ESERCIZI di ALGEBRA LINEARE

Esercizio 1

Al variare di $a \in \mathbb{C}$, si consideri la matrice

$$A_a = \left(\begin{array}{ccc} a & 0 & 1 \\ 0 & 0 & 0 \\ a & 0 & 1 \end{array} \right)$$

Per quali a A_a è diagonalizzabile? Per a = 0 si trovi una matrice S invertibile e una matrice D diagonale tale che $SAS^{-1} = D$

Esercizio 2

Dire se le matrici
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 e $B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ sono simili.

Esercizio 3

Si consideri la seguente applicazione lineare: $f: \mathbb{C}^3 \to \mathbb{C}^3$

$$f\left(\begin{array}{c} x\\y\\z \end{array}\right) = \left(\begin{array}{c} 0\\x+3y-2z\\2x+6y-4z \end{array}\right)$$

Determinare la matrice A associata a f rispetto alla base canonica su dominio e

Verificare che l'insieme
$$\mathcal{B} = \{v_1, v_2, v_3\}$$
, dove $v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

$$\begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$$
, è una base di \mathbb{C}^3 .

Dire se A è diagonalizzabile

Esiste una base \mathcal{B} di \mathbb{C}^3 tale che la matrice A' di f rispetto a \mathcal{B} su dominio e codominio sia diagonale? Se si, trovare \mathcal{B} e A'.

Esercizio 4

Esercizio 4 Sia
$$U$$
 il sottospazio di \mathbb{C}^3 generato dai vettori $\begin{pmatrix} i \\ 0 \\ i \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 2i+2 \end{pmatrix}$.

Trovare la matrice della proiezione ortogonale P_U di \mathbb{C}^4 su U. Determinare $P_U\begin{pmatrix} 1\\1\\i \end{pmatrix}$). Determinare $N(P_U)$ e ImP_U .

Esercizio 5

Si consideri il sottospazio
$$T = < \begin{pmatrix} 1+i \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ i \\ 1 \end{pmatrix}$$
 di \mathbb{C}^3 . Si calcoli T^{\perp} .

Esercizio 6

Si consideri il sottospazio N(A) di \mathbb{C}^4 , dove $A = \begin{pmatrix} 2 & 5 & 3 & -4 \\ 1 & -1 & 1 & 1 \\ 3 & 4 & 2 & -3 \end{pmatrix}$. Si trovi $N(A)^{\perp}$.

Esercizio 7

Si consideri il sottospazio S di \mathbb{C}^3 definito da $S = \{ \begin{pmatrix} x \\ y \\ x \end{pmatrix} | 2x - y + z = 0 \}$. Trovare una base ortogonale di S, e completarla a una base ortogonale di \mathbb{C}^3 .

Esercizio 8

Trovare l'angolo formato dai vettori di \mathbb{R}^3 $v = \begin{pmatrix} \sqrt{3} \\ 1 \\ 0 \end{pmatrix}$ e $u = \begin{pmatrix} -3 \\ \sqrt{3} \\ 0 \end{pmatrix}$.

Esercizio 9

Si provi che
$$\mathcal{B} = \{v_1, v_2, v_3\}$$
, dove $v_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, $v_2 = \begin{pmatrix} 2i \\ 0 \\ -i \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ -5 \\ 2 \end{pmatrix}$ è

una base ortogonale di \mathbb{C}^3 e se ne ricavi una base ortonormale. Dato $v = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, trovare le coordinate di v rispetto alla base \mathcal{B} .

Sia
$$B_{\beta} = \begin{pmatrix} 4-\beta & 2-\beta & -2+\beta & 0 \\ -2-\beta & \beta & -\beta & 0 \\ 0 & 0 & \beta & -3 \\ 0 & 0 & 0 & -3 \end{pmatrix}$$
. Si dica per quali valori di β la matrice B_{β} è diagonalizzabile.

Sia
$$B_{\beta} = \begin{pmatrix} 3+\beta & 2 & 0 & 2+2\beta \\ 0 & 2 & 0 & 0 \\ 0 & 1-\beta & 1 & 0 \\ -1-\beta & -1 & 0 & -2\beta \end{pmatrix}$$
. Si dica per quali valori di β la matrice B_{β} è diagonalizzabile.

Esercizio 11

Sia
$$B_{\beta} = \begin{pmatrix} 1-\beta & 0 & 1-\beta \\ 1+\beta & 2 & \beta+1 \\ 0 & 0 & \beta \end{pmatrix}$$
. Si dica per quali valori di β la matrice B_{β} è diagonalizzabile. Per $\beta = -1$ trovare una base di \mathbb{C}^3 composta da autovettori e trovare una matrice diagonale simile a B_{-1} .

Esercizio 12

Sia
$$B_{\beta}=\begin{pmatrix}1&0&0&0\\0&2&0&0\\0&1&-\beta&-\beta\\-3-\beta&10-2\beta&1&0\beta\end{pmatrix}$$
. Si dica per quali valori di β la matrice B_{β} è diagonalizzabile.