Riconoscimento e recupero dell'informazione per bioinformatica

Classificazione: validazione

Manuele Bicego

Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona

Introduzione

- ⇒ Validazione del classificatore:
 - ⇒ Capire se il sistema di classificazione disegnato rappresenta una buona scelta
 - ⇒ In questo caso, tipicamente, si va a misurare quanto "buono" è un sistema in termini di capacità di classificare
 - ⇒ Non si considerano in questa fase altri fattori, come usabilità, efficienza, velocità, portabilità, accettabilità, etc etc
- ⇒ Spesso utilizzato per comparare diverse possibili scelte
 - ⇒ Es. In questo problema, è meglio Parzen Windows o KNN?
- ⇒ Ci sono diversi modi per validare un classificatore, ma l'obiettivo principale è misurare la "capacità di generalizzazione"

Capacità di generalizzazione

DEFINIZIONE di capacità di generalizzazione: capacità di classificare correttamente anche oggetti sconosciuti (non presenti nel training set)

- ⇒ Dipende da come si è costruito il sistema di classificazione
 - ⇒ Scelta del modello e dei suoi parametri, ampiezza e completezza del training set, metodo di addestramento, etc etc

Capacità di generalizzazione

NOTA: non è detto che classificare bene gli oggetti presenti nel training set implichi una buona capacità di generalizzazione

MEMORIZZARE VS APPRENDERE

Overtraining: il sistema ha imparato talmente bene i pattern del training set che non è più in grado di generalizzare (ha memorizzato, non ha appreso)

Capacità di generalizzazione

- ➡ Quindi, è buona norma, per testare la capacità di generalizzazione, avere a disposizione un altro insieme, chiamato TESTING SET (non utilizzato per costruire il classificatore):
 - ⇒ Insieme che contiene oggetti del problema
 - ⇒ Oggetti per cui si conosce la classe "vera"

Il testing set è utilizzato per "testare" le capacità discriminative del classificatore costruito

.... ma cosa vuol dire "testare"?

Testing

Diversi approcci, il più semplice implica di "contare gli errori" sul testing set

- ⇒ Si prende ogni oggetto del testing set
- ⇒ Lo si classifica con il classificatore appena costruito
- ⇒ Si confronta la classe assegnata dal classificatore con la classe vera (che si conosce a priori)
 - ⇒ Se non coincidono si ha un errore
- ⇒ Si determina la percentuale di errore su tutto il testing set

Testing

Esempio: dieci oggetti nel testing set

Classe Vera	Classe Assegnata	Errore?
1	1	Corretto
1	1	Corretto
1	1	Corretto
1	2	ERRORE
1	1	Corretto
2	1	ERRORE
2	2	Corretto
2	2	Corretto
2	2	Corretto
2	1	ERRORE

Errore di classificazione 3/10 = 0.3 (30%)

Come ottenere il Testing Set

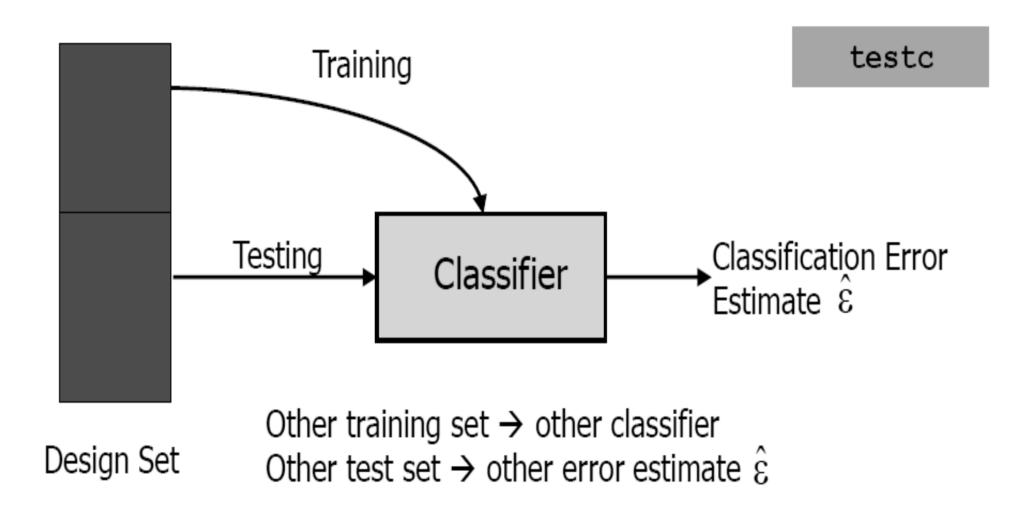
SOLUZIONE IDEALE:

- ⇒ riestrarre altri esempi dal problema (nuovo campionamento) e utilizzarli per testare il sistema (o meglio, mettere il sistema "in funzione")
 - purtroppo questo può risultare troppo dispendioso o non fattibile

SOLUZIONE ADOTTATA IN PRATICA:

- ⇒ suddividere l'insieme a disposizione in due parti
 - ⇒ utilizzare una parte per costruire (addestrare) il sistema di classificazione
 - ⇒ utilizzare l'altra parte per testare
 - ⇒ (In questo modo il sistema è testato su oggetti che non ha mai visto)

Come ottenere il Testing Set

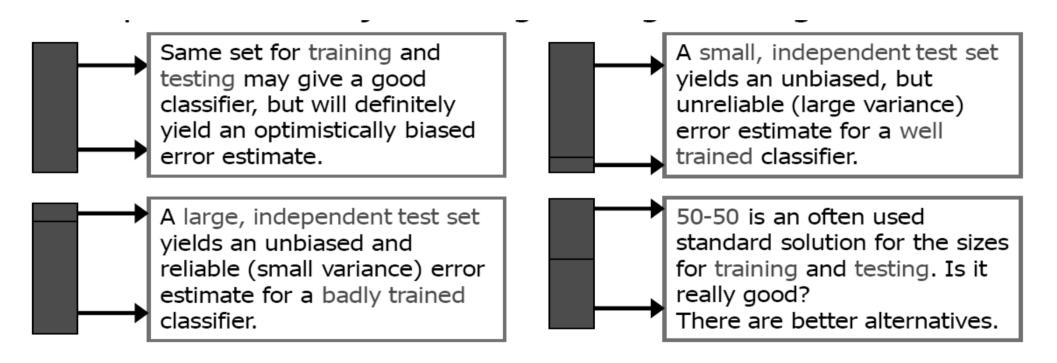


La Cross Validation

- Metodo più utilizzato per la suddivisione tra training e testing
- ➡ Tipicamente utilizzato anche per fare confronti tra diverse soluzioni:
 - ⇒ Confronto tra diversi classificatori
 - ⇒ Esempio: (KNN) vs (SVM)
 - ⇒ Confronto tra diverse versioni di un classificatore
 - ⇒ Esempio: (SVM con kernel rbf) vs (SVM con kernel lineare)
 - ⇒ Confronto tra diverse parametrizzazioni
 - \Rightarrow Esempio: (KNN con K=1) vs (KNN con K=3)

La Cross Validation

Come effettuare la suddivisione



Occorre trovare un compromesso tra dimensione del training (efficacia dell'addestramento) e dimensione del testing (significatività della stima dell'errore)

l 1

La Cross Validation

□ Diverse varianti:

- **⇒** Holdout
- ⇒ Averaged Holdout
- ⇒ Leave One-Out
- □ Leave K-Out

⇒ Holdout

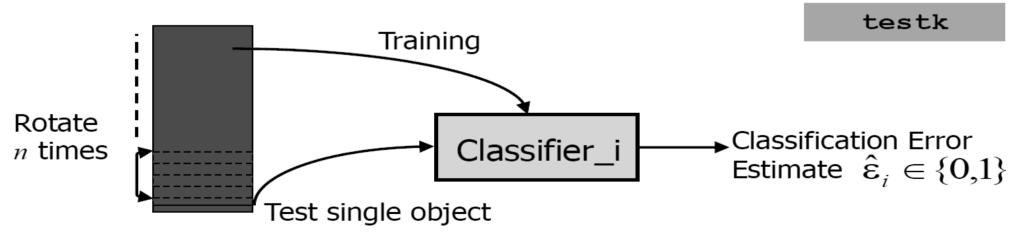
- ⇒ L'insieme dei dati viene partizionato casualmente in due sottoinsiemi disgiunti di eguale dimensione;
- ⇒ uno dei due sottoinsiemi viene utilizzato come Training e l'altro come Testing;

⇒ Averaged Holdout

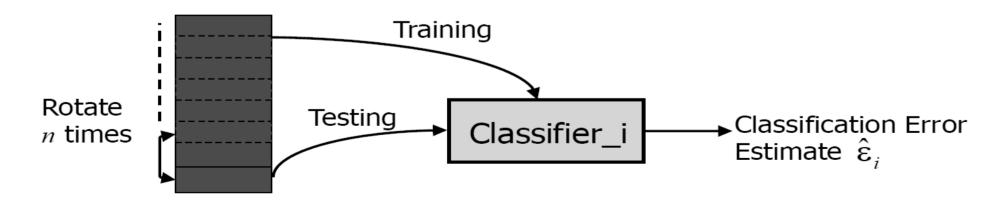
- ⇒ per rendere il risultato meno dipendente dalla partizione scelta, si mediano i risultati calcolati su più partizioni holdout;
- ⇒ le partizioni sono costruite casualmente, oppure in modo esaustivo;

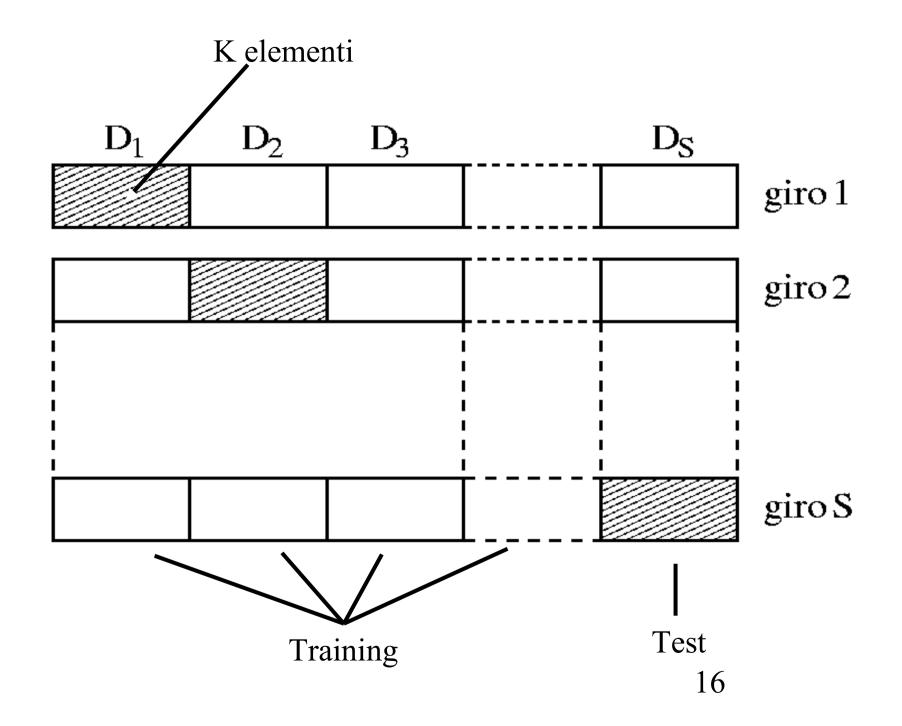
Leave One-Out: dato un insieme di dati X (che contiene N elementi):

- ⇒ Si sceglie un oggetto xi
- ⇒ Si utilizza X\{xi} (tutti gli elementi tranne xi) per costruire il classificatore
- ⇒ Si testa il classificatore con xi
- ⇒ Si ripete l'operazione per tutti gli xi possibili e si media il risultato finale



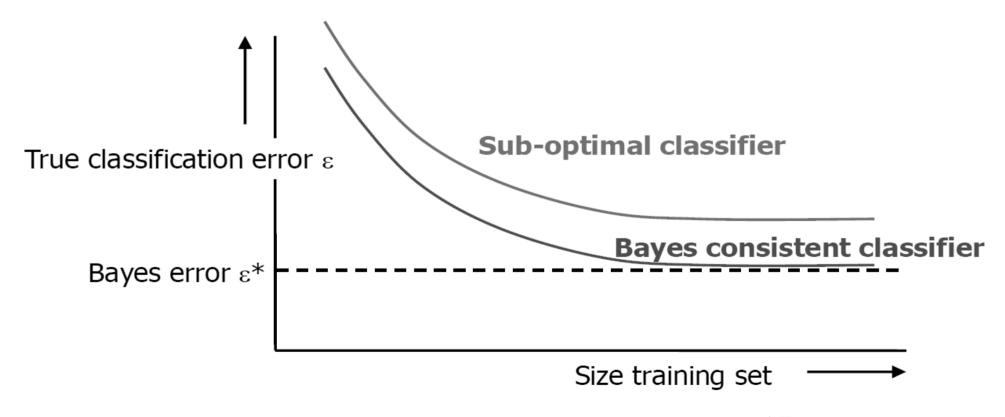
- ⇒ Leave K-Out (o S-fold cross validation):
 generalizzazione della tecnica precedente;
 - ⇒ l'idea è quella di suddividere l'insieme dei dati in S segmenti distinti e casuali;
 - ⇒ si realizza il classificatore utilizzando S-1 segmenti, mentre lo si testa utilizzando il segmento rimanente;
 - questa operazione viene effettuata S volte, variando a turno il segmento del Test Set;
 - ⇒ infine la capacità di generalizzazione viene mediata tra gli S risultati.





Altri Strumenti: learning curves

⇒ Variazione dell'errore al variare della dimensione del training set



Altri strumenti

Nota: l'errore di classificazione non sempre ci permette di capire o confrontare completamente due classificatori

ESEMPIO

Vera	Asse- gnata
1	1
1	1
1	1
1	1
1	1
1	1
1	1
2	1
2	1
2	1

Classificatore 1: assegno un oggetto sempre alla prima classe

ERRORE: 3/10 = 0.3 (30%)

Vera	Asse- gnata	
1	1	
1	2	
1	2	Classificatore 2
1	1	
1	1	ERRORE:
1	1	
1	1	3/10 = 0.3 (30%)
2	2	
2	2	
2	1	

L'errore è uguale, ma i classificatori sono molto diversi!

Matrici di confusione

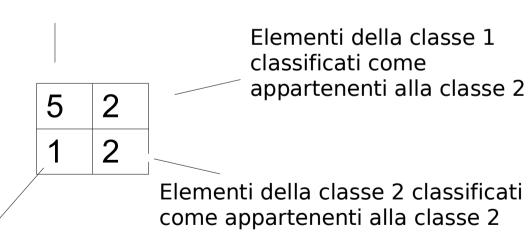
A(i,j) = numero di elementi della classe i classificati come

elementi della classe j

ESEMPIO

vera	Asse- gnata
1	1
1	2
1	2
1	1
1	1
1	1
1	1
2	2
2	2
2	1

Elementi della classe 1 classificati come appartenenti alla classe 1



Elementi della classe 2 classificati come appartenenti alla classe $\frac{1}{1}$ 9

Matrici di confusione

- ⇒ L'errore di classificazione può essere calcolato facilmente dalla matrice di confusione
 - ⇒ La somma di tutti gli elementi fuori dalla diagonale
 - ⇒ O, meglio, può essere calcolato come "1-accuratezza"
 - ⇒ Accuratezza: somma degli elementi della diagonale/numero elementi totali

Matrici di confusione per problemi a 2 classi

⇒ Nel caso di problema a due classi la matrice di confusione assume una forma particolare (2 classi, positivi vs negativi)

ESEMPIO: classificazione tra malati (positivi) e sani (negativi)

True	False
Positive	Negative
(TP)	(FN)
False	True
Positive	Negative
(FP)	(TN)

- ⇒ CLASSIFICAZIONE CORRETTA:
 - ⇒ Veri positivi: pazienti malati classificati come malati
 - ⇒ Veri negativi: pazienti sani classificati come sani
- ⇒ CLASSIFICAZIONE ERRATA:
 - ⇒ Falsi positivi: pazienti sani classificati come malati
 - ⇒ Falsi negativi: pazienti malati classificati come sani

Indici

⇒ Dalla matrice di confusione possono essere calcolati diversi indici

Indice	Formula	Intuizione
Accuracy	TP + TN $TP + FP + TN + FN$	Percentuale di classificazioni corrette
Precision	TP TP + FP	Percentuale di classificazioni positive che sono corrette
Recall (Sensitivity)	TP TP + FN	Percentuale di elementi positivi del testing set che sono stati classificati come positivi
Specificity	TN TN + FP	Percentuale di elementi negativi del testing set che sono stati classificati come negativi

Precision: se dico "positivo", faccio giusto?

Recall: riesco a trovare tutti i positivi del testing set?

Indice	Formula
Accuracy	TP + TN $TP + FP + TN + FN$
Precision	TP TP + FP
Recall (Sensitivity)	TP $TP + FN$
Specificity	TN $TN + FP$

Vera	Asse- gnata
1	1
1	1
1	1
1	1
1	1
1	1
1	1
2	1
2	1
2	1

Matrice di confusione

TP: 7	FN: 0
FP: 3	TN: 0

Accuracy: 7/10 (0.7)

Precision: 7/10 (0.7)

Recall: 7/7 (1)

Specificity: 0/3 (0)

Vera	Asse- gnata
1	1
1	2
1	2
1	1
1	1
1	1
1	1
2	2
2	2
2	1

Matrice di confusione

TP: 5	FN: 2
FP: 1	TN: 2

Accuracy: 7/10 (0.7)

Precision: 5/6 (0.83)

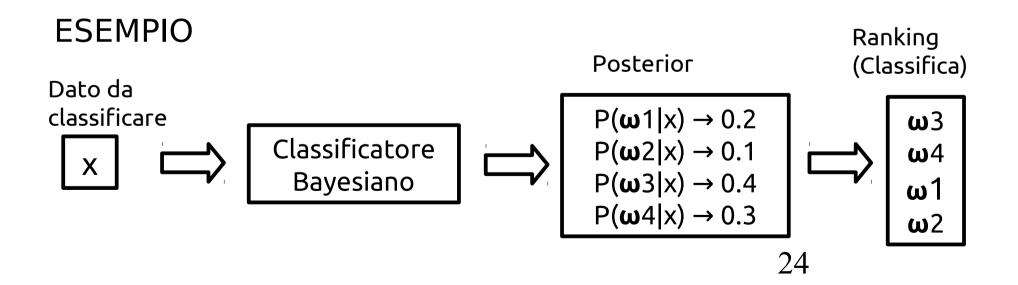
Recall: 5/7 (0.71)

Specificity: 2/3 (0.66)

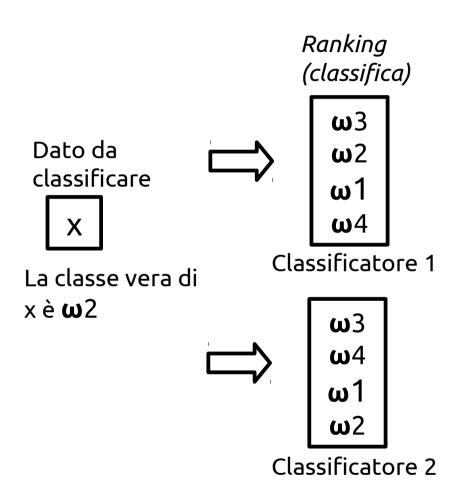
La curva CMC

NOTA: con le tecniche viste finora non viene fornita nessuna informazione sulla "gravità" degli errori ("errore lieve" oppure "errore grave"?)

□ Informazione cruciale!



La curva CMC



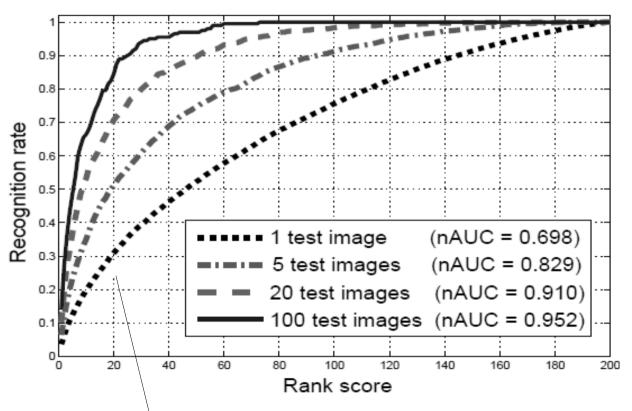
Nota: la classe vera di x è 2, quindi entrambi i classificatori sbagliano.

Ma il classificatore 1 sbaglia di poco (ha messo la classe 2 al secondo posto nella sua classifica), mentre il classificatore 2 sbaglia di molto (mette la classe 2 all'ultimo posto)

Il sistema di "contare gli errori" non permette di effettuare questa analisi → si usa la curva CMC

La curva CMC

Curva che in posizione **n** conta la frequenza con cui la classe corretta viene trovata entro le prime **n** posizioni del ranking

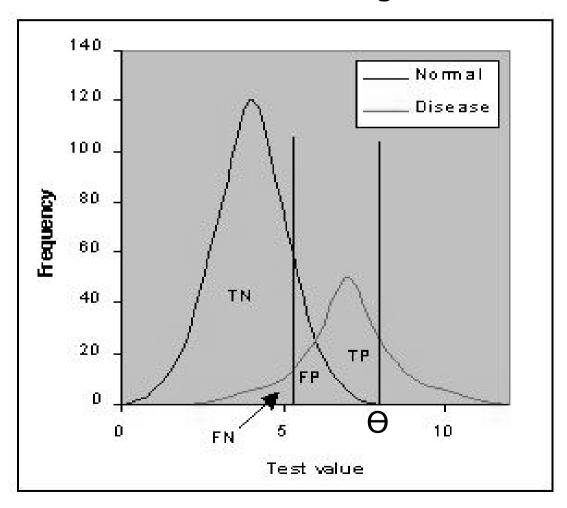


In prima posizione c'è l'errore di classificazione (numero di volte che la classe corretta è stata trovata al primo posto)

Percentuale di volte che il classificatore ha trovato la classe corretta nelle prime 20 del suo ranking 26

Un altro strumento: la curva ROC

⇒ Sistema molto utilizzato per valutare un classificatore binario basato su soglia

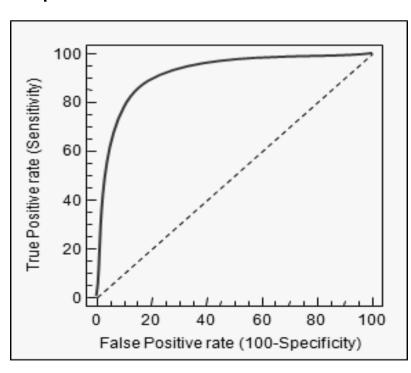


Variando la soglia θ si ottengono diversi valori di TP, TN, FP e FN

Esempio: con il valore di O verde i Falsi Positivi sono a zero

La curva ROC

- ⇒ La curva ROC mette in relazione la specificity con la sensitivity al variare della soglia
 - ⇒ Fissata una soglia, quanti sono i veri positivi rispetto ai falsi positivi?

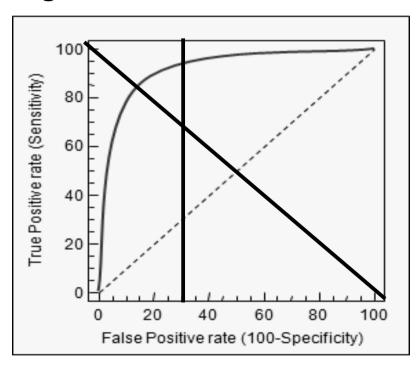


Come si calcola:

Si fa variare la soglia calcolando i corrispondenti veri positivi e falsi positivi, che rappresentano un punto della curva

Il valore minimo/massimo della soglia è quello per cui sono tutti falsi positivi o tutti veri positivi

A seconda di come si vuole operare si sceglie la soglia

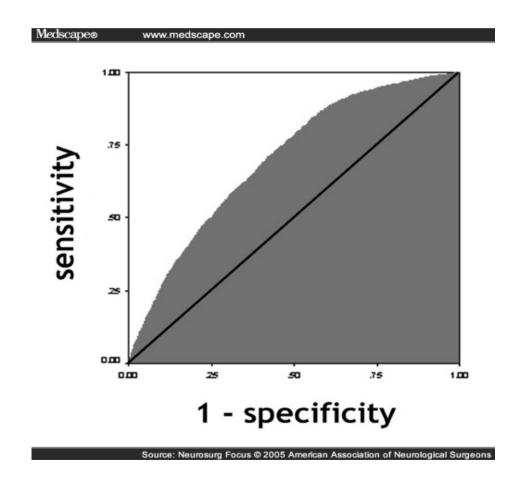


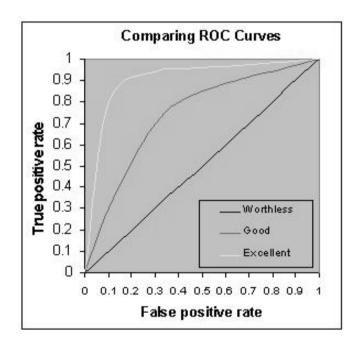
Esempio 1: Sensitivity al 95%, si ottiene un corrispondente valore di Specificity (70%)

Esempio 2: Sensitivity = 100 - Specificity, si chiama Equal Error Rate

L'area sotto la curva ROC

⇒ Si possono confrontare curve ROC calcolando l'area sotto la curva (AUC – Area Under the Curve)





Un AUC più grande implica un classificator 60 migliore

Significatività statistica

Esempio:

- ⇒ Si hanno due classificatori: KNN e SVM
- ⇒ Si calcola l'errore con Averaged Holdout (30 ripetizioni)
- ⇒ KNN ha un errore medio (sulle 30 ripetizioni) di 0.15, SVM ha 0.12

Possiamo dire che SVM è meglio di KNN?

No, senza un'analisi della significatività statistica! (mi dice se questi risultati sono sensati o sono dettati dal caso)

Significatività statistica

- Diversi metodi per determinare la significatività statistica
 - ⇒ T-test, anova, standard error of the mean, ...
- ➡ Il più semplice: la deviazione standard (radice quadrata della media)

Se si assume che l'errore calcolato sia gaussiano, allora la deviazione standard ci fornisce dei limiti di significatività

ESEMPIO:

KNN: errore medio 0.15, $\sigma = 0.005$ SVM: errore medio 0.12, $\sigma = 0.001$

Sono significativamente diversi!

