Acknowledgements

- **Credits**
 - *Part of the course material is based on slides provided by the following authors*
 - Pietro Michiardi, Jimmy Lin
Basic example: Word count

- Assume to have a large collection of texts
 - e.g., Web pages from the whole Internet

- We would like to count how many times each word is mentioned all over the collection
 - it represents the basis for more complex computations, such as frequencies, pairings, etc

- Assuming that the collection is distributed among N machines, how would you proceed?

In a single machine, the solution is trivial
- final output: [(fog, 3), (winter, 2), (and, 4), ...]

With multiple machines
1. Use the solution for the single machine in each machine
 - intermediate output: [(fog, 3), (winter, 2), (and, 4), ...]
2. Join the results collected from the different machines and produce the final output
 - final output: [(tree, 8), (fog, 13), (cold, 3), (winter, 6), (and, 22), ...]
Divide and Conquer

Word count: pseudo-code

```java
1: class Mapper
2:    method Map(docid a, doc d)
3:       for all term t ∈ doc d do
4:          Emit(term t, count 1)
1: class Reducer
2:    method Reduce(term t, counts [c1, c2, ...])
3:       sum ← 0
4:       for all count c ∈ counts [c1, c2, ...] do
5:          sum ← sum + c
6:       Emit(term t, count sum)
```

- The two computational steps materializes into two methods, Map and Reduce
- MapReduce is then a programming model
- These two methods are included in a framework that takes care of different aspects
Parallel computing: Concerns

- A parallel system needs to provide:
 - Data distribution
 - Computation distribution
 - Fault tolerance
 - Job scheduling

 The execution framework should hide these system-level details
 - Separate the what from the how
 - MapReduce abstracts away the “distributed” part of the system
 - MapReduce is then an execution framework

What is MapReduce

- A programming model:
 - Inspired by functional programming
 - Allows expressing distributed computations on massive amounts of data

- An execution framework:
 - Designed for large-scale data processing
 - Designed to run on clusters of commodity hardware
The Programming Model

MapReduce: Programming model

- MapReduce is a new use of an old idea in Computer Science

- Map: Apply a function to every object in a list
 - Each object (e.g. document) is independent
 - Order is unimportant
 - Maps can be done in parallel
 - The function produces an intermediate result

- Reduce: Combine the intermediate results to produce a final result
What can we do with MapReduce?

- There are several important problems that can be adapted to MapReduce
 - Inverted indexing (web search), graph algorithms (PageRank),...

- The key point is how to design algorithms with the MapReduce programming model
 - We will show some “design patterns”
 - How to transform a problem and its input
 - How to save memory and bandwidth in the system

Data structures

- Key-value pairs are the basic data structure
 - Keys and values can be: integers, float, strings, raw bytes
 - E.g.: for a collection of Web pages, input keys may be URLs and values may be the HTML content
 - They can also be arbitrary data structures

- The design of MapReduce algorithms involves:
 - Imposing the key-value structure on arbitrary datasets
 - E.g.: for a collection of Web pages, input keys may be URLs and values may be the HTML content
 - In some algorithms, input keys are not used, in others they uniquely identify a record
 - Keys can be combined in complex ways to design various algorithms
MapReduce jobs

- The programmer defines a mapper and a reducer as follows:
 - map: \((k_1, v_1) \rightarrow [(k_2, v_2)]\)
 - reduce: \((k_2, [v_2]) \rightarrow [(k_3, v_3)]\)

- A MapReduce job consists in:
 - A dataset, stored on the underlying distributed filesystem, which is split in a number of blocks across machines
 - The mapper, applied to every input key-value pair to generate intermediate key-value pairs
 - The reducer, applied to all values associated with the same intermediate key to generate output key-value pairs

Where the magic happens

- Implicit between the map and reduce phases is a distributed “group by” operation on intermediate keys
 - Intermediate data arrive at each reducer in order, sorted by the key
 - No ordering is guaranteed across reducers

- Output keys from reducers are written back to the distributed filesystem
 - The output may consist of \(r\) distinct files, where \(r\) is the number of reducers
 - Such output may be the input to a subsequent MapReduce phase

- Intermediate keys are transient:
 - They are not stored on the distributed filesystem
 - They are “spilled” to the local disk of each machine in the cluster
A Simplified view of MapReduce

The Execution Framework
MapReduce: Execution framework

- MapReduce program, a.k.a. a job:
 - Code of mappers and reducers
 - Code for combiners and partitioners (optional)
 - Configuration parameters
 - All packaged together

- A MapReduce job is submitted to the cluster
 - The framework takes care of everything else
 - Next, we will delve into (some) details

Scheduling

- Each Job is broken into tasks
 - Map tasks work on fractions of the input dataset, as defined by the underlying distributed filesystem
 - Reduce tasks work on intermediate inputs and write back to the distributed filesystem

- The number of tasks may exceed the number of available machines in a cluster
 - The scheduler takes care of maintaining something similar to a queue of pending tasks to be assigned to machines with available resources

- Jobs to be executed in a cluster requires scheduling as well
 - Different users may submit jobs
 - Jobs may be of various complexity
 - Fairness is generally a requirement
Data/code co-location

- How to feed data to the code
 - In MapReduce, this issue is intertwined with scheduling and the underlying distributed filesystem

- How data locality is achieved
 - The scheduler starts the task on the node that holds a particular block of data required by the task
 - If this is not possible, tasks are started elsewhere, and data will cross the network
 - Note that usually input data is replicated
 - Distance rules help dealing with bandwidth consumption
 - Same rack scheduling

Synchronization

- In MapReduce, synchronization is achieved by the “shuffle and sort” barrier
 - Intermediate key-value pairs are grouped by key
 - This requires a distributed sort involving all mappers, and taking into account all reducers
 - If you have m mappers and r reducers this phase involves up to m \times r copying operations

- IMPORTANT: the reduce operation cannot start until all mappers have finished
 - This is different from functional programming that allows “lazy” aggregation
 - In practice, a common optimization is for reducers to pull data from mappers as soon as they finish
Errors and faults

The MapReduce framework deals with:

- **Hardware failures**
 - Individual machines: disks, RAM
 - Networking equipment
 - Power / cooling
- **Software failures**
 - Exceptions, bugs
- **Corrupt and/or invalid input data**

Programming model: Optimizations
Local aggregation

- In the context of data-intensive distributed processing, the most important aspect of synchronization is the **exchange of intermediate results**
 - This involves copying intermediate results from the processes that produced them to those that consume them
 - In general, this involves **data transfers over the network**
 - In Hadoop, also disk I/O is involved, as intermediate results are written to disk

- Network and disk latencies are expensive
 - Reducing the amount of intermediate data translates into algorithmic efficiency

- Combiners and preserving state across inputs
 - Reduce the number and size of key-value pairs to be shuffled

Combiners

- Combiners are a general mechanism to reduce the amount of intermediate data
 - They could be thought of as “mini-reducers”

- Back to our running example: word count
 - Combiners aggregate term counts across documents processed by each map task
 - If combiners take advantage of all opportunities for local aggregation we have at most \(m \times V \) intermediate key-value pairs
 - \(m \): number of mappers
 - \(V \): number of unique terms in the collection
 - Note: due to Zipfian nature of term distributions, not all mappers will see all terms
Combiners: an illustration

In general, the code is very similar to the reducer’s code
- sometimes it is possible to use the reducers themselves
 - but this is not always true

The execution of the combiners is not under control of the programmer
- e.g., when the combiners are called
In-Mapper Combiners

- In-Mapper Combiners, a possible improvement

- Use an associative array to cumulate intermediate results
 - The array is used to sum up term counts within a single document
 - The Emit method is called only after all InputRecords have been processed

- Example (see next slide)
 - The code emits a key-value pair for each unique term in the document

In-Mapper Combiners: example

```java
1: class MAPPER
2:   method MAP(docid a, doc d)
3:     H ← new AssociativeArray
4:     for all term t ∈ doc d do
5:       H{t} ← H{t} + 1 // Tally counts for entire document
6:     for all term t ∈ H do
7:       Emit(term t, count H{t})
```
In-Memory Combiners

- Taking the idea one step further
 - Exploit implementation details in Hadoop
 - A Java mapper object is created for each map task
 - JVM reuse must be enabled

- Preserve state within and across calls to the Map method
 - Initialize method, used to create a across-map persistent data structure
 - Close method, used to emit intermediate key-value pairs only when all map task scheduled on one machine are done

In-Memory Combiners: example

1: class MAPPER
2: method INITIALIZE
3: H ← new ASSOCIATIVEARRAY
4: method MAP(docid a, doc d)
5: for all term t ∈ doc d do
6: H{t} ← H{t} + 1
7: method CLOSE
8: for all term t ∈ H do
9: Emitted(term t, count H{t}) → Tally counts across documents
In-Memory Combiners: Considerations

- **Precautions**
 - In-memory combining breaks the functional programming paradigm due to state preservation
 - Preserving state across multiple instances implies that algorithm behavior might depend on execution order
 - Ordering-dependent bugs are difficult to find

- **Scalability bottleneck**
 - The in-memory combining technique strictly depends on having sufficient memory to store intermediate results
 - And you don’t want the OS to deal with swapping
 - Multiple threads compete for the same resources