Electronic ALab

Systems Networked Embedded Systens
Design

Incompleteness Analysis

Graziano Pravadelli
Dipartimento di Informatica Universita di Verona

G-

Agenda

Motivations
State of the art
e Main idea

e Property coverage

e Witness coverage

e Coverage accuracy

e Conclusions and references

Motivations

e Lack of exhaustiveness is the biggest problem
for dynamic verification

e (Semi-)Formal verification is an alternative to
overcome this limitation

— Model checking (ABV) used to identify design
errors

G-

Motivations

e Formalization of properties is a challenging task
— Properties could be false requiring redefinition of
— Design
e Confuted properties may highlight design errors
— Properties
e Confuted properties may represent wrong behaviors
— Environment

e Confuted properties may highlight a too strict environment

G-

Motivations

e |f defined properties are true
— have | written enough properties?
— is the design correct?

e Model checking (ABV) can prove the presence
of bugs, but not their absence!

e A coverage metric is required

Geo-
State of the art

e Mutation-based approaches

— Mutated implementations for measuring property
coverage

e Implementation-based approaches

— Coverage is analyzed without mutating the
implementation

State of the art

e Hoskote (DAC 99)

— property coverage by analyzing whether a
mutation on an observed signal, at a certain state,
changes the truth values of the defined properties

e Works only for a subset of ACTL
e Syntax dependent

— Different syntaxes, same semantics can have different
coverages

Qo=
State of the art

e Somenzi (DAC 03)

— Similar to Hoskote but extended for a subset of
CTL

e Chockler (CAV 01, CHARME 01)
— Safety LTL and CTL are addressed

State of the art

e For all these approaches
— Formal methods are applied
— Worst case complexity is exponential in the size of
the properties
— Consider only state coverage metrics

e incompleteness of properties related to wrong paths of
an implementation cannot be detected

Qo=

State of the art

e Hsiung (ATVA 04)
— Mutation model in state graph
— Does not consider semantic mutations
e Eg. Changing the value of variables in a state
— But consider structural mutations
e Eg. Inserting or deleting a state or a transition

— Requires re-checking properties for each
mutations

e Too time consuming

State of the art

e Xu (MEMOCODE 05, ASPDAC 06)

— Transition-based coverage based on transition
perturbation

— Transition traversal does not consider the values of
signals
— Works only for a subset of ACTL
e Grumberg (CHARME 99)
— Symbolic approach
— Works only for safety ACTL
— More complex than other approaches

Qo=
State of the art

e Sayyaran (VLSI-SOC 06)

— restricts to 0 and 1 the value of each variable
contained into the Ordered BDD corresponding to
DUV and checks if the restrictions change the
truth value of properties

— coverage is computed as the fraction of the
restrictions on variables that are covered by
properties

— Requires rechecking for each restriction

State of the art

e Classen (FMCAD 07)
— It does not required the design model

— Exploits traces looking for time points where
output signals are not constrained by properties

— For identified forgotten case it is not possible to
retrieve information about the circuit behavior

— Only for safety LTL

Qo=
State of the art

e Oberkonig (FMCAD 07)

— Quantitatively describes the degree of
determination of the output and internal signals
mentioned in a specification

— does not require an implementation of the design

— proves that all outputs of the design are
determined, but this does not mean that the
specification is perfect

State of the art

e Drechsler (DATE 07, ISVLIS 07, TCAD 08)

— Uses BMC focusing on the identification of
scenarios where the value of outputs of the circuit
are not determined by the set of properties

— Looks for input and state assignments for which
the set of properties do not specify the value of
outputs

Qo=
State of the art

e Hoffmann (MWSCAS 09)
— New CNF coverage metric

— Exploits SAT heuristics to guide the property
definition finding the most important variables to
be considered into properties

— different heuristics prioritize different structural
characteristics

Gso

Background

e DUV is modeled by and EFSM
e Environment is modeled by another EFSM

- =
|:>:§.:>

Qo=
EFSM

e More compact than FSM

e Transitions are labeled by enabling functions and
update functions
Lin==1 & reg>=3

reg:=inl+1;

out=5;

(MEMOCODE 2003
Main ldea TCOMP 2007)

e |s there a relation between fault detection and
property completeness?
— Properties represent the golden model
e They hold on the design implementation

— An implementation (EFSM) is perturbed by using
mutants

Do all properties hold on the perturbed EFSM?
Properties are not able to distinguish between

faulty and fault-free implementations
The set of properties is INCOMPLETE

G-

Methodology overview

Formalization and

T S
-——-- | Implementation i
| Refinement |

Informal
Specification

— | Properties II
Yes
Detectable Faults Yes All Satisfied? —_— olden Model
Identification Incomplete
List of Generation of
Detectable | — Faulty — Faulty Estimation of the
Faults Implementations Implemen- golden model

tations incompleteness

I
S
23
3
g3 9
RS
Q

S
g:

]
'

Generation of faulty implementations

10

E-detectable faults

e Given a fault-free design / and a faulty design
l;afault fis

— detectable if 3 input sequence such that
PO(/) = PO(/))

— E-detectable if 3 input sequence such that
PO(/) = PO(I;) under the environment E

e How to identify the set of E-det faults?
— ATPG is a possibility

Qo=

Estimation of property incompleteness

e Anaysis of the capability of properties of
distinguishing between fault-free and faulty
implementations
— Property coverage

¢ Based on static verification

— Witness coverage
¢ Based on dynamic verification

11

Property coverage

e Given a fault model, a fault-free
implementation / and a faulty
implementation /;

— p detects a fault fiff p holds on / and p fails on /;
e |n this case f € P-det

— Property Coverage (C,) = | P-det| /| E-det]|

— Pis complete if C,=1

* Re-checking is required = too time-
consuming

P incomplete

12

Witnesses and counterexamples

e For existentially quantified CTL property

— is a computation path which demonstrates that
the property is true

e For universally quantified CTL property

— is a computation path which demonstrates that
the negation of the formula is true

e counterexample for a universally quantified
formula is a witness for the dual existentially
quantified formula

G-

Witnesses and counterexamples

e For LTL properties (universal path quantifier is
implicitly assumed)
— a witness is a computation path it such that &t
entails p non vacuously

— a counterexample is a path it such that t does not
entails p

13

G-

Witnesses and counterexamples

e A witness for a universally quantified property
p is not enough to state that p is true

e A counterexample for p is enough to state
that p is false

e A witness for an existentially quantified
property p is enough to state that p is true

e A counterexample for p does not show that p
is false

G-

Witnesses and counterexamples

e They contain values for input and outputs
involved in the corresponding property

e Other signals are undefined

e They can be generated by model checking
tools like SMV, NuSMV, RuleBase, ...

— The set of witnesses (counterexamples) generated
by the model checker can be efficiently extended
by using an ATPG

14

Input witnesses and counterexamples

e More intuitive definition of witness

— An input witness for p is a finite sequence of
values for the inputs of the DUV such that p is
satisfied non vacuously

e More intuitive definition of couterexample

— An input counterexample for p is a finite sequence
of values for the inputs of the DUV such that p is
not satisfied

Qo=

Input witnesses and counterexamples

e input witness (counterexample) is obtained

— by extracting the input projection of the witness
(counterexample) provided by the model checker

— and by assigning the default value (i.e., by
considering VHDL, the lowest value for integers,

U” for standard logics, “0” for bits, etc.) to input
signals that are not specified

15

Input witnesses and counterexamples

e Witness for safety properties?

e Counterexamples for liveness properties?
e They are infinite path!
— However

e an infinite witness (counterexample) can be found
composed of a finite prefix followed by a repeating cycle
— Thus

e Input witness (counterexample) is composed of the input
projection of the finite prefix followed by the input
projection of one occurrence of the repeating cycle

Qo=

Witness coverage

e Theorem
If f € P-det then
— d aninput counterexample for p on I which is

e an input witness for p on /
¢ atest sequence for fon/

¢ Definition
fE E-det is w,-det if

— daninput w for p such that
e wis a test sequence for f

e wis an input counterexample for p on I

16

Witness coverage

e W,-det = set of faults detected by fault
simulating input witnesses

e Witness coverage (C,,) = | W,-det|/| E-det|

Teniazts 6,

Property re-checking is not required

33

G

Witness coverage

Fault-free | mmp
Design &
Environmen 1

\ / Faulty
Design &
Fault-free | =—p
Environmen

V

— . , N
/ o
Witnesses == - E-det
— e / - 7
~

P incomplete

17

Witness coverage

e How many witnesses?

e What about if the model checker generates
only one witness for each property?
- C,=C,, iff all witnesses are available
— Otherwise C... <C.

TERRIRMTES

Qo=

Witness coverage

* Properties are converted into checkers
— For a safety property
e Qutput of the checker is always TRUE until a failure
* Checkers of safety properties are connected to POs of /;
— For a liveness property
e Qutput of the checker is always FALSE until it successes
e Checkers of liveness properties are connected to POs of /

18

Witness coverage

e Given a witness w for p, f EW,-det if fault
simulating w
— I and [; differs on at least one PO involved in p

— and concurrently
e the checker fails if p is a safety property
e the checker successes if p is a liveness property

G

Witness coverage by ATPG

Fault-free
DUV

Environ-

\J

ment

e Asequences w is filtered by the environment

— wis an input witness for a safety property
e If fis detected by w on a PO involved in p and the checker of p fails
> fEW,-det
— wis a possible input witness for a liveness properties

o If fis detected by w on a PO involved in p and the checker of p successes
> fEW,-det

19

Witness coverage by ATPG

Fault-free | mmp
Design &

Environment

!

Faulty
Design &
Fault-free

Environmen

N
P incomplete

@se

Incremental Coverage Computation
-
f

T

SR
—

1

20

Coverage Accuracy

e Approaches based on state coverage

— 100% state coverage is not enough, since the behavior
along a path can be incorrect

— Our methodology is based on a fault model, thus it
includes the notion of path coverage

Qo=

Coverage Accuracy

e Some approaches present problems with tautologies
— Es.:p=q <= AFq
* In Hoskote and Somenzi approaches the coverage of gis given by
the set of states that satisfies q

e However, it should be 0%, since tautologies cannot state anything
about the correctness of a design

e Our methodology provides 0%, since there are no faults that falsify
@

21

AG(A(f)) is a linear invariant in q if
each f; is a propositional formula and 3i such that f;| g=>0 = - f; | g=1

Coverage Accuracy

e Hoskote and Somenzi approaches may produce a false sense
of security for linear invariant properties
— Our methodology reflects the real intention of the property
e Assuring that a combinational relation between signals holds

e Only faults that induce a violation of such a relation are covered by

the invariant
e Es.:. =AG(p <> — q) (wherepand qare the only outputs)

— achieves 100% coverage for Hoskote and Somenzi

b P P
f f f

—~ hd

f is covered bi i f is not covered bi ﬁ

Experimental Results

mm ReCheCk tlme (m)
faults

ST_BUS 1843 99.8% 36860
ROOT 6 671 0 100% 91 3378
DIV 5 1315 1 99.9% 105 3923
DIST 5 553 0 100% 77 1629

22

G-

Conclusions

¢ A methodology to evaluate the quality of properties
— Itis theoretically founded
— It can be applied to CTL and LTL properties
— It relies on mutation analysis
— It exploits fault simulation and ATPG
e time consuming re-checking is restricted to a small number of faults
— Compared to other approaches
e |t provides a better accuracy for tautologies and linear invariants
e Itincludes the notion of path coverage and not only state coverage

— It has been completely implemented into the PCC (Property
Coverage Checker) tool

G-

References

e A. Fedeli, F. Fummi, G. Pravadelli, U. Rossi, F. Toto, “On
the Use of a High-Level Fault Model to Check Properties
Incompleteness”, Proc. of ACM/IEEE MEMOCODE
2003.

e F. Fummi, G. Pravadelli, F. Toto, “Coverage of Formal
Properties based on a High-Level Fault Model and
Functional ATPG”, Proc. of IEEE ETS 2005.

e A. Fedeli, F. Fummi, G. Pravadelli, “Properties
Incompleteness Evaluation by Functional Verification”,
IEEE Trans. on Computers, vol. 56, n. 4, 2007.

