20/01/2008

ARCH |

Overview of parallel architectures

Implicit Parallelism: Superscalar
Processors

* Issue varying numbers of instructions per clock

— statically scheduled
¢ using compiler techniques
* in-order execution

— dynamically scheduled
¢ Extracting ILP by examining 100’s of instructions
¢ Scheduling them in parallel as operands become available
¢ Rename registers to eliminate anti dependences
* out-of-order execution
¢ Speculative execution




Pipelining Execution

IF: Instruction fetch
EX : Execution

ID : Instruction decode

WB : Write back

Cycles
Instruction # 1 2 3 4 5 6 7 8
Instruction 1 IF ID EX | WB
Instruction i+1 IF D EX | WB
Instruction 1+2 IF ID EX | WB
Instruction i+3 IF ID EX | WB
Instruction 1+4 IF 1D EX | WB

Super-Scalar Execution

Cycles
Instruction type 1 2 3 4 5 6 7
Integer IF D EX | WB
Floating pomt IF D EX | WB
Integer IF ID EX | WB
Floating pomnt IF ID EX | WB
Integer IF D EX | WB
Floating pomnt IF ID EX | WB
Integer IF 1D EX | WB
Floating pomt IF D EX | WB

2-issue super-scalar machine

20/01/2008



Speculation in Rampant in Modern
Superscalars

* Different predictors

— Branch Prediction

— Value Prediction

— Prefetching (memory access pattern prediction)
* Inefficient

— Predictions can go wrong

— Has to flush out wrongly predicted data

— While not impacting performance, it consumes power
* Consequences

— Low utilization

— Long latencies

Multithreaded Architectures

e Designed to tolerate memory access latencies
when a thread stalls for long-latency
operations

e Multithreaded architectures allows for
multiple threads to share the functional units
of a single processor

— Improves utilization of functional units w.r.t.
superscalar machines

20/01/2008



Threading Alternatives

Single Thread Coarse Grain Threading
Fxo Bl O
P CmE e S SEEisisist=l 1=
i — e
FP1 B FR1 LMLl
[ o o el === =
=== = = Lt e
BRX [ BN ] . R EOE N
CRLODOmMOOD D crLODDOmOID
Fine Grain Threading Simultaneous Multi-Threading
FXO ) ]
Fxo B O I
e OO OO
I, - FPO [ B || ]
OO OO o FR1 L BN B[]
Lso W LICIC L . - Ls0 1] .
S CEERLEESE LSt B e
BRx BRX ] N I ] ] I .
GRLOCCOmODOO CRL 1Bl 1110
B Thread 0 Executing B Thread 1 Executing [ Mo Thread Executing

CGT: switches threads only with costly stalls such as L2 cache misses,
problems with short stalls because of the start-up cost of the pipe

FGT: switches at each clock cycle, hiding latency of short stalls, but slows
down instructions ready to be executed

SMT: multiple instructions from multiple threads in a single clock cycle
(TLP+ILP)

SMT

Multiple instructions from independent threads can be issued

Basic superscalar + resource replication to keep independent
state (such as PCs)
— Register files, instruction queues, branch predictors are shared

Time Time
e
Threads )

Superscalar Q Fine MT
[ I

fa) 5 fc)

Coarse MT SMT
NN

(b} (d)

20/01/2008



Explicit Parallel Processors

* Parallelism is exposed to software
— Compiler or Programmer

* Many different forms

— Loosely coupled Multiprocessors to tightly coupled VLIW
* We focus on MIMD architectures

— TLP processors are MIMD

— Shared network, shared memory

— Chip multiprocessors (CMP)

Little’s Law

Throughput per Cycle

One Operation

Latency in Cycles

Parallelism = Throughput * Latency

e To maintain throughput T/cycle when each operation
has latency L cycles, need T*L independent operations
* For fixed parallelism:
— decreased latency allows increased throughput
— decreased throughput allows increased latency tolerance

20/01/2008



Types of Paralellism

E— AAAAAAAA
:| H¥y ;| [CoCooood
= 'IEE | [CCC00000
Pipelining Data-Level Parallelism (DLP)
Ol
| & E | [l
E E
: A = B
|:| |:| O A[OIC]
Thread-Level Parallelism (TLP) Instruction-Level Parallelism (ILP)

Issues in Parallel Machine Design

Communication

— how do parallel operations communicate data results?
Synchronization

— how are parallel operations coordinated?

Resource Management

— how are a large number of parallel tasks scheduled
onto finite hardware?

Scalability

— how large a machine can be built?

20/01/2008



Shared Network Processors
(Massively Parallel Processors)

¢ Exploit message passing between cores
¢ |Initial Research Projects
— Caltech Cosmic Cube (early 1980s) using custom Mosaic processors
¢ Commercial Microprocessors including MPP Support
— Transputer (1985)
— nCube-1(1986) /nCube-2 (1990)
¢ Standard Microprocessors + Netw
— Intel Paragon (i860)
— TMC CM-5 (SPARC)
— Meiko CS-2 (SPARC)
— 1BM SP-2 (RS/6000)
e MPP Vector Supers
— Fujitsu VPP series
e 100s to 1000s nodes

=

Interconnect Network

HasEs
Hia il Bl
Ha Bl
HaB B
Ha Bl
HaBsEs
Hia il Bl
HeBSERE

Message Passing Problems

 All data layout must be handled by software
— cannot retrieve remote data except with message
— request/reply

* Message passing has high software overhead

— early machines had to invoke OS on each message
(100us-1ms/message)

— even user level access to network interface has dozens
of cycles overhead (NI might be on I/0 bus)

— sending messages can be cheap (just like stores)

— receiving messages is expensive, need to poll or
interrupt

20/01/2008



20/01/2008

Shared Memory Multiprocessors

Will work with any data placement (but might be slow)
— can choose to optimize only critical portions of code

Load and store instructions used to communicate data between
processes

— no OS involvement

— low software overhead

Usually some special synchronization primitives

— fetch&op

— load linked/store conditional

¢ Inlarge scale systems, the logically shared memory is implemented
as physically distributed memory modules

e Two main categories
— non cache coherent
— hardware cache coherent

Cache Coherency

* No hardware cache coherence

— IBM RP3, BBN Butterfly, Cray T3D/T3E, Parallel
vector supercomputers (Cray T90, NEC SX-5)

e Hardware cache coherence

— many small-scale SMPs (e.g. Quad Pentium Xeon
systems)

— large scale bus/crossbar-based SMPs (Sun Starfire)
— large scale directory-based SMPs (SGI Origin)




HW Cache Coherency

¢ Bus-based Snooping Solution

— Send all requests for data to all processors
Processors snoop to see if they have a copy and respond accordingly
Requires broadcast, since caching information is at processors
Works well with bus (natural broadcast medium)
Dominates for small scale machines (most of the market)
¢ Directory-Based Schemes

— Keep track of what is being shared in 1 centralized place (logically)

Distributed memory => distributed directory for scalability (avoids
bottlenecks)

Send point-to-point requests to processors via network
Scales better than Snooping
Actually existed BEFORE Snooping-based schemes

Bus-Based Cache-Coherent SMPs

HAGH
LIl s JLs ]

Bus

Central
Memory

* Small scale (<=4 processors) bus-based SMPs by far the most
common parallel processing platform today

* Bus provides broadcast and serialization point for simple
snooping cache coherence protocol

* Modern microprocessors integrate support for this protocol

20/01/2008



CMP

¢ Full set of architectural resources on the same

die

* |t exploits TLP by executing different threads

in parallel on different processors

* |t consists of single-thread processor cores
relatively simpler than general purpose

processors
Multicores
51 2 PEGERD
¥ Ambric
PCi02 ah ppangs
256 S
CER- s
128 Tiiops
A
64
32 -
# of Rav W oseon
1 6 i i i
cores
8 Mlagara 4 & Call
4 Boardcom 1480 ?EWM w
Xraxii ik vt
5 I v P i
PExtrame  Powere
1 4004 BDED 086 285 385 486 Fanflum FE_ P3 ltanium oS
BODE atnion Itanium 2

1970 1975 1980 1985 1990 1995

2000 2005 2077

20/01/2008

10



Multicores

e Shared Memory
— Intel Yonah, AMD Opteron
— IBM Power 5 & 6
— Sun Niagara
e Shared Network
— MIT Raw
— Cell
e Crippled or Mini cores
— Intel Tflops
— Picochip

Shared Memory Multicores

e Evolution Path for Current
Multicore Processors
* |IBM Power5
— Shared 1.92 Mbyte L2 cache
* AMD Opteron

— Separate 1 Mbyte L2 caches

— CPUO and CPU1 communicate
through the SRQ

¢ |ntel Pentium 4

— “Glued” two processors together

20/01/2008

11



CMP

By placing multiple processors, their memories and the IN all
on one chip, the latencies of chip-to-chip communication are
drastically reduced

ARM multi-chip core Configurable #

of hardware intr Private IRQ
L ] L
Per-CPU _1 T T T I |
aliased
peripherals L N | N
l | ' |
Configurable ' [ v i 1
between 1& 4
symmetric
CPU T . .
) I'T T W71 11
Private | 18D CCB
peripheral 84-b bus
bus 3 X
i v

Primary A% BAY 64-b bus Optional AXI RAW 64-b bus

Shared Network Multicore

The Cell processor
IBM/Toshiba/Sony joint project - 4-5 years, 400
designers
— 234 million transistors, 4+ Ghz
— 256 Gflops (billions of floating pointer operations
per second)
One 64-bit PowerPC processor
— 4+ Ghgz, dual issue, two threads
— 512 kB of second-level cache
Eight Synergistic Processor Elements
— Or “Streaming Processor Elements”

— Co-processors with dedicated 256kB of memory
(not cache)

10
— Dual Rambus XDR memory controllers (on chip)
— 25.6 GB/sec of memory bandwidth
— 76.8 GB/s chip-to-chip bandwidth (to off-chip GPU)

20/01/2008

12



SMT vs CMP

SMT exhibits better performance than CMP for network applications
— SMT allocates hardware resources dynamically
However:

— more single thread processor cores can be integrated in the same die than an
equivalent SMT processor

— If an application is effectively decomposed into multiple threads it can
perform better

— Single cores are easier to design and optimize
For network applications

— Asingle-thread processor core designed to perform a specific packet

processing task can be arranged in a pipelined fashion to process packets in
parallel

— Intel IXP2800 = one Xscale + 16 microengines
— IBM PowerNP = one PowerPC + 12 picoprocessors (2 threads, 3 stage pipe)

20/01/2008

13



