Stop);

70 FSM_A_dHS_q_clock.I: FSM_A_dHS_q_clock_ex

75

Port Map ( Reset=>Reset, Start=>Start,

Clock _A=>Clock_A ,

TB_Ready _ A=>TB_Ready_ A, QC_Ackn_A=>QC_Ackn_A,
A_Ackn TB=>A_Ackn_TB, A_Ready QC=>A_Ready_QC,
DP_Reset=>DP _Reset,

Id_ A=>Id_ A, 1d_.B=>Id_.B, ld_Stop=>ld_Stop,
StopMsg=>StopMsg, ALUM=>ALUM, 1d_0=>1d_0O );

—— Entity Outputs

80 Data_AQ_Port <= Data_AQ;

Data_AQ_Stop_Port <= Data_AQ_Stop;

end FSM_and_D_A_dHS_q_clock_ex_structural;
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C.3.11 FSM of A

VHDL/doubleHS_queued_SMs/FSM_dHS_q_clock/FSM_dHS_q_clock_ex_A.vhd

—— File : FSM_dHS_q_clock_ex_A .vhd
—— implements : FSM A
—— of Model: FSM and separate Datapath

—— for Ezample: FSM,DP (A) ——> FSM, DP( Queue) ——> FSM, DP (B)

- using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

Entity FSM_A_dHS_q_clock_ex is
port ( Reset, Start: in std_logic ;
Clock_A : in std_logic ;
TB_Ready-A, QC_Ackn_A: in std_logic ;
A_Ackn.TB, A_ReadyQC: out std_logic ;

DP _Reset : out std_logic ;

Id_A, Id_B, 1d_Stop: out std_logic;
StopMsg: in std_logic ;

ALUM: out std_logic_vector
1d_O: out std_logic );

end FSM_A_dHS_q_clock_ex;

Architecture FSM_A_dHS_q_clock_ex_behavioral of FSM_A_dHS_q_clock_ex

type State_Set is (S.BEGIN, S_.1, S_.2, S.3, S_4,
signal next STATE, STATE: State_Set ;

begin —— Architecture

transition : Process

begin
wait until ( Clock_A’event and Clock_ A = "17);
STATE <= next STATE;

end process;

S5,

(1 downto 0);

S_6, SEND);

behaviorl: process (STATE, Start, TB_Ready A, QC_Ackn_A, StopMsg)

begin
if (Reset = '1") then
DP_Reset <= '1";
A_AcknTB <= "0";
A_Ready QC<="0";
I1d_A <="0";
1d_B <="0";
Id_Stop <='0";
ALU_M <: 77__77;
1d_O <="0";
next STATE <= S_BEGIN;
else

case STATE is

when S BEGIN => DP_Reset <= '1";
A_Ackn.TB <= '0";
A_Ready QC<="0";

I1d_A <="'0";

1d_B <="'0";

Id_Stop <='0";

ALU_M <: 77__77;

1d_O <="'0";

if Start = "1’
then next STATE <= S_1;
else next STATE <= SBEGIN;
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when S_1 =>

when S_2 =>

when S_3 =>

when S_4 =>

when S_5 =>

end if ;

DP_Reset <= '0";
A_Ackn.TB <= '0";
A_Ready QC<="0";

I1d_A <="'0";
1d_B <="'0";
Id_Stop <='0";
ALUM <= ==
1d_O <="'0";

if (TB_Ready_ A='1")
then next STATE<= S_2;
else next STATE<= S_1;
end if ;

DP_Reset <= '0";
A_AcknTB <= "1";
A_Ready QC<="0";

I1d_A <="1";
1d_B <="1";
Id_Stop <=T1";
ALUM <= "117";
1d_O <="'0";

if (TB_Ready_-A='0")
then next STATE<= S_.3;
else next STATE<= S_2;
end if ;

DP_Reset <= '0";
A_Ackn.TB <= '0";
A_Ready QC<="0";

I1d_A <="'0";
1d_B <="'0";
Id_Stop <='0";
ALUM <= "117";
1d_O <="1";

next STATE<= S_4;

DP_Reset <= '0";
A_Ackn.TB <= '0";
A_Ready QC<="0";

I1d_A <="'0";
1d_B <="'0";
Id_Stop <='0";
ALUM <= ==
1d_O <="'0";

next STATE<= S_5;

DP_Reset <= '0";
A_Ackn.TB <= '0";
A _Ready QC<="1";

I1d_A <="'0";
1d_B <="'0";
Id_Stop <='0";
ALUM <= ==
1d_O <="'0";

if (QC_Ackn_A="1")
then next STATE<=S_6;
else next STATE<=S_5;
end if ;
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when S_6 =>

when S_END=>

end case;
end if ;

end process;

DP_Reset <= '0";
A_Ackn.TB <= '0";
A_Ready QC<="0";
I1d_A <="'0";
1d_B <="'0";
Id_Stop <='0";
ALU_M <: 77__77;
1d_O <="'0";

if (QC_Ackn_A="0")
then if (StopMsg='1")
then next STATE<=S_END;
else next STATE<=S_1;
end if ;
else next STATE<=S_6;
end if ;

—— nothing (Procedure quits)

end FSM_A_dHS_q_-clock_ex_behavioral;
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C.3.12 Datapath of A (identical B)

VHDL/doubleHS_queued_SMs/Datapath/DP.vhd

library IEEE;

use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

—— File : DP. vhd

—— implements : Datapath (instanced twice: for A and for B)
—— for Ezample: FSMD (A) ——> Memory ——> FSMD (B)
__ <—=> FSM <——>
- — using double handshake protocol

Entity DP is
port ( Clock:
DP _Reset :

in
in

std_logic ;
std_logic ;

Id_.A, Id_B, 1d_Stop: in std_logic ;
out std_logic ;

StopMsg:
ALUM:
1d_O :
In1, In2:
In_Stop:
O_Port :
Out_Stop:
end DP ;

in
in
in
in

std_logic_vector
std_logic ;

(1 downto 0);

std_logic_vector (31 downto 0);

std_logic ;

out std_logic_vector (31 downto 0);
out std_logic );

Architecture DP_schematic of DP is

signal A, B, O: std_logic_vector (31 downto 0);
signal ALU_Out: std_logic_vector (31 downto 0);

in std_logic ;
in std_logic ;
in std_logic ;

in std_logic_vector

(31 downto 0);

std_logic_vector (31 downto 0) );

std_logic ;
std_logic ;
std_logic ;
std_logic ;
std_logic );

std_logic_vector
std_logic_vector
std_logic_vector

out std_logic_vector

—— connection signals
signal Stop: std_logic ;
component Reg_32bit
Port ( Clock:
Reset :
Load :
Data_In :
Data_Out: out
end component;
component Latch_impl
Port ( Clock: in
Reset : in
Load: in
Data_In : in
Data_Out: out
end component;
component ALU_32
Port ( Mode: in
Data_In1 : in
Data_In2 : in
Data_Out :
end component;
begin

Register_A : Reg_32bit

Port Map ( Clock=>Clock,
Data_In=>In1l,

Register_B : Reg_32bit

Port Map ( Clock=>Clock,
Data_In=>In2,

Reset=>DP _Reset,
Data_Out=>A);

Reset=>DP _Reset,
Data_Out=>B);

(1 downto 0

(31 downto

(31 downto
(31 downto

Load=>Id_A ,

Load=>Id_B,
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Latch_Stop: Latch_impl
65 Port Map ( Clock=>Clock, Reset=>DP_Reset, Load=>ld_Stop,
Data_In=>In_Stop, Data_Out=>Stop);

ALU: ALU_32
Port Map ( Mode=>ALUM, Data_Inl1=>A, Data_In2=>B,
70 Data_Out=>ALU_Out);

Register_.O : Reg_32bit
Port Map ( Clock=>Clock, Reset=>DP_Reset, Load=>1d_O,
Data_In=>ALU_Out, Data_Out=>0);
75
O_Port <= O;
Out_Stop <= Stop;
StopMsg <= Stop;

80 end DP_schematic;
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C.3.13 FSM Controlling Datapath Queue
VHDL/doubleHS_queued_SMs/FSM_dHS_q_clock/FSM_and_D_dHS_q_clock_ex_Queue.vhd

—— File : FSM_and_D_dHS_q_clock_ex_Queue . vhd

—— implements : bounding of FSM and Datapath of Queue

—— of Model: FSM and separate Datapath

—— for Ezample: FSM,DP (A) ——> FSM, DP( Queue) ——> FSM, DP (B)
5 —— using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;
10
Entity FSM_and_D_Queue_dHS _clock ex is
—— pragma template
generic (QW, QD, SW: integer);
port ( Reset, Start: in std_logic ;
15 Clock_Q : in std_logic ;
A_Ready QC, B_Rd_ReqQC: in std_logic ;
QC_Ackn_ A, QC_Ready B: out std_logic ;
Q-Empty_Port, Q_Full_Port: out std_logic ;
Data AQ: in std_logic_vector (Q-W—1 downto 0);
20 Buffer_.QB_Port : out std_logic_vector (QW-1 downto 0));
end FSM_and_D_Queue_dHS clock_ex;

Architecture FSM_and_D_Queue_dHS _clock_ex_behavioral of FSM_and_D_Queue_dHS clock_ex is
25
Component Queue_Buffered
generic ( QW, QD, SW: integer);
port ( Clock: in std_logic ;
Q_Reset: in std_logic ;
30 QEn, QWr: in std_logic ;
Buffer_.ld : in std_logic ;
Q.In: in std_logic_vector (Q.W—1 downto 0);
Buffer_Out: out std_logic_vector (Q-W-1 downto 0);
Q_Full, Q_Empty: out std_logic );
35 end Component;

Component Queue_Buffered_Control
port ( Clock_Q: in std_logic ;
Q_Reset: in std_logic ;
40 Q_Start: in std_logic ;
Q-Wr, Q_En, Buffer_.ld: out std_logic;
Q_Full, Q_.Empty: in std_logic ;
A_Ready QC, B_Rd_ReqQC: in std_logic ;
QC_Ackn_A, QC_ReadyB: out std_logic );
45 end Component;

—— queue outputs
signal Buffer QB: std_logic_vector (QW—1 downto 0);
signal Buffer_ld: std_logic ;
50 signal Q_Start: std_logic ;
signal Q_En, Q_Wr: std_logic ;
signal Q_Full, Q_Empty: std_logic ;

begin
55
Queue_Buffered_.I: Queue_Buffered
generic Map (QW=>QW, QD=>QD, S.W=>S_W)
Port Map ( Clock=>Clock_Q,
Q-Reset=>Reset ,
60 Q-En=>Q_En, Q-Wr=>Q_Wr,
Buffer_ld=>Buffer_ld ,
Q_In=>Data_AQ,
Buffer_-Out=>Buffer_ QB ,

119



Q_Full=>Q_Full, Q_Empty=>Q_Empty );

65

Queue_Buffered_Control_.I: Queue_Buffered_Control
Port Map ( Clock_-Q=>Clock_Q,

Q-Reset=>Reset ,
Q-Start=>Start ,

70 QWr=>Q Wr, QEn=>Q_En, Buffer_ld=>Buffer_ld,
Q-Full=>Q_Full , Q_Empty=>Q_Empty,
A _Ready QC=>A_Ready_QC, B_Rd_Req-QC=>B_Rd_Req-QC,
QC_Ackn_A=>QC_Ackn_A, QC_Ready B=>QC_ReadyB);

75 Buffer_QB_Port <= Buffer_.QB ;
Q_Full_Port <= Q_Full;
Q_Empty Port <= Q_Empty;

end FSM_and_D_Queue_dHS _clock_ex_behavioral ;
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C.3.14 FSM of Queue

VHDL/doubleHS_queued_SMs/FSM_dHS_q_clock/FSM_dHS_q_clock_ex_Queue.vhd

—— File : FSM_dHS_q_clock_ex_Queue . vhd
—— implements : FSM of Queue

—— of Model:

library IEEE;

FSM and separate
—— for Ezample: FSM,DP (A) ——> FSM, DP( Queue) ——> FSM, DP (B)

- using double

use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

Entity Queue_Buffered_Control is

Port ( Clock_Q:
Q-Reset:
Q_Start :

in std_logic ;
in std_logic ;
in std_logic ;

Q-Wr, Q.En, Buffer_ld :
Q_Full, Q_.Empty: in std_logic ;
A _Ready QC, B_Rd_ReqQC: in
QC_Ackn_A, QC_ReadyB: out std_logic );
end Queue_Buffered_Control;

Architecture Queue_Buffered_Control_beh of Queue_Buffered_Control

type State_Set is (S.0, W1, W2, R.1, R2, R.3, SEND);

Datapath

out

handshake protocol

std_logic ;

std_logic ;

signal next STATE, STATE: State_Set ;
begin
transition : Process
begin
wait until (Clock_-Q’event and Clock_.Q = "17);

STATE <= next STATE;

end process;

Queue: Process(STATE, Q_Start,

begin
if (Q_Reset = '1’) then
Q-En <= '0";
QWr <="0";

QC_Ackn_ A <= "0";
QC_Ready B <= '0";

Buffer_ld <=

707;

next STATE<= S_0;

else
case STATE is
when S_0 =>

when W_1 =>

Q-En <="0";
Q-Wr <= "-7;

QC_Ackn_ A <= "0";
QC_Ready B <= '0";

Buffer_Id <=

if (Q_Empty="0" and B_Rd_Req.QC='1")

707;

then next STATE<= R_1;

elsif (Q_Full="0" and A_Ready QC='1")

then next STATE<= W_1;

end if;
Q-En <= "1";
QWr <= "1";

QC_Ackn_ A <= "0";
QC_Ready B <= '0";

Buffer_Id <=

707;

)

Q_Full, Q_Empty, A_Ready QC, B_Rd_Req-QC)
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next STATE<= W_2;

65
when W2 => QEn <="0";
QWr <= "7
QC_Ackn_ A <= "1";
QC_Ready B <= '0";
70 Buffer_Id <= '07;
if (A_Ready QC='0")
then next STATE<= S_0;
else
75 next STATE<= W_2;
end if;
when R_.1 => Q.En <= "1";
QWr <= "'0";
80 QC_Ackn_ A <= "0";
QC_Ready B <= '0";
Buffer_Id <= ’'17;
next STATE<= R_2;
85
when R_2 => Q.En <= '0";
QWr <= "'0";
QC_Ackn_ A <= "0";
QC_Ready B <= '0";
90 Buffer_Id <= '07;

next STATE<= R_3;

when R3 => Q.En <= '0";

95 QWr <= "7
QC_Ackn_ A <= "0";
QC_Ready B <= "1";
Buffer_Id <= '07;

100 if (BRd_Req-QC="0")
then next STATE<= S_0;
else
next STATE<= R_3;
end if;
105

when S_END=>
end case;
end if;

110 end process;

end Queue_Buffered_Control_beh ;
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C.3.15 Datapath of Queue (Buffered)

VHDL/doubleHS_queued_SMs/Datapath_Queue/DP_all.vhd

—— File : DP_all . vhd

—— implements : Datapath of Buffered Queue

—— for Ezample: FSM,DP (A) ——> FSM,DP ( Queue) ——> FSM, DP (B)
- — using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

10 Entity Queue_Buffered is
generic ( QW, QD, SW: integer);
port ( Clock: in std_logic ;
Q_Reset: in std_logic ;
QEn, QWr: in std_logic ;
15 Buffer_.ld : in std_logic ;
Q.In: in std_logic_vector (Q.W—1 downto 0);
Buffer_Out: out std_logic_vector (Q-W-1 downto 0);
Q_Full, Q_Empty: out std_logic );
end Queue_Buffered ;
20
Architecture Queue_Buffered_Arch of Queue_Buffered is
signal Q_Out: std_logic_vector (QW-1 downto 0);
signal Buffer_In: std_logic_vector (QW—1 downto 0);
signal Q_N_Reset: std_logic ;
25
Component Queue
generic ( QW, QD, SW: integer);
port ( Clock: in std_logic ;
Q_Reset: in std_logic ;
30 QEn, QWr: in std_logic ;
Q.In: in std_logic_vector (Q.W—1 downto 0);
Q-Out: out std_logic_vector (Q-W—1 downto 0);
Q_Full, Q_Empty: out std_logic );
end Component;
35
Component D_FF
port ( Clk: in std_logic ;
Rst, En: in std_logic ;
D: in std_logic ;
40 Q, QT: out std_logic );
end Component;

begin

45 Queue_l: Queue
generic map(QW=>QW, QD=>QD, S.W=>S_W)
port map ( Clock=>Clock,
Q-Reset=>Q _Reset,
Q-En=>Q_En, Q-Wr=>Q_Wr,
50 Q-In=>Q_In,
Q_-Out=>Q_Out,
Q_Full=>Q_Full, Q_Empty=>Q_Empty);

D_FFs: for i in QW-1 downto 0 generate
55 FF: DFF
port map ( Clk=>Clock,
Rst=>Q_N_Reset , En=>Buffer_ld ,
D=>Buffer_In (i),
Q=>Buffer_-Out (1), QT=>open);
60 end generate;

Buffer_.In <= Q_Out;
Q-N_Reset <= not Q_Reset;
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65 end Queue_Buffered_Arch ;
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C.3.16 Datapath of Unbuffered Queue

VHDL/doubleHS_queued_SMs/Datapath_Queue/DP_Queue.vhd

—— File : DP_all . vhd

—— implements: Datapath of Queue (which will be wrapped by buffers)
—— for Ezample: FSM,DP (A) ——> FSM,DP ( Queue) ——> FSM, DP (B)

- — using double handshake protocol

library IEEE;

use IEEE. std_logic_1164 .all;

use IEEE.std_logic_arith . all;

use IEEE. Std_Logic_unsigned .ALL;
10

—— Queue

Entity Queue is
generic ( QW, QD, SW: integer);
15 port ( Clock: in std_logic ;
Q_Reset: in std_logic ;
QEn, QWr: in std_logic ;
Q.In: in std_logic_vector (Q.W—1 downto 0);
Q-Out: out std_logic_vector (Q-W—1 downto 0);
20 Q_Full, Q_Empty: out std_logic );
end Queue; —— pragma template

Architecture Queue_arch of Queue is

2

o

type fifo_sh_transp is ARRAY(QW-1 downto 0) of std_logic_vector (Q-D—1 downto 0);
signal Q_Sh, Q_Sel: fifo_sh_transp ;

type fifo_sh is ARRAY(Q.D-1 downto 0) of std_logic_vector (QW—1 downto 0);

signal Q: fifo_sh ;

30 signal Sh_S: std_logic ;
signal Sel_S: std_logic_vector (SZW—-1 downto 0);
signal CounO: std_logic_vector (S.W downto 0);
signal CounD: std_logic ;
signal Q_N_Reset: std_logic ;

35 signal HL: std_logic ;
signal LL: std_logic ;

Component Shifter_Dx1
generic ( D: integer);

40 port ( Reset: in std_logic ;
Clk: in std_logic ;
S.1, S0: in std_logic ;
I.LL, T.R: in std_logic ;
Q: out std_logic_vector (D-1 downto 0));

45 end Component;

Component Sel W
generic (W, S.W: integer);
—— W: Number of 1 Bit inputs joined in a std_logic_vector ;
50 —— S_W: Number of Select bits ( must be >=1b (W) );
port ( I: in std_logic_vector (W-1 downto 0);
S: in std_logic_vector (SZW-1 downto 0);
O: out std_logic );
end Component;
55
Component Counter_ W
generic (W: integer);
port ( Reset, Set: in std_logic ;
Clk: in std_logic ;
60 D: in std_logic ;
E: in std_logic ;
C: out std_logic_vector (W-1 downto 0));
end Component;
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65 begin

Shifters : for 1 in QW-1 downto 0 generate
Sh: Shifter_Dx1
generic map (D=>QD)

70 port map ( Reset=>Q_N_Reset,
Clk=>Clock,
S_1=>Sh_S, S_0=>Sh_S,
I.L=>Q.In(i), I_.R=>LL,
Q@=>Q_Sh(i)(Q-D-1 downto 0));

75 Twist : for j in Q.D—1 downto O generate
Q(i) (i) <= QSh(i)(QD-1 —j);

end generate;
end generate;

80
Selectors: for i in QW-1 downto O generate
Transp: for j in Q.D—-1 downto O generate
Q-Sel(i)(i) <= Q(i)(i):
end generate;
85 Sel: Sel W
generic map (VW=>QD, S_-W=>S_W)
port map ( I=>Q_Sel(1)(Q-D-1 downto 0),
S=>Sel_S, O=>QOut(1i));

end generate;

90
Counter: Counter.W
generic map (VW=>S_WH1)
port map ( Reset=>HL, Set=>Q_N_Reset,
Clk=>Clock,
95 D=>CounD, E=>Q_En, (=>CounO);

Sh_S <= (Q-Wr and Q.En);
Sel_.S <= Coun_O(S_W—1 downto 0);
100 CounD <= ((not Q-Wr) and Q_En);

HL <= '17;
LL <= '0";
105 Q_N_Reset <= not Q_Reset;
Q-Empty <= "1’ when ( Coun O = conv_std_logic_vector(—1, Coun.O’length))
else '07;
Q_Full <="'1" when (CounO = conv_std_logic_vector (Q.D-1, CounO’length))
110 else '07;

end Queue_arch;
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C.3.17 FSM Controlling Datapath B

VHDL/doubleHS_queued_SMs/FSM_dHS_q_clock/FSM_and_D_dHS_q_clock_ex_B.vhd

—— File : FSM_and_D_dHS_q_clock_ex_B.vhd
—— implements : bounding of FSM B and Datapath
—— of Model: FSM and separate Datapath

B

—— for Ezample: FSM,DP (A) ——> FSM, DP( Queue) ——> FSM, DP (B)

- using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

Entity FSM_and_D_B_dHS_g_clock_ex is
port ( Reset, Start: in std_logic ;
Clock B : in std_logic ;
QC_Ready B, TB_AcknB: in std_logic ;

B_Rd_Req-QC, B_Ready_TB: out std_logic ;

Buffer QB : in std_logic_vector
Buffer . QB_Stop : in std_logic ;
Outl_Port: out std_logic_vector
Outl_Stop_Port : out std_logic );

end FSM_and_D_B_dHS_q_clock_ex;

Architecture FSM_and_D_B_dHS_q_-clock_ex_behavioral of FSM_and_D_B_dHS_q_clock_ex

—— outputs
signal Outl: std_logic_vector (31 downto 0);
signal Outl_Stop: std_logic ;

signal DP_Reset: std_logic ;

signal 1d_A, 1d_.B, Id_Stop: std_logic ;
signal StopMsg: std_logic ;

signal ALUM: std_logic_vector (1 downto 0);
signal 1d_O: std_logic ;

signal CMP: std_logic_vector (1 downto 0);
signal MUX_sel: std_logic ;

Component DP

)

(31 downto 0);

(31 downto 0);

port ( Clock: in std_logic ;
DP _Reset : in std_logic ;
Id_.A, Id_B, 1d_Stop: in std_logic ;
StopMsg: out std_logic ;
ALUM: in std_logic_vector (1 downto 0);
1d_O : in std_logic ;
Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;
O_Port : out std_logic_vector (31 downto 0);
Out_Stop: out std_logic );

end Component;

Component FSM_B_dHS_q_clock_ex
port ( Reset, Start: in std_logic ;
Clock B : in std_logic ;
QC_Ready B, TB_AcknB: in std_logic ;

B_Rd_Req-QC, B_Ready_TB: out std_logic ;

DP _Reset : out std_logic ;
Id_A, Id_B, 1d_Stop: out std_logic;
StopMsg: in std_logic ;
ALUM: out std_logic_vector
1d_O: out std_logic );

end Component;

begin —— Architecture

DP.B.: DP

)

Port Map ( Clock=>Clock_B, DP_Reset=>DP _Reset,
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65

Id_A=>Id_A, 1d.B=>Id_B, ld_Stop=>ld_Stop,
StopMsg=>StopMsg, ALUNM=>ALUM, 1d_.O=>Id_O,
In1=>Buffer QB , In2=>Buffer QB,
In_Stop=>Buffer_.QB_Stop,

O_Port=>0Outl, Out_Stop=>Outl_Stop);

70 FSM_B_dHS_q_clock.I: FSM_B_dHS_q_clock_ex

75

Port Map ( Reset=>Reset, Start=>Start,

Clock _B=>Clock B,

QC_Ready B=>QC_Ready B, TB_Ackn_B=>TB_Ackn B,
B_Rd_Req-QC=>B_Rd_Req_-QC, B_Ready_-TB=>B_Ready_TB,
DP_Reset=>DP _Reset,

Id_ A=>Id_ A, 1d_.B=>Id_.B, ld_Stop=>ld_Stop,
StopMsg=>StopMsg, ALUM=>ALUM, 1d_0=>1d_0O );

—— Entity Outputs

80 Outl_Port <= Outl;

Outl_Stop_Port <= Outl_Stop;

end FSM_and_D_B_dHS_q_clock_ex_behavioral;
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C.3.18 FSM of B

VHDL/doubleHS_queued_SMs/FSM_dHS_q_clock/FSM_dHS_q_clock_ex_B.vhd

—— File : FSM_dHS_q_clock_ex_B .vhd
—— implements : FSM B
—— of Model: FSM and separate Datapath

—— for Ezample: FSM,DP (A) ——> FSM, DP( Queue) ——> FSM, DP (B)

- using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

Entity FSM_B_dHS_g_clock_ex is
port ( Reset, Start: in std_logic ;
Clock B : in std_logic ;
QC_Ready B, TB_AcknB: in std_logic ;

B_Rd_Req-QC, B_Ready_TB: out std_logic ;

DP _Reset : out std_logic ;
Id_A, Id_B, 1d_Stop: out std_logic;
StopMsg: in std_logic ;
ALUM: out std_logic_ve
1d_O: out std_logic );

end FSM_B_dHS_q_clock_ex;

Architecture FSM_B_dHS_q_clock_ex_behavioral of FSM_B_dHS_q_clock_ex

type State_Set is (S.BEGIN, S_.1, S_.2, S.3, S_4,
signal next STATE, STATE: State_Set ;

begin —— Architecture

transition : Process

begin
wait until (ClockB’event and Clock B = "17);
STATE <= next STATE;

end process;

)

ctor

S5,

(1 downto 0);

S_6, SEND);

behaviorl: process (STATE, Start, QC_Ready B, TB_Ackn_B, StopMsg)

begin

if (Reset = '1") then
DP _Reset <="1";
B_Rd_Req QC<= "0";
B_Ready . TB <= '0";
I1d_A <="0";
1d_B <="0";
Id_Stop <='0";
ALU_M <: 77__77;
1d_O <="0";

next STATE <= S_BEGIN;
else

case next STATE is

when S_BEGIN => DP_Reset <="1";
B_Rd_Req_-QC<= "0";
B_Ready . TB <= '0";

I1d_A <="0";

1d_B <="0";

Id_Stop <='0";

ALU_M <: 77__77;

1d_O <="0";

if Start = "1’
then next STATE <= S_1;
else next STATE <= SBEGIN;
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when S_1 =>

when S_2 =>

when S_3 =>

when S_4 =>

when S_5 =>

end if ;

DP _Reset <='0";
B_Rd_ReqQC<= "1";
B_Ready. TB <= '0";

I1d_A <="1";
1d_B <="1";
Id_Stop <=T1";
ALUM <= ==
1d_O <="'0";

if (QC_ReadyB="1")
then next STATE<= S_2;
else next STATE<= S_1;
end if ;

DP _Reset <="'0";
B_Rd_ReqQC<= "0";
B_Ready . TB <= '0";

Id_A <="0";
1d_B <="0";
Id_Stop <="'0";
ALUM <= "10";
1d_O <="0";

if (QC_ReadyB='0")
then next STATE<= S_.3;
else next STATE<= S_2;
end if ;

DP _Reset <="'0";
B_Rd_ReqQC<= "0";
B_Ready . TB <= '0";

Id_A <="0";
1d_B <="0";
Id_Stop <="'0";
ALUM <= "10";
1d_O <="1";

next STATE <= S_4;

DP _Reset <="'0";
B_Rd_ReqQC<= "0";
B_Ready . TB <= '0";

Id_A <="0";
1d_B <="0";
Id_Stop <="'0";
ALUM <= "=
1d_O <="0";

next STATE <= S_5;

DP _Reset <="'0";
B_Rd_ReqQC<= "0";
B_Ready . TB <= "1";

Id_A <="0";
1d_B ='0";
Id_Stop ='0";
ALUM <= "=
1d_O <="0";

if (TB_AcknB='1")
then next STATE<=S_6;
else next STATE<=S_5;
end if ;
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when S_6 => DP _Reset <="'0";
B_Rd_ReqQC<= "0";
B_Ready . TB <= '0";

Id_A <="0";
1d_B <="0";
Id_Stop <="'0";
ALUM <= "=
1d_O <="0";

if (TB_AcknB='0")
then if (StopMsg='1")
then next STATE<=S_END;
else next STATE<=S_1;
end if ;
else next STATE<=S_6;
end if ;

when SEND=> —— nothing (Procedure quits )

end case;
end if ;

end process;

end FSM_B_dHS_q_clock_ex_behavioral;
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C.3.19 Datapath of B identical to A (see A)

The datapath for the receiver B is identical to the datapath of the sender A. — See datapath for sender A.
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C.4 Transfer via Memory with Double Handshake

e A (FSM Controlling Datapath) — Memory || Arbiter (FSM)
— B (FSM Controlling Datapath)
— FSM Controlling Datapath A

* FSM of A
* Datapath of A (identical B)

— Memory
— Arbiter (FSM)
FSM Controlling Datapath B

* FSM of B
* Datapath of B identical to A (see A)
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C.4.1 A (FSM Controlling Datapath) — Memory || Arbiter (FSM)
— B (FSM Controlling Datapath)

VHDL/doubleHS_mem_SMs/FSM_dHS _mem_clock/FSM_and_D_dHS_mem_clock_ex_top.vhd

—— File : FSM_and_D_dHS_mem_clock_ex_top.vhd
—— bounding the three parts of the example

—— for Ezample: FSM,DP (A) ——> Memory ——> FSM,DP (B)
- = <—=> FSM <——>

- — using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

entity FSM_and_D_dHS_mem clock_ex_top is
port ( Reset, A_Start, B_Start: in std_logic ;
Clock_A, Clock B, Clock-M: in std_logic ;
TB_Ready-A, TB_AcknB: in std_logic ;
A_Ackn.TB, B_Ready_TB: out std_logic ;
A_Addr_In, B_Addr.In: in std_logic_vector (3 downto 0);

Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;
Outl_Port: out std_logic_vector (31 downto 0);
Outl_Stop_Port : out std_logic );

end FSM_and_D_dHS_mem clock_ex_top;
architecture FSM_and_D_dHS_mem _clock_ex_top_arch of FSM_and_D_dHS_mem _clock_ex_top

Component FSM_and_D_A_dHS_mem_clock_ex
port ( Reset, A_Start: in std_logic ;
Clock_A : in std_logic ;
TB_Ready-A, AC_Grant_-A: in std_logic ;
A_AcknTB, A_ReqAC: out std_logic ;
AnCS, AnWE, AnOE: out std_logic;

AddrIn: in std_logic_vector (3 downto 0);
Addr_Out: out std_logic_vector (3 downto 0);
Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;

Data_.AM_and_Stop Port: out std_logic_vector (32 downto 0) );
end Component;

Component Mem _Grant_Control
Port ( Clock-M: in std_logic ;
AC_Reset: in std_logic ;
AC_Start: in std_logic ;
A_Req AC, B_Req AC: in std_logic ;
AC_Grant_A, AC_Grant_B: out std_logic );

end Component;

Component Memory DxW
generic (D, W, AW: integer);
Port (nCS, nWE, nOE: in std_logic ;
Addr: in std_logic_vector (A.W—1 downto 0);
Data: inout std_logic_vector (W-1 downto 0) );
end Component;

Component FSM_and_D_B_dHS_mem_clock_ex
port ( Reset, B_Start: in std_logic ;
Clock B : in std_logic ;
AC_Grant_B, TB_AcknB: in std_logic ;
B_Req-AC, B_Ready_ TB: out std_logic;
BnnCS, BnWE, BnOE: out std_logic;

AddrIn: in std_logic_vector (3 downto 0);
Addr_Out: out std_logic_vector (3 downto 0);
Data-MB_and_Stop_Port: in std_logic_vector (32 downto 0);
Outl_Port: out std_logic_vector (31 downto 0);

134

is



Outl_Stop_Port : out std_logic );
end Component;
65
signal A _Req AC, B_Req AC: std_logic;
signal AC_Grant-A, AC_GrantB: std_logic ;
signal Data_and_Stop: std_logic_vector (32 downto 0);
signal Addr: std_logic_vector (3 downto 0);
70 signal nCS, A_nCS, BnCS, nWE, nOE: std_logic ;

begin

FSM_and_D_A_dHS_mem_clock_.I: FSM_and_-D_A_dHS_mem_clock_ex

75 port map ( Reset=>Reset, A_Start=>A_Start, Clock_A=>Clock_A,
TB_Ready A=>TB_Ready_ A, AC_Grant_ A=>AC_Grant_A ,
A_Ackn TB=>A_Ackn_TB, A_Req AC=>A_ReqAC,
A_nCS=>A_nCS, AnWE=>nWE, A nOE=>nOE,
Addr_In=>A_Addr_In,

80 Addr_Out=>Addr,
In1=>In1, In2=>In2,
In_Stop=>In_Stop,
Data_.AM_and_Stop Port=>Data_and_Stop );

85 Mem_FSM_dHS _clock_I: Mem_Grant_Control
Port map ( Clock_.M=>Clock M,
AC_Reset=>Reset ,
AC_Start=>A _Start ,
A _Req AC=>A_Req-AC, B_Req_ AC=>B_Req_AC,
90 AC_Grant_ A=>AC_Grant_A, AC_Grant_B=>AC_Grant_B);

Memoryd: Memory DxW
generic map(D=>16, W=>33, A W=>4)
Port map (nCS=>nCS, nWE=>nWE, nOE=>nOE,
95 Addr=>Addr,
Data=>Data_and_Stop );

FSM_and_D_B_dHS_mem_clock_.I: FSM_and_D_B_dHS_mem_clock_ex
port map ( Reset=>Reset, B_Start=>B_Start, Clock B=>Clock B,

100 AC_Grant _B=>AC_Grant_B, TB_Ackn_B=>TB_Ackn B,
B_Req AC=>B_Req_AC, B_Ready_TB=>B_Ready_TB,
B_nCS=>BnCS, BmWE=>nWE, BnOE=>nOE,
Addr_In=>B_Addr_In,
Addr_Out=>Addr,

105 Data_MB_and_Stop_Port=>Data_and_Stop,
Outl_Port=>Outl_Port,
Outl_Stop_Port=>Outl_Stop_Port );

nCS <= A_nCS and B.nCS;

110
end FSM_and_D_dHS_mem _clock_ex_top.arch;
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C.4.2 FSM Controlling Datapath A

VHDL/doubleHS_mem_SMs/FSM_dHS_mem_clock/FSM_and_D_dHS_mem_clock_ex_A.vhd
FSM_and_-D_dHS_mem_clock_ex_A . vhd

—— File :

—— implements :
—— of Model:
—— for Ezample

library IEEE;

bounding

FSM and separate

using double

<—==2>

use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

FSM <——>

handshake protocol

Entity FSM_and_D_A_dHS_mem _clock_ex is
port ( Reset, A_Start:

Clock

A
TB_Ready_ A, AC_Grant_A:

in

A_Ackn.TB, A_Req-AC:
A_nCS, AnWE, AnOE:
Addr_In:

Addr_Out:

Inl,

In2:

In_Stop:

Data_.AM_and_Stop Port: out std_logic_vector (32 downto 0) );

in

in

in
std

out
out

in st

end FSM_and_D_A_dHS_mem_clock_ex;

Architecture FSM_and_D_A_dHS_mem_clock_ex_structural

—— outputs

signal Data_ AM:

signal Data_AM_Stop:

signal DP_Reset:
signal 1d_A, 1d_B,
signal StopMsg:

signal ALUM:

signal 1d_.O, A _tri_en :
signal A_ld_Addr,

std_logic ;
Id_Stop :
std_logic ;

std_logic_vector

std_log

A_inc_Addr:

std_logic_vector
std_logic ;

)

(1
ic ;

std._

std_logic ;
_logic

in std_logic ;

std_logic ;
std_logic ;

d_logic ;

of FSM A and Datapath A
Datapath (FSM + D)
: FSM,DP (A) ——> Memory ——> FSM, DP (B)

(31 downto 0);

std_logic ;

downto 0);

logic ;

signal CMP: std_logic_vector (1 downto 0);

signal MUX_sel:

Component DP

port ( Clock:
DP _Reset :

1d_A

1d_B,

StopMsg:
ALUM:

14_0,

tri_en :

Id_Addr, inc
Addr_In:

Addr_Out_Port:

Inl,

In2:

In_Stop:
O_Port :
Out_Stop:

end Component;

std_logic ;

in std_logic ;
in std_logic ;

Id_Stop :

in s

td_logic ;

out std_logic ;

in std_logic_vector
in std_logic ;
_Addr: in

std_logic ;
in std_logic_vector (3 downto 0

of FSM_and_-D_A_dHS_mem_clock_ex

)
out std_logic_vector (3 downto 0)
0)

in std_logic_vector (31 downto
in std_logic ;

out std_logic_vector (31 downto 0);

out std_logic );

Component FSM_A_dHS_mem_clock_ex
port ( Reset, A_Start:

Clock

A
TB_Ready_ A, AC_Grant_A:

A_Ackn.TB, A_Req-AC:
A_nCS, AnWE, AnOE:
DP _Reset :

1d_A

1d_B,

Id_Stop :

in std_logic ;

in

out
out
out
out

std_logic ;

in std_logic ;

std_logic ;
std_logic ;
std_logic ;
std_logic ;
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std_logic_vector (3 downto 0
out std_logic_vector (3 downto
std_logic_vector (31 downto

(1 downto 0);

)

)

E
0)
0)

)

)

is



StopMsg: in std_logic ;

65 ALUM: out std_logic_vector (1 downto 0);
Id_.O, A_tri_en : out std_logic ;
A_1ld_Addr, A_inc_Addr: out std_logic );
end Component;
70 begin —— Architecture
DP_A_I: DP

Port Map ( Clock=>Clock_A, DP_Reset=>DP _Reset,
Id_ A=>Id_ A, 1d_.B=>Id_.B, ld_Stop=>ld_Stop,
StopMsg=>StopMsg, ALUM=>ALUM, 1d_O=>Id_O, tri_en=>A_tri_en,
75 Id_Addr=>A_Id_Addr, inc_Addr=>A_inc_Addr,
Addr_In=>Addr.In, Addr_Out_Port=>Addr_Out,
In1=>In1, In2=>In2,
In_Stop=>In_Stop,
O_Port=>Data_AM, Out_Stop=>Data_AM_Stop);
80
FSM_A_dHS_mem_clock_ I: FSM_A_dHS_mem_clock_ex
Port Map ( Reset=>Reset, A_Start=>A_Start,
Clock _A=>Clock_A ,
TB_Ready A=>TB_Ready_ A, AC_Grant_ A=>AC_Grant_A ,
85 A_Ackn TB=>A_Ackn_TB, A_Req AC=>A_ReqAC,
A nCS=>A_nCS, AnWE=>AnWE, A_nOE=>AnOE,
DP_Reset=>DP _Reset,
Id_ A=>Id_ A, 1d_.B=>Id_.B, ld_Stop=>ld_Stop,
StopMsg=>StopMsg, ALUM=>ALUM, 1d_O=>Id_-O, A_tri_en=>A _tri_en,
90 A_ld_Addr=>A_1d_Addr, A_.inc_Addr=>A_inc_Addr);

—— Entity Outputs
Data_AM_and_Stop_Port <= Data_AM_Stop & Data_AM;

9s end FSM_and_D_A_dHS_mem_clock_ex_structural ;
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C.4.3 FSM of A

VHDL/doubleHS_mem_SHMs/FSM_dHS_mem_clock/FSM_dHS_mem_clock_ex_A.vhd

—— File : FSM_dHS_mem_clock_ex_A . vhd
—— implements : FSM A
—— of Model: FSM and separate Datapath (FSM + D)

—— for Ezample: FSM,DP (A) ——> Memory ——> FSM,DP (B)
__ <—=> FSM <——>
- — using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

Entity FSM_A_dHS_mem _clock_ex is
port ( Reset, A_Start: in std_logic ;
Clock_A : in std_logic ;
TB_Ready-A, AC_Grant_-A: in std_logic ;
A_AcknTB, A_ReqAC: out std_logic ;

A_nCS, AnWE, AnOE: out std_logic ;

DP _Reset : out std_logic ;

Id_A, Id_B, 1d_Stop: out std_logic;

StopMsg: in std_logic ;

ALUM: out std_logic_vector (1 downto 0);
Id_.O, A_tri_en : out std_logic ;

A_ld_Addr, A_inc_Addr: out std_logic );
end FSM_A_dHS_mem_clock_ex;

Architecture FSM_A_dHS_mem_clock_ex_behavioral of FSM_A_dHS_mem _clock_ex is

type State_Set is (S.BEGIN, S_1, S_2, S3, S4, S5, S_6,

signal next STATE, STATE: State_Set ;
begin —— Architecture

transition : Process

begin
wait until ( Clock_A’event and Clock_ A = "17);
STATE <= next STATE;

end process;

s.7,

S8,

behaviorl: process(STATE, A_Start, TB_Ready A, AC_Grant_A, StopMsg)

begin
if (Reset = '1") then
DP_Reset <= '1";
A_AcknTB <= "0";
A _Req AC <="0";

I1d_A <="0";
1d_B <="0";
Id_Stop <='0";
ALUM <= "7
1d_O <="0";

A_ld_Addr <= '07;
A_inc_,Addr<="0";
A_tri_en <='07;
AnCS <= "1";
AnWE <= "'7";
AnOE <= "7";

next STATE <= S_BEGIN;

else
case STATE is

when S_BEGIN => DP_Reset <= '1";

A_Ackn.TB <= '0";
A _Req AC <= "0";
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S.9, SEND);



1d_A <=0";

1d_B <="'0";
Id_Stop <='0";
ALUM <= ==
1d_O <="'0";

A_ld_Addr <= '0";
A_inc_Addr<="0";
A_tri_en <= '0";
AnCS <="1";
AnWE <= "'7"7;
AnOE <="'7";

if A_Start = '1°
then next STATE <= S_1;
else next STATE <= SBEGIN;
end if ;
when S_1 => DP_Reset <= '0";

A_Ackn.TB <= '0";
A _Req AC <= "1";

I1d_A <="'0";
1d_B <="'0";
Id_Stop <='0";
ALUM <= ==
1d_O <="'0";

A_ld_Addr <= "1";
A_inc_Addr<="0";
A_tri_en <= '0";
AnCS <="1";
AnWE <= "'7"7;
AnOE <="'7";

if (AC_Grant.A = "17)
then next STATE <= S_2
else next STATE <= S_1

end if ;

when S_2 => DP_Reset <= '0";
A_Ackn.TB <= '0";
A _Req AC <= "1";

I1d_A <="'0";
1d_B <="'0";
Id_Stop <='0";
ALUM <= ==
1d_O <="'0";

A_ld_Addr <= '0";
A_inc_Addr<="0";
A_tri_en <= '"1";
AnCS <="'0";
AnWE <="1";
AnOE <="17;

if (TB_Ready_ A='1")
then next STATE<= S_.3;
else next STATE<= S_2;
end if ;

when S_3 => DP_Reset <= '0";
A_AcknTB <= "1";
A _Req AC <= "1";

I1d_A <="1";
1d_B <="1";
Id_Stop <=T1";
ALUM <= "117";
1d_O <="'0";

A_ld_Addr <= '0";
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195

when S_4 =>

when S_5 =>

when S_6 =>

when S_7 =>

A_inc_Addr<="0";
A_tri_en <= '"1";
AnCS <="'0";
AnWE <="1";
AnOE <="17;

DP_Reset <= '0";
A_Ackn.TB <= '0";
A _Req AC <= "1";

if (TB_Ready_-A='0")
then next STATE<= S_4;
else next STATE<= S_.3;
end if ;

)

I1d_A <="'0";
1d_B <="'0";
Id_Stop <='0";
ALUM <= "117";
1d_O <="1";

A_ld_Addr <= '0";
A_inc_Addr<="0";
A_tri_en <= '"1";
AnCS <="'0";
AnWE <="1";
AnOE <="17;

next STATE<= S_5;

DP_Reset <= '0";
A_Ackn.TB <= '0";
A _Req AC <= "1";

)

I1d_A <="'0";
1d_B <="'0";
Id_Stop <='0";
ALUM <= ==
1d_O <="'0";

A_ld_Addr <= '0";
A_inc_Addr<="0";
A_tri_en <= '"1";
AnCS <="'0";
AnWE <="'0";
AnOE <="17;

next STATE<= S_6;

DP_Reset <= '0";
A_Ackn.TB <= '0";
A _Req AC <= "1";

)

I1d_A <="'0";
1d_B <="'0";
Id_Stop <='0";
ALUM <= ==
1d_O <="'0";

A_ld_Addr <= '0";
A_inc_Addr<="0";
A_tri_en <= '"1";
AnCS <="'0";
AnWE <="'0";
AnOE <="17;

next STATE<= S_7;

DP_Reset <= '0";
A_Ackn.TB <= '0";
A _Req AC <= "1";
I1d_A <="'0";
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1d_B <="'0";
Id_Stop <='0";

ALUM <=7
1d-0 <=0;
200 Aldd_Addr <= "07;

A_inc_Addr<="0";
A_tri_en <= '"1";
AnCS <="'0";
AnWE <="1";
205 AnOE <="17;

next STATE<= S_8;

when S_8 => DP_Reset <= '0";

210 A_Ackn.TB <= '0";
A _Req AC <= "1";
I1d_A <="'0";
1d_B <="'0";
Id_Stop <='0";

215 ALUM <= ==
1d_O <="'0";

A_ld_Addr <= '0";
A_inc_Addr<="1";
A_tri_en <= '"1";
220 AnCS <="'0";
AnWE <="1";
AnOE <="17;

if (StopMsg="1")
225 then next STATE<=S_9;
else next STATE<=S_2;
end if ;

when S_9 => DP_Reset <= '0";

230 A_Ackn.TB <= '0";
A _Req AC <= "0";
I1d_A <="'0";
1d_B <="'0";
Id_Stop <='0";

235 ALUM <= ==
1d_O <="'0";

A_ld_Addr <= '0";
A_inc_Addr<="0";
A_tri_en <= '0";
240 AnCS <="1";
AnWE <= "'7"7;
AnOE <="'7";

if (AC_Grant_A='0")

245 then next STATE<=S_END;
else next STATE<=S_9;
end if ;
when S END=> —— nothing
250

end case;
end if ;

end process;

255
end FSM_A_dHS_mem_clock_ex_behavioral;
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C.4.4 Datapath of A (identical B)

VHDL/doubleHS_mem_SHMs/Datapath/DP.vhd

—— File : DP. vhd
—— implements : Datapath (instanced twice: for A and for B)
—— for Ezample: FSM,DP (A) ——> Memory ——> FSM,DP (B)
- = <—=> FSM <——>
5 —— using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

10
Entity DP is
port ( Clock: in std_logic ;

DP _Reset : in std_logic ;
Id_.A, Id_B, 1d_Stop: in std_logic ;

15 StopMsg: out std_logic ;
ALUM: in std_logic_vector (1 downto 0);
1d_O, tri_en : in std_logic ;
Id_Addr, inc_Addr: in std_logic ;
AddrIn: in std_logic_vector (3 downto 0);

20 Addr_Out_Port: out std_logic_vector (3 downto 0);
Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;
O_Port : out std_logic_vector (31 downto 0);
Out_Stop: out std_logic );

25 end DP ;

Architecture DP_schematic of DP is

—— connection signals

30 signal A, B, O: std_logic_vector (31 downto 0);
signal ALU_Out: std_logic_vector (31 downto 0);
signal Stop: std_logic ;
signal Addr_Out: std_logic_vector (3 downto 0);
signal HL, LL: std_logic ;

35
component Reg_32bit
Port ( Clock: in std_logic ;
Reset : in std_logic ;
Load: in std_logic ;
40 Data_In: in std_logic_vector (31 downto 0);
Data_Out: out std_logic_vector (31 downto 0) );
end component;
component Latch_impl
45 Port ( Clock: in std_logic ;
Reset : in std_logic ;
Load: in std_logic ;
Data_In : in std_logic ;
Data_Out: out std_logic );
50 end component;

component Counter_4
Port ( Clk: in std_logic;
Reset: in std_logic ;
S5 Ld: in std_logic ;
C.In: std_logic_vector (3 downto 0);
D: in std_logic ;
En: in std_logic ;
C: out std_logic_vector (3 downto 0));
60 end component;

component ALU_32
Port ( Mode: in std_logic_vector (1 downto 0);
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Data_In1 : in std_logic_vector (31 downto 0);
65 Data_In2 : in std_logic_vector (31 downto 0);
Data_Out : out std_logic_vector (31 downto 0) );

end component;

component tri
70 generic (W: integer);
port ( Enable: in std_logic ;
Data_In: in std_logic_vector (W-1 downto 0);
Data_Out: out std_logic_vector (W-1 downto 0) );
end component;

75
component tri_bit
port ( Enable: in std_logic ;
Data_-In: in std_logic;
Data_Out: out std_logic );
80 end component;
begin

Register_A : Reg_32bit
85 Port Map ( Clock=>Clock, Reset=>DP_Reset, Load=>Id_A,
Data_In=>Inl, Data_Out=>A);

Register_B : Reg_32bit
Port Map ( Clock=>Clock, Reset=>DP_Reset, Load=>1d_B,
90 Data_In=>In2, Data_Out=>B);

Latch_Stop: Latch_impl
Port Map ( Clock=>Clock, Reset=>DP_Reset, Load=>ld_Stop,
Data_In=>In_Stop, Data_Out=>Stop);
95
Addr_Counter: Counter_4
Port Map ( Clk=>Clock, Reset=>DP_Reset, Ld=>ld_Addr,
C_.In=>Addr_In, D=>LL, En=>inc_Addr,
C=>Addr_Out);
100
ALU: ALU_32
Port Map ( Mode=>ALUM, Data_Inl1=>A, Data_In2=>B,
Data_Out=>ALU_Out);

105 Register_.O : Reg_32bit
Port Map ( Clock=>Clock, Reset=>DP_Reset, Load=>1d_O,
Data_In=>ALU_Out, Data_Out=>0);

O_tri: tri
110 generic map ( W=>32 )
Port map ( Enable =>tri_en, Data_In=>0, Data_Out=>O_Port );

Out_Stop._tri: tri_bit

Port map ( Enable =>tri_en, Data_In=>Stop, Data_Out=>Out_Stop );

115
StopMsg_tri: tri_bit
Port map ( Enable =>tri_en, Data_In=>Stop, Data_Out=>StopMsg );

Addr_Out_tri: tri
120 generic map ( W=>4 )

Port map ( Enable =>tri_en, Data_In=>Addr_Out, Data_Out=>Addr_Out_Port );

125
end DP_schematic;
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C.4.5 Memory

VHDL/doubleHS_mem_SMs/FSM_dHS _mem_clock/Mem_ex .vhd
library IEEE;

use IEEE. std_logic_1164 .all;

use IEEE.std_logic_arith . all;

use IEEE. std_logic_unsigned . all;

5
—— File : Mem_ex. vhd
—— implements : Memory
—— for Ezample: FSM,DP (A) ——> Memory ——> FSM,DP (B)
- = <—=> FSM <——>
10 — — using double handshake protocol

entity Memory DxW is
generic (D, W, AW: integer);
Port (nCS, nWE, nOE: in std_logic ;

15 Addr: in std_logic_vector (A.W—1 downto 0);
Data: inout std_logic_vector (W-1 downto 0) );
end Memory DxW; —— pragma template

Architecture Memory DxW_arch of Memory DxW is
20
type mem_array is ARRAY(D-1 downto 0) of std_logic_vector (W-1 downto 0);

signal mem: mem_array;
25 begin

read_write : process(nCS, nWE, nOE, Addr)
begin
if (nCS = '0’) then
30 if (nWE = '0’) then
mem( conv_integer (Addr)) <= Data;
elsif (nOE = '0’) then
Data <= mem( conv_integer (Addr));
else
35 Data <= (others=>"7Z");
end if;
end if;
end process;

40 end Memory DxW _arch;
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C.4.6 Arbiter (FSM)

VHDL/doubleHS_mem_SHs/FSM_dHS_mem_clock/Mem_FSM_dHS_clock_ex.vhd
—— File : Mem_FSM_dHS_clock_ex . vhd

—— implements : FSM for granting memory access

—— for Ezample: FSM,DP (A) ——> Memory ——> FSM,DP (B)
- = <—=> FSM <——>

- — using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

Entity Mem_Grant_Control is
Port ( Clock-M: in std_logic ;
AC_Reset: in std_logic ;
AC_Start: in std_logic ;
A_Req AC, B_Req AC: in std_logic ;
AC_Grant_A, AC_Grant_B: out std_logic );
end Mem_Grant_Control ;

Architecture Mem_Grant_Control_.beh of Mem_Grant_Control

type State_Set is (S.0, W, R);
signal next STATE, STATE: State_Set ;

begin
transition : Process
begin
wait until (Clock_.M’event and Clock-M = "17);

STATE <= next STATE;
end process;

Control : Process(STATE, AC_Start, A_Req-AC, B_Req-AC)
begin
if (AC_Reset = '1’) then
AC_Grant_A <= "0";
AC_Grant.B <= "0";
next STATE<= S_0;
else
case STATE is
when S_0 => AC_Grant.A <= '0";
AC_Grant.B <= '0";

if (AReqAC = "1")
then next STATE<=W,
elsif (B_Req AC = "1")
then next STATE<=R;
else
next STATE<= S_0;
end if;

when W=> AC_Grant_ A <= "1";
AC_Grant.B <= '0";

if (AReqAC = '0")

then next STATE<= S_0;
else

next STATE <=W;
end if;

when R => AC_Grant_A <= '0";
AC_Grant.B <= "1";
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if (B_ReqAC = '0")

65 then next STATE<= S_0;
else
next STATE <= R;
end if;
70 end case;
end if;

end process;

end Mem_Grant_Control_beh;
75

146



10

15

20

25

30

35

40

45

50

55

C.4.7 FSM Controlling Datapath B

VHDL/doubleHS_mem_SHMs/FSM_dHS_mem_clock/FSM_and_D_dHS_mem_clock_ex_B.vhd

—— File : FSM_and_D_dHS_mem_clock_ex_B . vhd
—— implements : bounding of FSM B and Datapath B
—— of Model: FSM and separate Datapath (FSM + D)

—— for Ezample: FSM,DP (A) ——> Memory ——> FSM,DP (B)
__ <—=> FSM <——>
- — using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

Entity FSM_and_D_B_dHS_mem _clock_ex is
port ( Reset, B_Start: in std_logic ;
Clock B : in std_logic ;
AC_Grant_B, TB_AcknB: in std_logic ;
B_Req-AC, B_Ready_ TB: out std_logic;
BnnCS, BnWE, BnOE: out std_logic;

AddrIn: in std_logic_vector (3 downto 0);
Addr_Out: out std_logic_vector (3 downto 0);
Data-MB_and_Stop_Port: in std_logic_vector (32 downto 0);
Outl_Port: out std_logic_vector (31 downto 0);
Outl_Stop_Port : out std_logic );

end FSM_and_D_B_dHS_mem_clock_ex;

Architecture FSM_and_D_B_dHS_mem_clock_ex_behavioral of FSM_and_D_B_dHS_mem_clock_ex
—— outputs

signal Outl: std_logic_vector (31 downto 0);

signal Outl_Stop: std_logic ;

signal Data_MB: std_logic_vector (31 downto 0);
signal Data MB_Stop: std_logic ;

signal DP_Reset: std_logic ;

signal 1d_A, 1d_.B, Id_Stop: std_logic ;
signal StopMsg: std_logic ;

signal ALUM: std_logic_vector (1 downto 0);
signal 1d_.O, B_tri_en: std_logic;

signal B_ld_Addr, B_inc_Addr: std_logic ;
signal CMP: std_logic_vector (1 downto 0);
signal MUX_sel: std_logic ;

Component DP

port ( Clock: in std_logic ;
DP _Reset : in std_logic ;
Id_.A, Id_B, 1d_Stop: in std_logic ;
StopMsg: out std_logic ;
ALUM: in std_logic_vector (1 downto 0);
1d_O, tri_en : in std_logic ;
Id_Addr, inc_Addr: in std_logic ;
AddrIn: in std_logic_vector (3 downto 0);
Addr_Out_Port: out std_logic_vector (3 downto 0);
Inl, In2: in std_logic_vector (31 downto 0);
In_Stop: in std_logic ;
O_Port : out std_logic_vector (31 downto 0);
Out_Stop: out std_logic );

end Component;

Component FSM_B_dHS_mem _clock_ex
port ( Reset, B_Start: in std_logic ;
Clock B : in std_logic ;
AC_Grant_B, TB_AcknB: in std_logic ;
B_Req-AC, B_Ready_ TB: out std_logic;
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BnnCS, BnWE, BnOE: out std_logic;

65 DP _Reset : out std_logic ;
Id_A, Id_B, 1d_Stop: out std_logic;
StopMsg: in std_logic ;
ALUM: out std_logic_vector (1 downto 0);
Id_.O, B_tri_en: out std_logic ;
70 B_1d_Addr, B_.inc_Addr: out std_logic );
end Component;
begin —— Architecture
DP_B_I: DP
75 Port Map ( Clock=>Clock_B, DP_Reset=>DP _Reset,

Id_ A=>Id_ A, 1d_.B=>Id_.B, ld_Stop=>ld_Stop,
StopMsg=>StopMsg, ALUM=>ALUM, 1d_.O=>Id_O, tri_en=>B_tri_en,
Id_Addr=>B_ld_Addr, inc_Addr=>B_inc_Addr,
Addr_In=>Addr.In, Addr_Out_Port=>Addr_Out,
80 In1=>Data_MB, In2=>Data_MB,
In_Stop=>Data_MB_Stop,
O_Port=>0Outl, Out_Stop=>Outl_Stop);

FSM_B_dHS_mem _clock_.I: FSM_B_dHS_mem _clock_ex

85 Port Map ( Reset=>Reset, B_Start=>B_Start,
Clock _B=>Clock B,
AC_Grant _B=>AC_Grant_B, TB_Ackn_B=>TB_Ackn B,
B_Req AC=>B_Req_AC, B_Ready_TB=>B_Ready_TB,
B_nCS=>BnCS, BnWE=>BnWE, BnOFE=>BnOE,

90 DP_Reset=>DP _Reset,
Id_ A=>Id_ A, 1d_.B=>Id_.B, ld_Stop=>ld_Stop,
StopMsg=>StopMsg, ALUM=>ALUM, 1d_O=>Id_-O, B_tri_en=>B_tri_en,
B_1d_Addr=>B_ld_Addr, B_inc_Addr=>B_inc_Addr);

95 —— Entity Outputs
Outl_Port <= Outl;
Outl_Stop_Port <= Outl_Stop;

Data_MB <= Data_MB_and_Stop_Port (31 downto 0);
100 Data_MB_Stop <= Data_MB_and_Stop_Port(32);

end FSM_and_D_B_dHS_mem_clock_ex_behavioral;
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C.4.8 FSM of B

VHDL/doubleHS_mem_SHMs/FSM_dHS_mem_clock/FSM_dHS_mem_clock_ex_B.vhd

—— File : FSM_dHS_mem_clock_ex_B.vhd

—— implements : FSM B

—— of Model: FSM and separate Datapath (FSM + D)
—— for Ezample: FSM,DP (A) ——> Memory ——> FSM,DP (B)
- = <—=> FSM <——>

- — using double handshake protocol

library IEEE;
use IEEE. std_logic_1164 .all;
use IEEE.std_logic_arith . all;

Entity FSM_B_dHS_mem_clock_ex is

port ( Reset, B_Start: in std_logic ;
Clock B : in std_logic ;
AC_Grant_B, TB_AcknB: in std_logic ;
B_Req-AC, B_Ready_ TB: out std_logic;
B.nCS, BaWE, BnOE: out std_logic ;
DP _Reset : out std_logic ;
Id_A, Id_B, 1d_Stop: out std_logic;
StopMsg: in std_logic ;
ALUM: out std_logic_vector
Id_.O, B_tri_en: out std_logic ;
B_ld_Addr, B_inc_Addr: out std_logic );

end FSM_B_dHS_mem _clock_ex;

Architecture

FSM_B_dHS_mem_clock_ex_behavioral of FSM_B_dHS_mem_clock_ex

type State_Set is (S.BEGIN, S_1, S_2, S3, S4, S5, S_6,
signal next STATE, STATE: State_Set ;
begin —— Architecture
transition : Process
begin
wait until (ClockB’event and Clock B = "17);

STATE <= next STATE;

end process;

behaviorl: process(STATE, B_Start, AC_Grant_-B, TB_AcknB, StopMsg)

begin
if (Reset = '1") then

DP _Reset <="1";
B_Req-AC <='0";
B_Ready . TB <= '0";
I1d_A <="0";
1d_B <="0";
Id_Stop <='0";
ALU_M <: 77__77;
1d_O <="0";
B_ld_Addr <= "'0";
B_inc_Addr <= '0";
B_tri_en <='0";
BnCS <= "1";

BnWE <= '7Z";

BnOE <= "'7Z";

next STATE <= S_BEGIN;

else
case STATE is

when S_BEGIN => DP_Reset

<: 71 7;
B_Req-AC <='0";
B_Ready . TB <= '0";
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65

70

75

80

85

90

95

100

105

110

115

120

125

when S_1 =>

when S_2 =>

when S_3 =>

I1d_A ='0";
1d_B ='0";
Id_Stop ='0";
ALUM ="
1d_O <="0";
B_ld_Addr <= "'0";
B_inc_Addr <= "0";
B_tri_en ='0";
BnCs <= "17;
BnaWE <= "'7";
BnmOE <= "7Z";

if B_Start = '1’

then next STATE <
else next STATE <

end if ;

DP _Reset
B_Req-AC
B_Ready_TB
I1d_A

1d_B
Id_Stop
ALUM
1d_O
B_ld_Addr
B_inc_Addr
B_tri_en
BnCs <=
BnWE <=
BnOE <=

<:707;
<:717;
<:707;
<:707;
<:707;
<:707;
<= M
<:707;
<:717;
<:707;
<:707;
717;

7z7;

7z7;

if (AC_Grant.B="1")
then next STATE<= S_2;
else next STATE<= S_1;

)

)

end if ;

DP _Reset <="'0";
B_Req-AC <='1";
B_Ready . TB <= '0";
Id_A <="0";
1d_B <="0";
Id_Stop <="'0";
ALU_M <: 77__77,
1d_O <="0";
B_ld_Addr <= "'0";
B_inc_Addr <= "0";
B_tri_en <='1";
BnCS <= "'0";
BnWE <= "1";
BnOE <="17;
next STATE<= S_3;
DP _Reset <="'0";
B_Req-AC <='1";
B_Ready . TB <= '0";
Id_A <="0";
1d_B <="0";
Id_Stop <="'0";
ALU_M <: 77__77,
1d_O <="0";
B_ld_Addr <= "'0";
B_inc_Addr <= "0";
B_tri_en <='1";

BnCS <= "'0";

)

=S
=S

1
BEGIN;
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130

135

140

145

150

155

160

165

170

175

180

185

190

195

when S_4 =>

when S_5 =>

when S_6 =>

when S_7 =>

BnWE <= "1";
BnOE <= "'"07;

next STATE<= S_4;
DP _Reset <="'0";

B_Req-AC <='1";
B_Ready . TB <= '0";

Id_A <="1";
1d_B <="1";
Id_Stop <='1";
ALUM <= "10";
1d_O <="0";

B_ld_Addr <= "'0";
B_inc_Addr <= "0";
B_tri_en <='1";
BnCS <= "'0";
BnWE <= "1";
BnOE <= "'"07;

next STATE<= S_5;
DP _Reset <="'0";

B_Req-AC <='1";
B_Ready . TB <= '0";

Id_A <="0";
1d_B <="0";
Id_Stop <="'0";
ALUM <= "10";
1d_O <="1";

B_ld_Addr <= "'0";
B_inc_Addr <= "0";
B_tri_en <='1";
BnCS <= "'0";
BnWE <= "1";
BnOE <="17;

next STATE<= S_6;
DP _Reset <="'0";

B_Req-AC <='1";
B_Ready . TB <= '0";

Id_A <="0";
1d_B <="0";
Id_Stop <="'0";
ALUM <= "=
1d_O <="0";

B_ld_Addr <= "'0";
B_inc_Addr <= "0";
B_tri_en <='1";
BnCS <= "'0";
BnWE <= "1";
BnOE <="17;

next STATE<= S_7;
DP _Reset <="'0";

B_Req-AC <='1";
B_Ready . TB <= "1";

Id_A <="0";
1d_B <="0";
Id_Stop <="'0";
ALUM <= "=
1d_O <="0";

B_ld_Addr <= "'0";
B_inc_Addr <= "0";
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200

205

210

215

220

225

230

235

240

245

250

255

260

when S_8 =>

when S_9 =>

when S_10 =>

B_tri_en <='1";
BnCS <= "'0";
BnWE <= "1";
BnOE <="17;

if (TB_AcknB='1")
then next STATE<=S_8;
else next STATE<=S_7;
end if ;

DP _Reset ='0";
B_Req-AC =17
B_Ready . TB <= '0";
Id_A ='0";
1d_B ='0";
Id_Stop <="'0";
ALU_M — 77__77;
1d_O <="0";

B_ld_Addr <= "'0";
B_inc_Addr <= "0";
B_tri_en <='1";
BnCS <= "'0";
BnWE <= "1";
BnOE <="17;

if (TB_AcknB='0")
then next STATE<=S_9;
else next STATE<=S_8;
end if ;

DP _Reset <="'0";
B_Req-AC <='1";
B_Ready . TB <= '0";

Id_A <="0";
1d_B <="0";
Id_Stop <="'0";
ALUM <= "=
1d_O <="0";

B_ld_Addr <= "'0";
B_inc_Addr <= "17;
B_tri_en <='1";
BnCS <= "'0";
BnWE <= "1";
BnOE <="17;

if (StopMsg='1")
then next STATE<=S_10;
else next STATE<=S_2;
end if ;

DP _Reset ='0";
B_Req-AC ='0";
B_Ready . TB <= '0";
Id_A ='0";
1d_B <="0";
Id_Stop <="'0";
ALU_M <: 77__77;
1d_O ='0";

B_ld_Addr <= "'0";
B_inc_Addr <= "0";
B_tri_en <="'0";
BnCS <= "1";
BnWE <= "'7";
BmnOE <= "'7";

if (AC_Grant.B='0")
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then next STATE<=S_END;
else next STATE<=S_10;

end if ;
265
when SEND=> —— nothing (Procedure quits )
end case;
end if ;
270

end process;

end FSM_B_dHS_mem_clock_ex_behavioral;
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C.4.9 Datapath of B identical to A (see A)

The datapath for the receiver B is identical to the datapath of the sender A. — See datapath for sender A.
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