
IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 1

Sequential logic implementation

 Implementation
 random logic gates and FFs
 programmable logic devices (PAL with FFs)

 Design procedure
 state diagrams
 state transition table
 state assignment
 next state functions

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 2

Median filter FSM

 Remove single 0s between two 1s (output = NS3)

000

0

1

0

100

010 110

111 011001

1

1

1
1

1

1

0

0

0

0

0

Reset

I PS1 PS2 PS3 NS1 NS2 NS3
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 0 1 0
0 1 0 1 X X X
0 1 1 0 0 1 1
0 1 1 1 0 1 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 1 1
1 0 1 1 1 1 1
1 1 0 0 1 1 0
1 1 0 1 X X X
1 1 1 0 1 1 1
1 1 1 1 1 1 1

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 3

Median filter FSM (cont’d)

 Realized using the standard procedure and individual
FFs and gates

I PS1 PS2 PS3 NS1 NS2 NS3
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 0 1 0
0 1 0 1 X X X
0 1 1 0 0 1 1
0 1 1 1 0 1 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 1 1
1 0 1 1 1 1 1
1 1 0 0 1 1 0
1 1 0 1 X X X
1 1 1 0 1 1 1
1 1 1 1 1 1 1

NS1 = Reset’ (I)
NS2 = Reset’ (PS1 + PS2 I)
NS3 = Reset’ PS2
O = PS3

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 4

Median filter FSM (cont’d)

 But it looks like a shift register if you look at it right

000

0

1

0

100

010 110

111 011001

1

1

11

1
1

0

0

0

0

0

Reset000

0

1

0

100

010 110

111 011001

1

1

1
1

1

1

0

0

0

0

0

Reset

101

1

0

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 5

Median filter FSM (cont’d)

 An alternate implementation with S/R FFs

 The set input (S) does the median filter function by making the
next state 111 whenever the input is 1 and PS2 is 1 (1 input to
state x1x)

R = Reset
S = PS2 I
NS1 = I
NS2 = PS1
NS3 = PS2
O = PS3Out

CLK

D Q

R S

D Q

R S

D Q

R S

In

Reset

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 6

D Q

Q

Implementation using PALs

 Programmable logic building block for sequential logic
 macro-cell: FF + logic

 D-FF
 two-level logic capability like PAL (e.g., 8 product terms)

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 7

D0 = reset'(Q0'N + Q0N' + Q1N + Q1D)
D1 = reset'(Q1 + D + Q0N)
OPEN = Q1Q0

Vending machine example (Moore
PLD mapping)

DQ

DQ

DQ

Q0

Q1

Open

Com

Seq

Seq

CLK

N

D

Reset

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 8

OPEN = reset'(Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D)

Vending machine (synch. Mealy PLD
mapping)

OPEN

DQ

DQ

DQ

Q0

Q1

Open

Seq

Seq

Seq

CLK

N

D

Reset

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 9

22V10 PAL

 Combinational logic
elements (SoP)

 Sequential logic
elements (D-FFs)

 Up to 10 outputs
 Up to 10 FFs
 Up to 22 inputs

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 10

22V10 PAL Macro Cell

 Sequential logic element + output/input selection

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 11

Light Game FSM

 Tug of War game
 7 LEDs, 2 push buttons (L, R)

LED
(3)

LED
(2)

LED
(1)

LED
(0)

LED
(6)

LED
(5)

LED
(4)

RESET

RR

L

R

L

R

L

R

LL

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 12

Light Game FSM Verilog
module Light_Game (LEDS, LPB, RPB, CLK, RESET);

input LPB ;

input RPB ;

input CLK ;

input RESET;

output [6:0] LEDS ;

reg [6:0] position;

reg left;

reg right;

always @(posedge CLK)
begin
 left <= LPB;
 right <= RPB;
 if (RESET) position <= 7'b0001000;
 else if ((position == 7'b0000001) || (position == 7'b1000000)) ;
 else if (L) position <= position << 1;
 else if (R) position <= position >> 1;
end

endmodule

 wire L, R;

assign L = ~left && LPB;

assign R = ~right && RPB;

assign LEDS = position;

combinational logic

sequential logic

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 13

Example: traffic light controller

 A busy highway is intersected by a little used farmroad
 Detectors C sense the presence of cars waiting on the farmroad

 with no car on farmroad, light remain green in highway direction
 if vehicle on farmroad, highway lights go from Green to Yellow to Red, allowing the

farmroad lights to become green
 these stay green only as long as a farmroad car is detected but never longer than a

set interval
 when these are met, farm lights transition from Green to Yellow to Red, allowing

highway to return to green
 even if farmroad vehicles are waiting, highway gets at least a set interval as green

 Assume you have an interval timer that generates:
 a short time pulse (TS) and
 a long time pulse (TL),
 in response to a set (ST) signal.
 TS is to be used for timing yellow lights and TL for green lights

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 14

highway

farm road

car sensors

Example: traffic light controller
(cont’)
 Highway/farm road intersection

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 15

Example: traffic light controller
(cont’)
 Tabulation of inputs and outputs

inputs description outputs description
reset place FSM in initial state HG, HY, HR assert green/yellow/red highway lights
C detect vehicle on the farm road FG, FY, FR assert green/yellow/red highway lights
TS short time interval expired ST start timing a short or long interval
TL long time interval expired

 Tabulation of unique states – some light configurations imply others

state description
HG highway green (farm road red)
HY highway yellow (farm road red)
FG farm road green (highway red)
FY farm road yellow (highway red)

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 16

Example: traffic light controller
(cont’)
 State diagram

Reset

TS'

TS / ST

(TL•C)'

TL•C / ST

TS'

TS / ST

(TL+C')'

TL+C' / ST

HG

FG

FYHY

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 17

Inputs Present State Next State Outputs
C TL TS ST H F
0 – – HG HG 0 Green Red
– 0 – HG HG 0 Green Red
1 1 – HG HY 1 Green Red
– – 0 HY HY 0 Yellow Red
– – 1 HY FG 1 Yellow Red
1 0 – FG FG 0 Red Green
0 – – FG FY 1 Red Green
– 1 – FG FY 1 Red Green
– – 0 FY FY 0 Red Yellow
– – 1 FY HG 1 Red Yellow

SA1: HG = 00 HY = 01 FG = 11 FY = 10
SA2: HG = 00 HY = 10 FG = 01 FY = 11
SA3: HG = 0001 HY = 0010 FG = 0100 FY = 1000 (one-hot)

output encoding – similar problem
to state assignment
(Green = 00, Yellow = 01, Red = 10)

Example: traffic light controller
(cont’)
 Generate state table with symbolic states
 Consider state assignments

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 18

Logic for different state assignments

 SA1
NS1 = C•TL'•PS1•PS0 + TS•PS1'•PS0 + TS•PS1•PS0' + C'•PS1•PS0 + TL•PS1•PS0
NS0 = C•TL•PS1'•PS0' + C•TL'•PS1•PS0 + PS1'•PS0

ST = C•TL•PS1'•PS0' + TS•PS1'•PS0 + TS•PS1•PS0' + C'•PS1•PS0 + TL•PS1•PS0
H1 = PS1 H0 = PS1'•PS0
F1 = PS1' F0 = PS1•PS0‘

 SA2
NS1 = C•TL•PS1' + TS'•PS1 + C'•PS1'•PS0
NS0 = TS•PS1•PS0' + PS1'•PS0 + TS'•PS1•PS0

ST = C•TL•PS1' + C'•PS1'•PS0 + TS•PS1
H1 = PS0 H0 = PS1•PS0'
F1 = PS0' F0 = PS1•PS0

 SA3
NS3 = C'•PS2 + TL•PS2 + TS'•PS3 NS2 = TS•PS1 + C•TL'•PS2
NS1 = C•TL•PS0 + TS'•PS1 NS0 = C'•PS0 + TL'•PS0 + TS•PS3

ST = C•TL•PS0 + TS•PS1 + C'•PS2 + TL•PS2 + TS•PS3
H1 = PS3 + PS2 H0 = PS1
F1 = PS1 + PS0 F0 = PS3

IX - Sequential Logic Technology© Copyright 2004, Gaetano Borriello and Randy H. Katz 19

Sequential logic implementation
summary
 Models for representing sequential circuits

 finite state machines and their state diagrams
 Mealy, Moore, and synchronous Mealy machines

 Finite state machine design procedure
 deriving state diagram
 deriving state transition table
 assigning codes to states
 determining next state and output functions
 implementing combinational logic

 Implementation technologies
 random logic + FFs
 PAL with FFs (programmable logic devices – PLDs)

