
Edge detection



Edge detection

• Goal: identify objects in images
– but also feature extraction, multiscale analysis, 3D reconstruction, 

motion recognition, image restoration, registration

• Classical definition of the edge detection problem: localization of 
large local changes in the grey level image → large graylevel
gradients
– This definition does not apply to apparent edges, which require a more 

complex definition

• Contours are very important perceptual cues!
– They provide a first saliency map for the interpretation of image 

semantics



Contours as perceptual cues



Contours as perceptual cues



Edge detection

• Image locations with abrupt 
changes → differentiation → high 
pass filtering ],[ nmf Intensity profile
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Basic edge detection methods

Signal

First 
derivative

Second 
derivative

Gradient thresholding

Zero-crossing of the 
second order derivative



Types of edge detectors

• Unsupervised or autonomous: only rely on local image features
– No contextual information is accounted for
– Simple to implement, flexible, suitable for generic applications
– Not robust

• Supervised or contextual: exploit other sources of information
– Some a-priori knowledge on the semantics of the scene
– Output of other kinds of processing
– Less flexible
– More robust

• There is no golden rule: the choice of the edge detection strategy 
depends on the application



Edge detection: algorithm

1. Smoothing of the image 
– To reduce the impact of noise and the number of spurious (non 

meaningful) edges
– To regularize the differentiation

2. Calculation of first and second order derivatives
– Isolation of high spatial frequencies
– Required features: invariance to rotations, linearity
– Critical point: choice of the scale

3. Labeling
– Plausibility measure for the detected point belonging to a contour (to 

get rid of false edges)



What do we detect?

• Depending on the impulse response of the filter, we can detect 
different types of graylevel discontinuities
– Isolate points (pixels)
– Lines with a predefined slope
– Generic contours

• However, edge detection implies the evaluation of the local gradient 
and corresponds to a (directional) derivative



Detection of Discontinuities

• Point Detection

Detected point



Detection of Discontinuities

1R 2R 3R 4R

• Line detection



Detection of Discontinuities
• Line Detection Example:



Profiles of image intensity edges



Image gradient

• The gradient of an image

• The gradient points in the direction of most rapid change in intensity

• The gradient direction is given by

• The edge strength is given by the gradient magnitude



Gradient vector



Gradient vector
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Simplest row/col gradient approximations
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The discrete gradient

• How can we differentiate a digital image f[x,y]?
– Option 1:  reconstruct a continuous image, then take gradient
– Option 2:  take discrete derivative (finite difference)

– Discrete approximation
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Diagonal gradients

• Robert’s cross-difference operator
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Gradients by convolutions

• The gradient calculation is a neighborhood operation, so it can be 
put in matrix notations

– Hrow/col: row and column impulse response arrays
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Derivative of convolution

• The derivative of a convolution is equal to the convolution of either 
of the functions with the derivative of the other 

• Iterating

( ) ( ) ( )h x f x g x
dh df dgg f
dx dx dx

= ∗

= ∗ = ∗

2 2

2 2

( ) ( ) ( )h x f x g x
d h d df d fg g

dx dxdx dx

= ∗

⎛ ⎞= ∗ = ∗⎜ ⎟
⎝ ⎠



Intuition

• Intuition (OP)
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Remark

• The order in which differentiation and smoothing are performed 
depends on their properties. 
– Such operations are interchangeable as long as they are linear. Thus, if 

both smoothing and differentiation are performed by linear operators 
they are interchangeable

– In this case they can be performed at the same time by filtering the 
image with the differentiation of the smoothing filter

• Laplacian of Gaussian



Smoothing+Differentiation

Look for peaks in 



Differentiation of the smoothing filter



Gradient filters

• Pixel differences

• Symmetric differences

• Roberts

• Prewitt

• Sobel
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Example: Sobel
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Sobel extentions
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truncated pyramid Sobel 7x7



Original Sobel filtered

Example
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Prewitt

• Kirsch operator
– 8 directional masks, each selecting one specific direction
– “winner takes all” paradigm for the absolute value of the gradient and direction 

selected by the index of the corresponding mask

• Robinson operator
– 8 directional masks, similar to Kirsh



S1 =

-1

-1

1
-1

1
1

0
0
0

S3
=

1

-1

1
0

-1

0
1
0
-1

S2 =

0

-1

1
-1

0
1

1
0
-1

S4 =

1

0

0
1

-1
-1

1
0
-1

S5 =

1

1

-1
1

-1
-1

0
0
0

S6 =

0

1

-1
1

0
-1

-1
0
1

S7
=

-1

1

-1
0

1
0

-1
0
1

S8 =

-1

0

0
-1

1
1

-1
0
1

Directional masks



Sobel

Kirsch

Prewitt

Roberts Robinson



Prewitt 7x7

Prewitt 3x3

Sobel 3x3 Sobel 7x7



Gradient thresholding
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Second order derivative

• Edge detectors based on first order derivative are not robust
– High sensitivity to noise, need a threshold

• Second order derivative operators detect the edge at the zero-
crossing of the second derivative → more robust, more precise
– Less sensitive to noise, don’t need a threshold
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Laplace operator

• Second order differentiation operator

• Directional derivative
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Laplace operator

• Second order derivative in the continuous domain

• Discrete approximation
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Discrete approximation: proof

• Centering the estimation on (i,j), the simplest approximation is to 
compute the difference of slopes along each axis
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Discrete approximation

– The 4-neighbors Laplacian is often normalized to provide unit gain 
averages of the positive and negative weighted pixels in the 3x3
neighborhood

– Gain normalized 4-neighbors Laplacian

– The weights of the pixels in the neighborhood, and thus the 
normalization coefficient, can be changed to emphasize the edges. Ex. 
Prewitt modified Laplacian
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Discrete approximation

– Gain normalized separable 8 neighbors Laplacian
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Other formulation

• Without sign change after the evaluation of the Laplacian
– However, the sign is meaningless if we evaluate the modulus of the 

gradient

• Different possible Laplacian matrices
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Remarks

• Quite often the zero crossing does not happen at a pixel location
– See the example of the step edge

• It is common choice to locate the edge at a pixel with a positive 
response having a neighbor with a negative response 

• Laplacian of Gaussian: Marr&Hildrith have proposed an operator in 
which Gaussian shaped smoothing is performed prior to the 
application of the Laplacian

Continuous LoG gradient
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LoG operator

• As a result of the linearity of the second derivative operator and of 
the convolution

• It can be shown that
– The convolution (1) can be performed separately along rows and cols
– It is possible to approximate the LOG impulse response closely by a 

difference of Gaussians (DOG) operator
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The LoG operator
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• How to choose σ?
– Large values: pronounced smoothing → better denoising BUT smear out sharp 

boundaries reducing the precision in edge localization
– Small values: soft smoothing → lower noise reduction BUT better boundary 

preservation
– A good solution could be to follow a multiscale approach (σ is the scale)



LoG filtering

• Gaussian smoothing (low-pass filter)
– Noise reduction (the larger the filter, the higher the smoothing)
– BUT

• Smears out edges
• Blurs the image (defocusing)

• Laplacian detection (high-pass filter)

• Edge location by interpolation
– The zero-crossing does not happen in a pixel site

LoG filtering = Gaussian smoothing + Laplacian detection
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11x11 LoG



LoG

• Independent variables
– s value: larger values allow larger denoising but smear out details and 

made contour extraction not quite precise

• Solutions
– Trade off
– Multiscale



2D edge detection filters
Laplacian of GaussianGaussian derivative of Gaussian



LoG: example
• The Laplacian of a Gaussian filter

A digital approximation:
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Second derivative

• Laplacian of Gaussian: (LoG) –
Mexican Hat

• Laplacian of Gaussian: Link to 
early vision: the 2D Mexican Hat 
closely resembles the receptive 
field of simple cells in the retina →
edge detection is one of the first 
steps in vision
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Laplacian zero-crossing detection

• Zero-valued Laplacian response pixels are unlikely in real images

• Practical solution: form the maximum of all positive Laplacian
responses and the minimum of all Laplacian responses in a 3x3 
window. If the difference between the two exceeds a threshold an 
edge is assumed to be present.

• Laplacian zero-crossing patterns
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Laplacian of Gaussian (LoG)

Laplacian of Gaussian
operator

Zero-crossings of bottom graph



Effects of noise

• Consider a single row or column of the image
– Plotting intensity as a function of position gives a signal



Revisiting Line detection

• Possible filters to find gradients along vertical and horizontal
directions

This gives more importance to the 
center point.

Averaging provides noise 
suppression



Edge Detection



Edge Detection



Edge Detection

One simple method to find zero-
crossings is black/white thresholding:
1. Set all positive values to white
2. Set all negative values to black
3. Determine the black/white 
transitions.

Compare (b) and (g):
•Edges in the zero-crossings image is 
thinner than the gradient edges.
•Edges determined by zero-crossings 
have formed many closed loops. 



Edge detection: Gradient thresholding
Prewitt filter: decreasing the threshold



Edge detection: Gradient thresholding
Prewitt filter: decreasing the threshold
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(a) Input image; (b) Laplacian of (a); (c) Spatially invariant high-pass filtering [sum of (a) and 
(b)]; (d) Mask image [Sobel gradient of (a) smoothed by a 5x5 box filter]; (e) Product of (b) 
and (d); (f) Space-variant enhancement [sum of (a) and (e)]. 



Multiscale edge detection

• The information obtained by filtering the image at different scales is 
combined to determine the edge map
– scale ↔ width (sigma parameter) of the filter

• Different possibilities
– Adapting the filter bandwidth to the local characteristics of the image 

(Wiener)
– Combining edge maps obtained at different scales

• Canny algorithm
– Smoothing (allows for different scales)
– Gradient maxima
– Two thresholds to detect both weak and strong edges. Weak edges are 

retained if they are connected to strong ones (labeling)
– Less sensible to noise



Canny algorithm

• Based on a 1D continuous model of a step edge of amplitude hE
plus additive Gaussian noise of amplitude σn

• The impulse response of the filter h(x) is assumed to be FIR and
antisymmetric

• First order derivative: the edge is located at the local maxima of

• A threshold has to be chosen

• Criterion: the Canny operator impulse response h(x) is chosen to
satisfy three criteria
– Good detection
– Good localization
– Single response

( ) ( )f x h x∗



Step edge model

• Parameters
– Edge direction (tangent to the curve)
– Normal direction (vector orthogonal to the contour at edge location)
– Local contrast (edge strength)
– Edge location (along the normal direction)
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Detection

• Criterion: The amplitude of the Signal to Noise Ratio (SNR) of the 
gradient is maximized for good detection
– to obtain low probability of failure to mark edge points (false negative 

rate) and low probability to mark non-edge points (false positive rate)
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Localization

• Criterion: Edge points marked by the ed operator must be as close 
as possible to the center of the edge

• Localization factor
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Single response (qui)

• Criterion: There should be only a single response to a true edge
– The distance between peaks of the gradient when only noise is present 

is set to

• Global criterion: maximization of the product S(h)L(h) subject to (2)
– Constrained maximization
– Note: a large filter (W) improves detection (better denoising) BUT 

reduces the precision in localization
– No close form solution, numerical ones are adopted
– For low xm, h(x) resembles the boxcar, while for larger xm it is closely 

approximated by a FDOG (first derivative of Gaussian)

mx kW= (2)



Example



Example

threshold = 0.5



Performance assessment

• Possible errors
– False negatives (an edge point is present but it is not detected)
– False positives (a non-edge point  is detected)
– Error in the estimation of the orientation
– Error in the localization of the edge

• Paradigms
– Use of synthetic images + noise with known parameters
– Tests on sets of real images



Performance evaluation

Objective

• The ground truth is assumed to be 
available and represented by the 
actual contour (full reference 
metric)

• Concerns low level features
– Measure to which extent the 

estimated contour represents the 
actual contour

• Metric: MSE among the estimated 
(f[j,k]) and the real (s[j,k]) edges

Subjective

• The ground truth is not necessarily 
given (reduced or no-reference 
metric)

• Concerns high-level features
– Measures to which extent the 

estimated contour allows to 
identify the corresponding object 
in the image

– Focus on semantics or image 
content

• Metric: subjective scores given to 
the different algorithms

• Lead to perception-based models 
and metrics



Objective assessment

• 1D case

A common strategy in signal detection theory is to establish a bound on 
the probability of false detection resulting from noise and then try to 
maximize the probability of true signal detection

• When applied to edge detection, this translates in setting a the
minimum value of the threshold such that the FP rate does not 
exceed the predefined bound. Then the probability of true edge 
detection can be calculated by a coincidence comparison of the 
edge maps of the ideal versus the real edge detectors

• 2D case
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Performance assessment: Figure of Merit

• Types of errors

• Detection
– Missing valid edge points (False Negative)
– Failure to localize edge points
– Classification of noise fluctuations as edge points (False Positives)

• Localization
– Error in estimating the edge angle; 

• Mean square distance of the edge estimate from the true edge

• Accuracy
– Algorithm's tolerance to distorted edges and other features such as 

corners and junctions



Performance assessment: Figure of Merit
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Filters competition

• A possible classification strategy
– Synthetic image

• 64x64 pixels
• vertical oriented edge with variable slope and contrast
• added Gaussian noise of variance σn

• Control parameter SNR=(h/ σn), h being the normalize edge value (0<h<=1)
– Filter threshold: maximize the FM constrained to maximum bound for 

false detection rate
• False detection=false positives
• Probability to detect an edge when no edge is present

• See figure 15.5-11 and 12, Pratt

along a line



Subjective evaluation

• Task: “Give a score to the 
detected edges”

• Many trials
– The experiment is repeated at 

least two times for each subject

• Many subjects
– A sufficiently high number of 

subjects must participate in the 
experiment to make data analysis 
significant from the statistical point 
of view

• Output: {scores}

• Data analysis



Color images

• Different approaches
– An edge is present iif there is a gradient in the luminance
– An edge exists if there is a gradient in any of the tristimulus components
– “Total gradient” above a predefined threshold

– “Vector sum gradient” above a predefined threshold

1 2 3( , ) ( , ) ( , ) ( , )G j k G j k G j k G j k= + +

{ }1/ 222 2
1 2 3( , ) ( , ) ( , ) ( , )

( , ) : i-th linear or non-linear tristimulus valuei

G j k G j k G j k G j k

G j k

= + +







Opponent Color Model

• Perception is mediated by opponent color channelsopponent color channels
–– EvidencesEvidences

•• AfterimagesAfterimages
•• Certain colors cannot be perceived simultaneously (i.e. no Certain colors cannot be perceived simultaneously (i.e. no reddishreddish--greengreen or or 

bluishbluish--yellowyellow))

Example of typical center-surround antagonistic receptive fields: (a) on-center
yellow-blue receptive fields; (b) on-center red-green receptive fields.

(a) (b)

Because of the fact that the L, M and S cones have different spectral sensitivities, are in different 
numbers and have different spatial distributions across the retina, the respective receptive fields have 
quite different properties. 



Opponent color channels

• As a convenient simplification, the existence of three types of color receptive fields is 
assumed, which are called opponent channels.opponent channels.

• The black-white or achromatic achromatic channel results from the sum of the signals coming 
from L and M cones (L+M). It has the highest spatial resolution.

• The redred--green green channel is mainly the result of the M cones signals being subtracted 
from those of the L cones (L-M). Its spatial resolution is slightly lower than that of the 
achromatic channel (L+M). 

• Finally the yellowyellow--blueblue channel results from the addition of L and M and subtraction of
S cone signals. It has the lowest spatial resolution.

Cone interconnections in 
the retina leading to 
opponent color channels



Color representation in Lab
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Opponent Colors

3 4



R

G B



L

a b



Watershed Segmentation Algorithm
• Visualize an image in 3D: spatial coordinates and gray levels. 

• In such a topographic interpretation, there are 3 types of points:
– Points belonging to a regional minimum
– Points at which a drop of water would fall to a single minimum. ( The catchment basin

or watershed of that minimum.)
– Points at which a drop of water would be equally likely to fall to more than one minimum. 

( The divide lines or watershed lines.)

Watershed 
lines



Watershed Segmentation Algorithm
• The objective is to find watershed lines.
• The idea is simple: 

– Suppose that a hole is punched in each regional minimum and that the entire 
topography is flooded from below by letting water rise through the holes at a uniform 
rate.

– When rising water in distinct catchment basins is about the merge, a dam (diga) is built 
to prevent merging. 

– Dam boundaries correspond to the watershed lines.  



Watershed Segmentation Algorithm



Watershed Segmentation Algorithm



Watershed Segmentation Algorithm

• Start with all pixels with the lowest possible value.
– These form the basis for initial watersheds

• For each intensity level k:
– For each group of pixels of intensity k

• If adjacent to exactly one existing region, add these pixels to that region
• Else if adjacent to more than one existing regions, mark as boundary
• Else start a new region



Watershed algorithm might be used on the gradient image instead of the 
original image.

Watershed Segmentation Algorithm



Due to noise and other local irregularities of the gradient, over-segmentation 
might occur.

Watershed Segmentation Algorithm



A solution is to limit the number of regional minima. Use markers to specify 
the only allowed regional minima. 

Supervised Watershed Segmentation



A solution is to limit the number of regional minima. Use markers to specify 
the only allowed regional minima. (For example, gray-level values might be 
used as a marker.)

Watershed Segmentation Algorithm


