
1

Overspecification Analysis

Graziano Pravadelli
Dipartimento di Informatica Università di Verona

Agenda

•  Introduction & Motivations
•  State of the art
•  Background
•  Methodology

– Redundancy analysis
•  Fault model
•  Experimental results

2

Introduction

Model
checking

Informal
specification Designer’s

expertise

DUV
model

Formalization

Refinement

Formal
properties

YES if all properties
hold on the DUV
model

A coverage is required to
measure the property
quality

Motivations

•  Why minimal?
– Property checking is very time-consuming

•  Incremental design requires to continuously check
the refined design

•  Model checking is reiterated at different abstraction
levels

•  IP-cores can be distributed together with properties
for IP-reuse

Simulation-based approach to reduce Φ	

3

State of the Art

•  Some papers address property
completeness and vacuity analysis by
–  formal methods
– simulation-based techniques

5

Background

•  A realization σ = (M, a) is a couple where
– M is a model

–  a is a function which assigns values to M inputs

•  Given a realization σ and a property ϕ, the
interpretation of ϕ in σ can be T or F

•  ϕ is valid (= ϕ) if it is T in all the interpretations
–  Axioms: a set of valid properties

4

Background

•  A set of properties Φ is satisfiable if there exists
an interpretation where all properties in Φ are T

•  ϕ is a logical consequence of ψ (ψ = ϕ) if ϕ is T
in all the interpretations where ψ is also T

•  Modus ponens (MP)
–  if ϕ and ϕ →ψ are T in σ then ψ is T in σ	

–  Modus ponens preserves logical consequence	

Background
•  A deduction from Φ is a finite succession of

properties which are axioms, or are in Φ or are
obtained from previous properties by MP

•  ϕ can be deducted from Φ (Φ - ϕ) if there is a
deduction from Φ where the last property is ϕ	

•  Given a set of properties Φ and a property ϕ, a
logic is complete if it always happens that
Φ = ϕ ↔ Φ - ϕ 	

5

Methodology

•  It Identifies “essential properties”
–  Based on high-level fault simulation
–  Automatic & fast

Removing
redundant
properties

Given a set of properties
Φ, ϕ ∈ Φ is redundant if
Φ \{ϕ } = ϕ	

Property
coverage

Theorem
proving

n  It identifies redundant
properties by deduction
D  Too time-consuming
D  No automatic

Redundancy Analysis

|Φ|=N

N proofs

N*exptime

Mark all properties of
 Φ as non fundamental

Pick up ϕ that has
not been marked
as fundamental

Φ \{ϕ} - ϕ ?

Φ = Φ \{ϕ}

∃ ϕ ∈ Φ
not marked as
fundamental?

Mark ϕ as
fundamental

STOP

N

Y

N

Y

6

Covered
faults

Redundancy Analysis
Formal

properties

DUV
model

Property
coverage

computation

Model
perturbation

DUV
perturbed

models

Property
redundancy

analysis

Property Coverage
•  Is there a relation between fault detection and property

coverage?
–  Properties represent the golden model

•  They hold on the design implementation
–  Implementation is perturbed by using a high-level fault

model

12

Do all properties hold on the perturbed implementations?

Properties are not able to distinguish between
faulty and fault-free implementation
The set of properties is INCOMPLETE !

7

Redundancy Analysis
•  Consider

–  M, the model of the DUV
–  Φ ={ϕ1, …, ϕm}, the set of properties
–  F={f1, …, fn}, the set of detectable faults
–  MF ={Mf1, …, Mfn}, the set of perturbed models
–  F1, …, Fm, the set of faults detected by ϕ1, …, ϕm

M = Φ	

Conjecture 1 () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⊆⇒Φ∀

≠

=
ji

jiiii FF}{\ ϕϕ

Conjecture 2 ()ii
ji

jii ϕϕ =

≠

Φ⇒⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⊆∀ }{\FF

Proof of Conjecture 1

If Φ \{ϕι} = ϕι then Mfj = Φ \{ϕι} ⇒ Mfj = ϕι	

Mfj = ϕι ⇒ Mfj = Φ \{ϕι}

If a fault is detected by ϕι then
it is also detected by Φ \{ϕι}

Conjecture 1 () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⊆⇒Φ∀

≠

=
ji

jiiii FF}{\ ϕϕ

8

Consequence

If a property covers a fault
that is not covered by any other property then

it is not logical consequence of the others,
thus it is not redundant

 ()ii
ji

jii ϕϕ =

≠

Φ⇒⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⊄∀ }{\FF

Counterexample of Conjecture 2

•  Fault model flips
one by one the
output of M

Conjecture 2 ()ii
ji

jii ϕϕ =

≠

Φ⇒⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⊆∀ }{\FF

A B

00-/00
010/00
1--/00

0--/11

011/00

1--/00

n  ϕ1: G (((r=1) & X((i1=1) & (i2=0))) à XX((o1=0) & (o2=0)))
n  ϕ2: G (((r=1) & X((i1=0) & (i2=0))) à XX((o1=0) & (o2=0)))
n  They cover the same set of faults, but neither ϕ1 – ϕ2 nor ϕ2 – ϕ1

9

Consequences

•  Conjecture 1
– The methodology provides a necessary

condition for property minimization
– Faster than theorem proving

•  Conjecture 2
– The methodology does not provide a sufficient

condition
–  It depends on the adopted fault model

17

18

Fault Model Dependency

•  f cannot be modeled by the “flipping fault model” F
•  ϕ1 or ϕ2 is redundant for F

A B

00-/00
1--/00

0--/11
011/00

010/10
f

1--/00 A B

00-/00
010/00
1--/00

0--/11

011/00

1--/00

ϕ1: G (((r=1) & X((i1=1) & (i2=0))) à XX((o1=0) & (o2=0)))
ϕ2: G (((r=1) & X((i1=0) & (i2=0))) à XX((o1=0) & (o2=0)))

n  ϕ1 detects f while ϕ2 does not F U { f } shows that ϕ2 = ϕ1

n  Analogously, there exists fʹ′ ∉ F such that F U { fʹ′ } ϕ1 = ϕ2

10

Final Methodology

1.  Computing the property coverage
2.  Compare the sets of faults detected by

properties (N properties à N comparisons)
3.  Mark the set of properties that are surely non

redundant
4.  Use a Theorem Prover to analyze remaining

properties

Fault Model

–  Bit failure
•  a=b a=f(b)
•  Each bit can be

stuck-at 0 or stuck-at 1

–  Condition failure
•  If (a==b) if(f(a==b))
•  Each condition can be

stuck-at T or stuck-at F

–  Single fault

–  Output failure
•  Like bit failure, but only

on POs

–  Transition failure
•  It changes the

destination state of a
transition

–  Multiple faults
•  Output failure or

transition failure or
output + transition failure

11

Experimental Results
Design

b01
b02
b03

In

4
3
6

Out

2
1
4

#Gates

1319
296
629

#FF

5
4

30

Φ	

13
9

18

#BC

201
52

159

#TF

536
161
81

b06 4 6 179 9 23 120 812

#BC+TF

737
213
240
932

Design

b01

b02

b03

NR

7

3

5

Time(s)

0.2

0.3

22.4

NR

4

4

3

Φ	

13

9

18

Time(s)

0.3

0.3

22.5

NR

7

4

5

b06 9 8.9 13 23 9.0 13

Time(s)

0.5

0.3

23.0

9.2

BC TF BC+TF
R

4

2

5

NR

9

7

13

1 22

Experimental Results

Design

b01

b02

b03

BC

8.3

0.5

65.9

Ψ

13

9

18

TF

12.6

0.4

76.1

BC+TF

8.6

0.6

66.4

b06 52.0 23 44.5 44.7

T.P.

20.2

0.8

98.5

69.7

Time (s)

BC

58.9

37.5

33.1

TF

37.6

50.0

22.7

25.4 36.1

BC+TF

57.4

25.0

32.6

35.9

Saving (%)

12

Conclusions
•  Simulation-based approach…

– …to analyze logical consequence of properties
– …to remove redundant properties

•  It provides
–  a necessary condition for logical consequence
– > 30% of saving time with respect to TP

•  It does not provide
–  sufficient condition, it depends on the fault model

References

•  S. Brait, F. Fummi and G. Pravadelli “On
the Use of a High-Level Fault Model to
Analyze Logical Consequence of
Properties”, Proc. of ACM/IEEE
MEMOCODE 2005

