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Introduction 

Model 
checking 

Informal 
specification Designer’s 

expertise 

DUV 
model 

Formalization 

Refinement 

Formal 
properties 

YES if all properties 
hold on the DUV 
model 

A coverage is required to 
measure the property 
quality 

Motivations 

•  Why minimal? 
– Property checking is very time-consuming 

•  Incremental design requires to continuously check 
the refined design 

•  Model checking is reiterated at different abstraction 
levels 

•  IP-cores can be distributed together with properties 
for IP-reuse 

Simulation-based approach to reduce Φ	
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State of the Art 

•  Some papers address property 
completeness and vacuity analysis by 
–  formal methods 
– simulation-based techniques 
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Background 

•  A realization σ = (M, a) is a couple where 
– M is a model 

–  a is a function which assigns values to M inputs 

•  Given a realization σ and a property ϕ, the 
interpretation of ϕ in σ can be T or F 

•   ϕ is valid (= ϕ) if it is T in all the interpretations 
–  Axioms: a set of valid properties 
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Background 

•  A set of properties Φ is satisfiable if there exists 
an interpretation where all properties in Φ are T 

•   ϕ is a logical consequence of ψ (ψ  = ϕ) if ϕ is T 
in all the interpretations where ψ is also T 

•  Modus ponens (MP) 
–  if ϕ and ϕ →ψ are T in σ then ψ is T in σ	

–  Modus ponens preserves logical consequence	


Background 
•  A deduction from Φ is a finite succession of 

properties which are axioms, or are in Φ or are 
obtained from previous properties by MP 

•   ϕ can be deducted from Φ (Φ - ϕ) if there is a 
deduction from Φ where the last property is ϕ	


•  Given a set of properties Φ and a property ϕ, a 
logic is complete if it always happens that 
Φ = ϕ ↔ Φ - ϕ 	
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Methodology 

•  It Identifies “essential properties” 
–  Based on high-level fault simulation 
–  Automatic & fast 

Removing 
redundant 
properties 

Given a set of properties 
Φ, ϕ ∈ Φ is redundant if 
Φ \{ϕ } = ϕ	


Property 
coverage 

Theorem 
proving 

n  It identifies redundant 
properties by deduction 
D  Too time-consuming 
D  No automatic 

Redundancy Analysis 

|Φ|=N 
 

N proofs 
 

N*exptime 

Mark all properties of 
 Φ as non fundamental 

Pick up ϕ that has 
not been marked 
as fundamental 

Φ \{ϕ} - ϕ ? 

Φ = Φ \{ϕ} 

∃ ϕ ∈ Φ 
not marked as 
fundamental? 

Mark ϕ as 
fundamental 

STOP 

N 

Y 

N 

Y 
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Covered 
faults 

Redundancy Analysis 
Formal 

properties 

DUV 
model 

Property 
coverage 

computation 

Model 
perturbation 

DUV 
perturbed 

models 

Property 
redundancy 

analysis 

Property Coverage 
•  Is there a relation between fault detection and property 

coverage? 
–  Properties represent the golden model 

•  They hold on the design implementation 
–  Implementation is perturbed by using a high-level fault 

model 
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Do all properties hold on the perturbed implementations? 

Properties are not able to distinguish between 
faulty and fault-free implementation 
The set of properties is INCOMPLETE ! 
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Redundancy Analysis 
•  Consider 

–  M, the model of the DUV 
–   Φ ={ϕ1, …, ϕm}, the set of properties 
–  F={f1, …, fn}, the set of detectable faults 
–  MF ={Mf1, …, Mfn}, the set of perturbed models 
–  F1, …, Fm, the set of faults detected by ϕ1, …, ϕm 

M = Φ	
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Proof of Conjecture 1 

If Φ \{ϕι} = ϕι then Mfj = Φ \{ϕι} ⇒ Mfj = ϕι	

 

Mfj = ϕι ⇒ Mfj = Φ \{ϕι} 
 

If a fault is detected by ϕι then 
it is also detected by Φ \{ϕι} 
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Consequence 

If a property covers a fault 
that is not covered by any other property then 

it is not logical consequence of the others, 
thus it is not redundant 
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Counterexample of Conjecture 2 

•  Fault model flips 
one by one the 
output of M 
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A B 

00-/00 
010/00 
1--/00 

0--/11 

011/00 

1--/00 

n  ϕ1: G (((r=1) & X((i1=1) & (i2=0))) à XX((o1=0) & (o2=0))) 
n  ϕ2: G (((r=1) & X((i1=0) & (i2=0))) à XX((o1=0) & (o2=0))) 
n  They cover the same set of faults, but neither ϕ1 – ϕ2 nor ϕ2 – ϕ1 
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Consequences 

•  Conjecture 1 
– The methodology provides a necessary 

condition for property minimization 
– Faster than theorem proving 

•  Conjecture 2  
– The methodology does not provide a sufficient 

condition 
–  It depends on the adopted fault model 

17 
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Fault Model Dependency 

•  f cannot be modeled by the “flipping fault model” F 
•  ϕ1 or ϕ2 is redundant for F 

A B 

00-/00 
1--/00 

0--/11 
011/00 

010/10 
f 

1--/00 A B 

00-/00 
010/00 
1--/00 

0--/11 

011/00 

1--/00 

ϕ1: G (((r=1) & X((i1=1) & (i2=0))) à XX((o1=0) & (o2=0))) 
ϕ2: G (((r=1) & X((i1=0) & (i2=0))) à XX((o1=0) & (o2=0))) 

n  ϕ1 detects f while ϕ2 does not         F U { f } shows that ϕ2 = ϕ1  

n  Analogously, there exists fʹ′ ∉ F such that F U { fʹ′ }          ϕ1 = ϕ2  
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Final Methodology 

1.  Computing the property coverage 
2.  Compare the sets of faults detected by 

properties (N properties à N comparisons) 
3.  Mark the set of properties that are surely non 

redundant 
4.  Use a Theorem Prover to analyze remaining 

properties 

Fault Model 

–  Bit failure 
•  a=b       a=f(b) 
•  Each bit can be  

stuck-at 0 or stuck-at 1 

–  Condition failure 
•  If (a==b)       if(f(a==b)) 
•  Each condition can be 

stuck-at T or stuck-at F 

–  Single fault 

–  Output failure 
•  Like bit failure, but only 

on POs 

–  Transition failure 
•  It changes the 

destination state of a 
transition 

–  Multiple faults 
•  Output failure or 

transition failure or 
output + transition failure 
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Experimental Results 
Design 

b01 
b02 
b03 

In 

4 
3 
6 

Out 

2 
1 
4 

#Gates 

1319 
296 
629 

#FF 

5 
4 

30 

Φ	


13 
9 

18 

#BC 

201 
52 

159 

#TF 

536 
161 
81 

b06 4 6 179 9 23 120 812 

#BC+TF 

737 
213 
240 
932 

Design 

b01 

b02 

b03 

NR 

7 

3 

5 

Time(s) 

0.2 

0.3 

22.4 

NR 

4 

4 

3 

Φ	


13 

9 

18 

Time(s) 

0.3 

0.3 

22.5 

NR 

7 

4 

5 

b06 9 8.9 13 23 9.0 13 

Time(s) 

0.5 

0.3 

23.0 

9.2 

BC TF BC+TF 
R 

4 

2 

5 

NR 

9 

7 

13 

1 22 

Experimental Results 

Design 

b01 

b02 

b03 

BC 

8.3 

0.5 

65.9 

Ψ 

13 

9 

18 

TF 

12.6 

0.4 

76.1 

BC+TF 

8.6 

0.6 

66.4 

b06 52.0 23 44.5 44.7 

T.P. 

20.2 

0.8 

98.5 

69.7 

Time (s) 

BC 

58.9 

37.5 

33.1 

TF 

37.6 

50.0 

22.7 

25.4 36.1 

BC+TF 

57.4 

25.0 

32.6 

35.9 

Saving (%) 
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Conclusions 
•  Simulation-based approach… 

– …to analyze logical consequence of properties 
– …to remove redundant properties 

•  It provides 
–  a necessary condition for logical consequence 
– > 30% of saving time with respect to TP 

•  It does not provide 
–  sufficient condition, it depends on the fault model 
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