Università degli Studi di Verona Laurea in Matematica Applicata

Primo appello di Algebra Lineare ed Elementi di Geometria — 20 luglio 2016

matricola nome nome

Scrivere subito matricola, nome e cognome e riconsegnare questo foglio al termine della prova.

Ex1	Ex2	Ex3	Tot

Esercizio 1 (Punti 16). Si consideri l'applicazione lineare $T_{\alpha}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ con α parametro reale tale che

$$(x, y, z) \longmapsto [2\alpha x + y \quad x - \alpha z \quad 2y + z]^T$$
.

- i. Scrivere la matrice associata all'applicazione T_{α} .
- ii. Determinare, al variare di $\alpha \in \mathbb{R}$, la dimensione del nucleo e dell'immagine di T_{α} .
- iii. Si fissi $\alpha = \frac{1}{2}$. Determinare una base del nucleo e una base dell'immangine di $T_{\frac{1}{2}}$.
- iv. Sempre per $\alpha = \frac{1}{2}$, si determini una base dell'immagine di $T_{\frac{1}{2}}$.
- v. Discutere per quali valori del parametro reale β il vettore $\vec{v}_{\beta} = \begin{bmatrix} 1 & 0 & \beta \end{bmatrix}^T$ appartiene all'immagine di $T_{\frac{1}{2}}$.
- vi. Esiste un valore di α per cui la base sia ortogonalmente diagonalizzabile? (Giustificare la risposta).
- vii. Per $\alpha = 0$ la matrice T_0 è diagonalizzabile? In caso affermativo determinare una base di \mathbb{R}^3 di autovettori.

Esercizio 2 (Punti 8). Nello spazio euclideo reale \mathbb{E}^3 in cui sia fissato un sistema di riferimento cartesiano si considerino il piano $\alpha: x-y+2z=0$ e il punto A: (3,0,-1).

- i. Si determini il fascio di piani generato dalla retta τ passante per A e di direzione perpendicolare al piano α
- i. Si determini il piano β del fascio generato da τ e passante per il punto B : (4,0,0).
- ii. Detta r la retta ottenuta intersecando α e β , si determini la retta s appartenente al piano β , passante per A e perpendicolare a r.
- iii. Determinare il simmetrico A' del punto A rispetto al piano α .
- iv. Determinare l'area del triangolo AOA' in cui O è l'origine del sistema di riferimento. Di quale tipo di triangolo si tratta?

Esercizio 3 (Punti 8). Nel piano euclideo reale \mathbb{E}^2 in cui sia fissato un riferimento cartesiano ortogonale.

- i. Si determini la circonferenza $\mathcal C$ di centro C=(2;3) e passante per B=(2;0).
- ii. Si determini la trasformazione affine $f_{(A,\vec{\tau})}$ tale che

$$A = \left(-2\sqrt{2} + 2; 0\right) \longmapsto A' = \left(\sqrt{2} - 2; 0\right), \quad B \longmapsto B' = (-2; 1), \quad C \longmapsto C' = \left(-2; -\frac{1}{2}\right)$$

- iii. Si determini l'equazione della curva \mathcal{C}' immagine di \mathcal{C} mediante la trasformazione $f_{(A,\vec{\tau})}$. È una curva nota? In caso affermativo, determinare tale curva giustificando la risposta in modo esauriente.
- iv. Determinare l'area della curva \mathcal{C}' .

Le risposte vanno adeguatamente giustificate