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Entropy Rates of 
a Stochastic Process

Introduction
The AEP establishes that nH bits are sufficient on the average to describe n 
independent and identically distributed random variables. But, what if the 
random variables are dependent? In particular, what if they form a stationary
process? Our objective is to show that the entropy grows (asymptotically) linearly
with n at a rate H(χ), which we will call entropy rate of a process. 
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Stationary Process
A stochastic process {Xi} is an indexed sequence of random variables. In general, 
there can be an arbitrary dependence among the random variables. The process is
characterized by the joint probability mass functions:
Pr{(X1,X2, . . . , Xn) = (x1, x2, . . . , xn)}= p(x1, x2, . . . , xn), 
with (x1, x2, . . . ,xn) ∈ Xn for n = 1, 2, . . . .

Definition. A stochastic process is said to be stationary if the joint distribution of 
any subset of the sequence of random variables is invariant with respect to shifts
in the time index; that is, 

Pr{X1 = x1,X2 = x2, . . . , Xn = xn} = Pr{X1+l = x1,X2+l = x2 , . . . , Xn+l = xn} 
for every n and every shift l and for all x1, x2, . . . , xn ∈ χ.

Markov Process
A simple example of a stochastic process with dependence is one in which each
random variable depends only on the one preceding it and is conditionally
independent of all the other preceding random variables. Such a process is said to
be Markov.
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Markov Chain
Definition. A discrete stochastic process X1,X2, . . . is said to be a Markov chain
or a Markov process if for n = 1, 2, . . . ,

Pr(Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, . . . , X1 = x1)
= Pr (Xn+1 = xn+1|Xn = xn)

for all x1, x2, . . . , xn, xn+1 ∈ X.

In this case, the joint probability mass function of the random variables
can be written as
p(x1, x2, . . . , xn) = p(x1)p(x2|x1)p(x3|x2) · · · p(xn|xn−1).

Time Invariance
Definition. The Markov chain is said to be time invariant if the conditional
probability p(xn+1|xn) does not depend on n; that is, for n = 1, 2, . . . ,
Pr{Xn+1 = b|Xn = a} = Pr{X2 = b|X1 = a} for all a, b ∈ χ.

We will assume that the Markov chain is time invariant unless otherwise
stated.

If {Xi} is a Markov chain, Xn is called the state at time n. A time-invariant
Markov chain is characterized by its initial state and a probability transition matrix

P = [Pij ], i, j ∈ {1, 2, . . . , m}, where Pij = Pr{Xn+1 = j |Xn = i}.
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Irreducible Markov Chain
If it is possible to go with positive probability from any state of the Markov chain
to any other state in a finite number of steps, the Markov chain is said to be
irreducible. If the largest common factor of the lengths of different paths from a 
state to itself is 1, the Markov chain is said to aperiodic. This means that there are 
not paths having lengths that are multiple one of the other.

If the probability mass function of the random variable at time n is p(xn), the 
probability mass function at time n + 1 is:

Where P is the probability transition matrix, and p(xn) is the probability that the 
random variable is in one of the states of the Markov chain, for example: 
Pr{Xn+1= a}. This means that we can compute the probability of xn+1 by the 
knowledge of P and of p(xn).
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Stationary Distribution
A distribution on the states such that the distribution at time n + 1 is the same as
the distribution at time n is called a stationary distribution. 

The stationary distribution is so called because if the initial state of a Markov
chain is drawn according to a stationary distribution, the Markov chain forms a 
stationary process. If the finite-state Markov chain is irreducible and aperiodic, 
the stationary distribution is unique, and from any starting distribution, the 
distribution of Xn tends to the stationary distribution as n→∞.
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Example
Consider a two state Markov chian with a probability transition matrix:

Let the stationary distribution be represented by a vector µ whose components
are the stationary probabilities of states 1 and 2, respectively. Then the stationary
probability can be found by solving the equation µP = µ or, more simply, by
balancing probabilities. In fact, from the definition of stationary distribution, the 
distribution at time n is equal to the one at time n+1. For the stationary
distribution, the net probability flow across any cut set in the state transition graph
is zero. 
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Example
Referring to the Figure in the previous slide, we obtain:

Since µ1 + µ2 = 1, the stationary distribution is:

If this is true, then it should be true that:
That means:
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Example
If the Markov chain has an initial state drawn according to the stationary
distribution, the resulting process will be stationary. The entropy of the state Xn
at time n is

However, this is not the rate at which entropy grows for H(X1,X2, . . . ,
Xn). The dependence among the Xi’s will take a steady toll.
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Entropy Rate
If we have a sequence of n random variables, a natural question to ask is: How
does the entropy of the sequence grow with n? We define the entropy rate as this
rate of growth as follows.

Definition The entropy of a stochastic process {Xi} is defined by:

when the limit exists.

We now consider some simple examples of stochastic processes and their
corresponding entropy rates.
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Example
1. Typewriter. Consider the case of a typewriter that has m equally likely output 

letters. The typewriter can produce mn sequences of length n, all of them
equally likely. Hence H(X1,X2, . . . , Xn) = logmn and the entropy rate is H(X) 
= logm bits per symbol.

2. X1,X2, . . . , Xn are i.i.d. random variables, then:

3. Sequence of independent but not equally distributed random variables. In this
case:

but the H(Xi) are all not equal. We can choose a sequence of distributions
such that the limit does not exist.
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Conditional Entropy Rate
We define the following quantity related to the entropy rate:

When the limit exists.

The two quantities entropy rate and the previous one correspond to two
different notions of entropy rate. The first is the per symbol entropy rate of the 
n random variables, and the second is the conditional entropy rate of the last
random variable given the past. We now prove that for stationary processes both
limits exist and are equal:

Theorem: For a stationary stochastic process, the limits of H(χ) and H’(χ) exist
and are equal. 
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Existence of the Limit of H’(χ)
Theorem: (Existence of the limit) For a stationary stochastic process,  
H(Xn|Xn-1,...X1) is nonincreasing in n and has a limit H’(χ).

Proof: 

Where the inequality follows from the fact that conditioning reduces entropy
(the first expression is more conditioned than the second one, because there
is not X1 anymore). The equality follows from the stationarity of the process. 
Since H(Xn|Xn-1,...X1) is a decreasing sequence of nonnegative numbers, it
has a limit, H’(χ).
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Equality of H’(χ) and H(χ)
Let’s first recall this result: if an->a and bn= then bn->a. This is
because since most of the terms in the sequence ak are eventually close to a, then
bn, which is the average of the first n terms, is also eventually close to a.

Theorem: (Equality of the limit) By the chain rule,

That is, the entropy rate is the average of the conditional entropies. But we
know that the conditional entropies tend to a limit H’. Hence, by the previous
property, their running average has a limit, which is equal to the limit H’ of the 
terms. Thus, by the existence theorem: 
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Entropy Rate of a Markov Chain
For a stationary Markov chain the entropy rate is given by:

Where the conditional entropy is computed using the given stationary
distribution. Recall that the stationary distribution µ is the solution of the 
equations:

We explicitly express the conditional entropy in the following slide. 
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Conditional Entropy Rate for a SMC
Theorem (Conditional Entropy rate of a MC):  Let {Xi} be a SMC with stationary
distribution µ and transition matrix P. Let X1 ~µ. Then the entropy rate is:

Proof:

Example (Two state MC): The entropy rate of the two state Markov chain in the 
previous example is:

If the Markov chain is irreducible and aperiodic, it has unique stationary
distribution on the states, and any initial distribution tends to the stationary
distribution as n grows. 
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Example: ER of Random Walk
As an example of stochastic process lets take the example of a random walk on a connected
graph. Consider a graph with m nodes with weight Wij≥0 on the edge joining node i with
node j. A particle walk randomly from node to node in this graph.

The random walk is Xm is a sequence of vertices of the graph. Given Xn=i, the next vertex j 
is choosen from among the nodes connected to node i with a probability proportional to the 
weight of the edge connecting i to j. 

Thus,  
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ER of a Random Walk
In this case the stationary distribution has a surprisingly simple form, which we
will guess and verify. The stationary distribution for this MC assigns probability to
node i proportional to the total weight of the edges emanating from node i. Let:

Be the total weight of edges emanating from node i and let

Be the sum of weights of all the edges. Then . We now guess that the 
stationary distribution is:
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ER of Random Walk
We check that µP=µ:

Thus, the stationary probability of state i is proportional to the weight of edges
emanating from node i. This stationary distribution has an interesting property of 
locality: It depends only on the total weight and the weight of edges connected to
the node and therefore it does not change if the weights on some other parts of 
the graph are changed while keeping the total weight constant.
The entropy rate can be computed as follows:
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ER of Random Walk
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If all the edges have equal weight, , the stationary distribution puts weight Ei/2E 
on node i, where Ei is the number of edges emanating from node i and E is the 
total number of edges in the graph. In this case the entropy rate of the random
walk is:

Apparently the entropy rate, which is the average transition entropy, depends
only on the entropy of the stationary distribution and the total number of edges
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Example
Random walk on a chessboard. Let’s king move at random on a 8x8 chessboard. 
The king has eight moves in the interior, five moves at the edges and three
moves at the corners. Using this and the preceding results, the stationary
probabilities are, respectively, 8/420, 5/420 and 3/420, and the entropy rate is
0.92log8. The factor of 0.92 is due to edge effects; we would have an entropy rate 
of log8 on an infinite chessboard. Find the entropy of the other pieces for
exercize!

It is easy to see that a stationary random walk on a graph is time reversible; that
is, the probability of any sequence of states is the same forward or backward:

The converse is also true, that is any time reversible Markov chain can be
represented as a random walk on an undirected weighted graph.
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