Università degli studi di Verona

Corsi di laurea in Matematica Applicata, Informatica e Informatica Multimediale Prova scritta di Matematica di Base — 19 marzo 2007

matricola				nome				. с	ognome		
	Cors	so di Lau	ırea in 🛚	Informat	ica	nformati	ca Mul	t. Mate	ematica .	Appl.	
	itte solo	su que	sti fogli,								a. Le soluzioni usare il retro,
	1	2	3	4	5	6	7	8	9	Tot	

1) Si consideri la seguente relazione sull'insieme **Z** dei numeri interi

$$R = \{ (a,b) \mid a,b \in \mathbb{Z}, 5 \text{ divide } a - b \}.$$

Dimostrare che R è una relazione d'equivalenza. Trovare le seguenti classi d'equivalenza: $[6]_R$ e $[11]_R$. Quante sono le classi d'equivalenza individuate da R?

2) Mostrare che $R = \{(1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (2,4), (2,5), (2,6), (2,7), (3,6), (3,5), (3,7), (4,5), (6,7), (4,6), (4,7), (5,7), \}$ è una relazione d'ordine stretto sull'insieme $\{1,2,3,4,5,6,7\}$. Determinare gli elementi massimali, minimali, eventuali massimo, minimo, maggioranti, minoranti, estremo superiore e estremo inferiore del sottoinsieme $\{2,3,4\}$.

3) Dimostrare per induzione che, per $n \ge 1$, $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$

- 4) Si risponda alle seguenti domande, motivando le risposte:
 - (1) Quando un insieme è numerabile?
 - (2) L'insieme dei numeri interi dispari è numerabile? Perché?
 - (3) L'insieme C dei numeri complessi è numerabile? Perché?

1	,
/1	
4	•

- (1) Dare le definizione di funzione iniettiva
- (2) Dimostrare che se $f: A \to B$ è iniettiva, allora $f \circ f^{-1} = id_{Im(f)}$

5) Si consideri la struttura $\mathfrak{N}=(\mathbf{N},\{\equiv,\prec\},\{\oplus,\otimes\},\{0,I\})$, dove \mathbf{N} denota l'insieme dei numeri naturali, \equiv la relazione binaria di essere lo stesso numero, \prec , \oplus e \otimes rispettivamente l'ordine, l'addizione e la moltiplicazione tra numeri naturali, θ e I i numeri zero e uno.

Sia \mathcal{L} un linguaggio adatto alla struttura i cui simboli propri siano i predicati =, <; i simboli per funzione +, × e s; i simboli per costante $\mathbf{0}$ e $\mathbf{1}$.

Nel linguaggio \mathcal{L} si scriva una formula $\varphi(v_0, v_1)$ con le sole variabili libere indicate tale che $\mathfrak{N} \models \varphi(v_0, v_1)[a, b]$ se e solo se a - 2b non è multiplo di 4 e il prodotto di a e b è divisibile per 3.

6) Dire che cosa significa che una formula ϕ è valida. Dire cosa significa che la formula ϕ è conseguenza logica di una formula β . Dimostrare che, per ogni scelta delle formule α e β ,

$$\models \to \land \alpha\beta \lor \beta\alpha$$

7) In un linguaggio in cui c'è un simbolo di relazione binaria Q e un simbolo di funzione unaria f, dire quali delle seguenti successioni di simboli sono formule (F), quali termini (T) e quali nulla (N); in quest'ultimo caso scrivere nell'ultima colonna una breve giustificazione.

	F	T	Ν
$\neg Qffv_1fv_2v_3$			
$\to \land Q v_0 f v_1 \forall v_1 Q v_1 v_2$			
$Qv_1v_2Qv_0v_1$			
$\wedge \forall v_0 f v_1 Q v_0 v_1$			
$fffv_3$			
$\neg \lor \forall v_0 Q v_0 f v_1 Q v_0 v_1$			
$\wedge \to \neg \forall v_1 Q v_0 v_1 Q f v_0 f v_1 \neg Q v_3 f v_4$			
$\wedge f v_1 f v_0$			
$\wedge \wedge \forall Q v_0 f v_1 \neg Q v_0 v_1 Q f v_1 f v_2$			

8) Sia $f: \mathbf{R} \to \mathbf{R}$ definita da:

$$f(x) = \begin{cases} -(x-1)^2 & x \le 1\\ \ln x & x \ge 1 \end{cases}$$

Dire se f è una funzione da \mathbf{R} in \mathbf{R} e, in caso positivo, dire se f è totale, iniettiva, suriettiva. Esiste l'inversa di f? In caso affermativo, trovare f^{-1} .

9) Siano $f,g: \mathbf{R} \to \mathbf{R}$ definite da

$$f(x) = \ln \frac{x - 1}{x} \qquad g(x) = \sqrt{e^x - 1}$$

- (1) Trovare l'insieme di definizione di f e l'insieme di definizione di g. (2) Determinare le funzioni composte $f \circ g$ e $g \circ f$, specificandone gli insiemi di definizione.