
1

Bounds on Code Length
Theorem: Let l∗1, l∗2, . . . , l∗m be optimal codeword lengths for a source
distribution p and a D-ary alphabet, and let L∗ be the associated expected length
of an optimal code. Then

there is an overhead that is at most 1 bit, due to the fact that log 1/pi is not
always an integer. We can reduce the overhead per symbol by spreading it out
over many symbols. With this in mind, let us consider a system in which we send
a sequence of n symbols from X.
The symbols are assumed to be drawn i.i.d. according to p(x). We can consider
these n symbols to be a supersymbol from the alphabet Xn. Define Ln to be the
expected codeword length per input symbol, that is, if l(x1, x2, . . . , xn) is the
length of the binary codeword associated with (x1, x2, . . . , xn) (for the rest of this
part, we assume that D = 2, for simplicity), then

1)()(* +<≤ XHLXH DD

),...,(1),...,(),...,(1
212121 nnnn XXXEl

n
xxxlxxxp

n
L == ∑

Bounds on Code Length
We can now apply the bounds derived above to the code:

Since X1,X2, . . . , Xn are i.i.d., H(X1,X2, . . .,Xn) = H(Xi) = nH(X). Dividing by n
we obtain:

Hence, by using large block lengths we can achieve an expected codelength per
symbol arbitrarily close to the entropy. We can use the same argument for a
sequence of symbols from a stochastic process that is not necessarily i.i.d. In this
case, we still have the bound

1),...,(),...,(),...,(212121 +≤≤ nnn XXXHXXXElXXXH

n
XHLXH n

1)()(+<≤

1),...,(),...,(),...,(212121 +≤≤ nnn XXXHXXXElXXXH

2

Bounds on Code Length
Dividing by n again and defining Ln to be the expected description length per
symbol, we obtain

If the stochastic process is stationary, then H(X1,X2, . . . , Xn)/n → H(X), and
the expected description length tends to the entropy rate as n→∞. Thus, we have
the following theorem:

Theorem The minimum expected codeword length per symbol satisfies

Moreover, if X1,X2, . . . , Xn is a stationary stochastic process,

where H(χ) is the entropy rate of the process. This theorem provides another
justification for the definition of entropy rate: it is the expected number of bits
per symbol required to describe the process.

nn
XXXHL

n
XXXH n

n
n 1),...,(),...,(2121 +<≤

nn
XXXHL

n
XXXH n

n
n 1),...,(),...,(21*21 +<≤

)(* χHLn →

McMillan
We have proved that any instantaneous code must satisfy the Kraft inequality.
The class of uniquely decodable codes is larger than the class of instantaneous
codes, so one expects to achieve a lower expected codeword length if L is
minimized over all uniquely decodable codes. In this section we prove that the
class of uniquely decodable codes does not offer any further possibilities for the
set of codeword lengths than do instantaneous codes.

Theorem (McMillan) The codeword lengths of any uniquely decodable D-ary
code must satisfy the Kraft inequality.

Conversely, given a set of codeword lengths that satisfy this inequality, it is
possible to construct a uniquely decodable code with these codeword lengths.

Moreover, a uniquely decodable code for an infinite source alphabet χ also
satisfies the Kraft inequality.

3

McMillan
The theorem implies a rather surprising result: that the class of uniquely
decodable codes does not offer any further choices for the set of codeword
lengths than the class of prefix codes.

The set of achievable codeword lengths is the same for uniquely decodable and
instantaneous codes. Hence, the bounds derived on the optimal codeword
lengths continue to hold even when we expand the class of allowed codes to the
class of all uniquely decodable codes.

An optimal (shortest expected length) prefix code for a given distribution can be
constructed by a simple algorithm discovered by Huffman. We will prove that
any other code for the same alphabet cannot have a lower expected length than
the code constructed by the algorithm.

Example 1
Example Consider a random variable X taking values in the set X = {1, 2, 3, 4,
5} with probabilities 0.25, 0.25, 0.2, 0.15, 0.15, respectively. We expect the
optimal binary code for X to have the longest codewords assigned to the symbols
4 and 5. These two lengths must be equal, since otherwise we can delete a bit
from the longer codeword and still have a prefix code, but with a shorter
expected length.
In general, we can construct a code in which the two longest codewords differ

only in the last bit. For this code, we can combine the symbols 4 and 5 into a
single source symbol, with a probability assignment 0.30. Proceeding this way,
combining the two least likely symbols into one symbol until we are finally left
with only one symbol, and then assigning codewords to the symbols, we obtain
the following table:

This code has average length 2.3 bits.

4

Example 2
Consider a ternary code for the same random variable. Now we combine the
three least likely symbols into one supersymbol and obtain the following table:

This code has average length 1.5
ternary digits.

If D ≥ 3, we may not have a sufficient number of symbols so that we can
combine them D at a time. In such a case, we add dummy symbols to the end of
the set of symbols. The dummy symbols have probability 0 and are inserted to
fill the tree. Since at each stage of the reduction, the number of symbols is
reduced by D − 1, we want the total number of symbols to be 1 + k(D − 1),
where k is the number of merges. Hence, we add enough dummy symbols so
that the total number of symbols is of this form. For example:

Example

This code has average length 1.5 ternary digits.

5

The Game of “20 Questions”
The game “20 questions” works as follows. Suppose that we wish to find the
most efficient series of yes–no questions to determine an object from a class of
objects. Assuming that we know the probability distribution on the objects, can
we find the most efficient sequence of questions? We first show that a sequence
of questions is equivalent to a code for the object. Any question depends only on
the answers to the questions before it. Since the sequence of answers uniquely
determines the object, each object has a different sequence of answers, and if we
represent the yes–no answers by 0’s and 1’s, we have a binary code for the set of
objects. The average length of this code is the average number of questions for
the questioning scheme.

Also, from a binary code for the set of objects, we can find a sequence of
questions that correspond to the code, with the average number of questions
equal to the expected codeword length of the code. The first question in this
scheme becomes: Is the first bit equal to 1 in the object’s codeword?

Huffman Codes and “20 Questions”
Since the Huffman code is the best source code for a random variable, the
optimal series of questions is that determined by the Huffman code. In the
Example 1 the optimal first question is:

Is X equal to 2 or 3? The answer to this determines the first bit of the Huffman
code. Assuming that the answer to the first question is “yes,” the next question
should be “Is X equal to 3?”, which determines the second bit. However, we
need not wait for the answer to the first question to ask the second. We can ask
as our second question “Is X equal to 1 or 3?”, determining the second bit of the
Huffman code independent of the first. The expected number of questions EQ
in this optimal scheme satisfies

1)()(+<≤ XHEQXH

6

Huffman coding and “slice” questions
(Alphabetic codes).

We have described the equivalence of source coding with the game of 20
questions. The optimal sequence of questions corresponds to an optimal source
code for the random variable.

However, Huffman codes ask arbitrary questions of the form “Is X ∈ A?” for
any set A ⊆ {1, 2, . . . , m}.

Now we consider the game “20 questions” with a restricted set of questions.
Specifically, we assume that the elements of X = {1, 2, . . .,m} are ordered so that
p1 ≥ p2 ≥ · · · ≥ pm and that the only questions allowed are of the form “Is X >
a?” for some a.

Alphabetic Codes
The Huffman code constructed by the Huffman algorithm may not correspond
to slices (sets of the form {x : x < a}).

If we take the codeword lengths (l1 ≤ l2 ≤ · · · ≤ lm) derived from the Huffman
code and use them to assign the symbols to the code tree by taking the first
available node at the corresponding level, we will construct another optimal code.

However, unlike the Huffman code itself, this code is a slice code, since each
question (each bit of the code) splits the tree into sets of the form {x : x > a}
and {x : x < a}.

7

Example
Example Consider the Example 1. The code that was constructed by the
Huffman coding procedure is not a slice code.

But using the codeword lengths from the Huffman procedure, namely, {2, 2, 2, 3,
3}, and assigning the symbols to the first available node on the tree, we obtain
the following code for this random variable:

1 → 00, 2 → 01, 3 → 10, 4 → 110, 5 → 111

It can be verified that this code is a slice code, codes known as alphabetic codes
because the codewords are ordered alphabetically.

Huffman and Shannon Codes
Using codeword lengths of log 1/pi (which is called Shannon coding) may be much
worse than the optimal code for some particular symbol.

For example, consider two symbols, one of which occurs with probability 0.9999
and the other with probability 0.0001. Then using codeword lengths of log 1/pi
gives codeword lengths of 1 bit and 14 bits, respectively.

The optimal codeword length is obviously 1 bit for both symbols. Hence, the
codeword for the infrequent symbol is much longer in the Shannon code than in
the optimal code.

Is it true that the codeword lengths for an optimal code are always less than
log 1/pi ? The following example illustrates that this is not always true.

⎡ ⎤

⎡ ⎤

⎡ ⎤

8

Example
Consider a random variable X with a distribution (1/3, 1/3, 1/4, 1/12). The
Huffman coding procedure results in codeword lengths of (2, 2, 2, 2) or (1, 2, 3,
3), depending on where one puts the merged probabilities.

Both these codes achieve the same expected codeword length. In the second
code, the third symbol has length 3, which is greater than log 1/p3 .

Thus, the codeword length for a Shannon code could be less than the codeword
length of the corresponding symbol of an optimal (Huffman) code.

⎡ ⎤

This example also illustrates the fact that the set of codeword lengths for an
optimal code is not unique (there may be more than one set of lengths with the
same expected value).

Although either the Shannon code or the Huffman code can be shorter for
individual symbols, the Huffman code is shorter on average.

Also, the Shannon code and the Huffman code differ by less than 1 bit in
expected codelength (since both lie between H and H + 1.)

9

Fano Codes
Fano proposed a suboptimal procedure for constructing a source code, which is
similar to the idea of slice codes. In his method we first order the probabilities in
decreasing order. Then we choose k such that

is minimized. This point divides the source symbols into two sets of almost equal
probability. Assign 0 for the first bit of the upper set and 1 for the lower set.

Repeat this process for each subset. By this recursive procedure, we obtain a
code for each source symbol. This scheme, although not optimal in general,
achieves L(C) ≤ H(X) + 2.

||
11 ∑∑ +==

−
m

ki i
k

i i pp

