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The ARIADNE project
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The ARIADNE software package is an tool for analysis and verification of nonlinear

hybrid systems.

It is based on computable analysis to provide semantics for general-purpose

rigorous numerical methods.

It includes support for many fundamental mathematical operations including:

• real numbers and double/multiple precision interval arithmetic,

• linear algebra and automatic differentiation,

• function models with evaluation and composition,

• solution of algebraic and differential equations,

• constraint propagation and nonlinear programming.

It is implemented as a pure library in C++, with a Python interface for scripting.
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The ARIADNE website is

http://www.ariadne-ps.org/

The material here is mostly focused on applications on hybrid systems.

ARIADNE is hosted at

https://bitbuket.org/ariadne-ps/

You will want to use the working branch of the development version.

You can download, compile and install the tool using:

git lone https://bitbuket.org/ariadne-ps/development.git \

ariadne/

mkdir ariadne/build; d ariadne/build/

git hekout working

make -DCMAKE_CXX_COMPILER=lang++ ../

make [-j <proesses>℄

sudo make install

make do



A quick look (in C++)
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/ / F i l e : c o m p u t e _ a _ r e a l . c p p

/ / c l a n g ++ c o m p u t e _ a _ r e a l . c p p − l a r i a d n e −o c o m p u t e _ a _ r e a l

#inlude <ariadne/ariadne.hpp >

using namespae Ariadne;

#define PRINT (expr) { std::out <<#expr <<": " <<(expr)<<"\n"; }

int main() {

auto r = 6* atan (1/ sqrt (3_q ));

/ / D e f i n e a r e a l num ber .

/ / The ’ _q ’ c o n v e r t s t o an A r i a d n e R a t i o n a l

PRINT(r);

PRINT(r.ompute(Auray (123)));

/ / Compute w i t h a maximum e r r o r o f 1 / 2 ^ 1 2 3

PRINT(r.ompute(Effort (123)));

/ / Compute e . g . u s i n g 123 b i t s o f p r e c i s i o n .

PRINT(r.ompute(Effort (123)). get(preision (75))

/ / Compute , and r e t u r n w i t h l e s s p r e c i s i o n

}



A quick look (in Python)
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# F i l e c o m p u t e _ a _ r e a l . py

from ariadne import *

if __name__ =='__main__ ':

r = 6* atan (1/ sqrt (3))

# D e f i n e a r e a l num ber .

# s q r t ( . . . ) c o n v e r t s t o an A r i a d n e R e a l

print(r)

print(r.ompute(Auray (123)))

# Compute w i t h a maximum e r r o r o f 1 / 2 ^ 1 2 3

print(r.ompute(Effort (123)))

# Compute e . g . u s i n g 123 b i t s o f p r e c i s i o n .

print(r.ompute(Effort (123)). get(preision (75)))

# Compute an r e t u r n w i t h l e s s p r e c i s i o n



Other tools
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Other similar tools are available:

• COSY Infinity (M. Berz & K. Makino)

◦ Originally developed for high-precision computation in beam physics.

◦ Implemented in Fortran with a custom scripting language.

◦ Introduced many important ideas in rigorous numerics, including Taylor

function models.

• Ibex (L. Jaulin)

◦ A C++ library for rigorous numerics, focusing on geometry and constraint

propagation.



Other tools
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• iRRAM (interactive/iterative Real RAM) (N. Müller)

◦ A utility for exact (arbitrary-precision) real computation

◦ Focus on real number computation; highly optimised.

◦ Implemented a utility running under main().

• AERN (Approximating Exact Real Numbers) (M. Konečný).

◦ A tool which is very similar in scope to ARIADNE, but implemented in

Haskell.
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Effective objects
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Objects from uncountable spaces need an infinite amount of data to represent

exactly.

e.g. Real numbers can be specified by their decimal expansion,

such as π = 3.14159 · · · .

There may be more natural descriptions of an object, but they can all be encoded

as a sequence over some alphabet Σ.

Effetive

Real pi =3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829
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Objects from uncountable spaces need an infinite amount of data to represent

exactly.

e.g. Real numbers can be specified by their decimal expansion,

such as π = 3.14159 · · · .

There may be more natural descriptions of an object, but they can all be encoded

as a sequence over some alphabet Σ.

In ARIADNE, classes have a prefix/tag indicating what information they provide.

• Effetive is used to indicate that a class provides a complete but infinite

description of its objects.

We could then think about writing code like this:

Real pi =3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829
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It’s slightly problematic to specify an infinite amount of information in practice...

An object is computable if it is possible to compute a complete description from a

finite amount of information.

e.g. π = 4 limn→∞

∑n
k=0

(−1)k

2n+1 .

Symboli

Real r=4* atan(1_q);

r Effetive
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It’s slightly problematic to specify an infinite amount of information in practice...

An object is computable if it is possible to compute a complete description from a

finite amount of information.

e.g. π = 4 limn→∞

∑n
k=0

(−1)k

2n+1 .

In ARIADNE, can define computable objects using Symboli operations. e.g.

Real r=4* atan(1_q);

Note that to view r as an Effetive real requires a particular implementation of

atan. We shall return to this point later...



Validated objects
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Since we generally don’t want to wait forever for our computations to terminate, a

prefix of the full sequence should provide partial information about an object.

e.g. Given π = 3.14159 · · · , we know π ∈ [3.14159:3.14160].

Validated Verified

r.ompute(Auray(123)) ValidatedReal
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Since we generally don’t want to wait forever for our computations to terminate, a

prefix of the full sequence should provide partial information about an object.

e.g. Given π = 3.14159 · · · , we know π ∈ [3.14159:3.14160].

In ARIADNE:

• A Validated/Verified object provides partial information which is

guaranteed to be correct.

• Hence r.ompute(Auray(123)) returns a ValidatedReal object.



Generic classes
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A representation δ is a way of providing a computational description (e.g. in terms

of binary sequences) for a space of mathematical objects X .

In order to respect the mathematical (topological) properties, the representation

must satisfy admissibility requrements.

A δ-name of x ∈ X is a sequence p such that δ(p) = x. Representations of X
are equivalent if names can be converted by a Turing machine.

A type X = (X, [δ]) is a space with an equivalence class of representations.

Effetive Real

Real ValidatedReal

Auray
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A representation δ is a way of providing a computational description (e.g. in terms

of binary sequences) for a space of mathematical objects X .

In order to respect the mathematical (topological) properties, the representation

must satisfy admissibility requrements.

A δ-name of x ∈ X is a sequence p such that δ(p) = x. Representations of X
are equivalent if names can be converted by a Turing machine.

A type X = (X, [δ]) is a space with an equivalence class of representations.

In ARIADNE, we aim to be as agnostic as possible as to the representation used.

Hence

• The (Effetive)Real class is an abstract interface allowing many possible

implementations.

• For any Real number, we can compute a ValidatedReal to a given

Auray.

• In order to work further we need to extract concrete values...



Exact objects
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We can work with objects from countable spaces like Z,Q, since they:

• Can be described with a finite amout of data.

• Support exact operations.

• Can be decidably compared and tested for equality.

Integer Dyadi Rational

Integer Dyadi Rational

Real

ValidatedReal :: get_lower_bound () -> Dyadi ;
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We can work with objects from countable spaces like Z,Q, since they:

• Can be described with a finite amout of data.

• Support exact operations.

• Can be decidably compared and tested for equality.

In ARIADNE, we support Integer, Dyadi and Rational number classes.

Note that a dyadic number is a rational of the from p/2q for p, q ∈ Z.

• All operations are exact; division by an Integer or Dyadi returns a Rational..

We could therefore extract approximations to a Real as

ValidatedReal :: get_lower_bound () -> Dyadi ;

/ / N o t a c t u a l l y i m p l e m e n t e d l i k e t h i s !



Concrete classes
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The use of a raw Dyadi number to denote a lower-bound for a Real is dangerous!

We may accidentally think that the object is the exact value of the number.

Bounds<X> lower upper X

x

ValidatedReal -> Bounds <Dyadi >;
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The use of a raw Dyadi number to denote a lower-bound for a Real is dangerous!

We may accidentally think that the object is the exact value of the number.

In ARIADNE, we provide wrapper classes around raw data to indicate the

information encoded about the exact value.

For example, the Bounds<X> class stores a lower and upper bound of type X

for a number x.

ValidatedReal -> Bounds <Dyadi >;



Rounded objects
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On current computer systems, working with Dyadi numbers directly is

inefficient, mostly due to memory allocation.

It is fastest to work with builtin objects of a fixed size, like double.

It is reasonably fast to work with “multiple-sized” objects, due to efficient allocation.

DoublePreision MultiplePreision

Float

template <lass PR > Float <PR >( ValidatedReal , RoundingMode , PR);

Float <MultiplePreision > x(r, upward , preision (128));
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On current computer systems, working with Dyadi numbers directly is

inefficient, mostly due to memory allocation.

It is fastest to work with builtin objects of a fixed size, like double.

It is reasonably fast to work with “multiple-sized” objects, due to efficient allocation.

ARIADNE currently supports DoublePreision and MultiplePreision

Floating-point numbers (the latter from the MPFR library).

To construct such a number, a rounding parameter and precision must be given:

template <lass PR > Float <PR >( ValidatedReal , RoundingMode , PR);

Float <MultiplePreision > x(r, upward , preision (128));

/ / G e t an MPFR r e p r e s e n t a t i o n o f r , r o u n d e d upw ar d ,

/ / and u s i n g 128 b i t s o f p r e c i s i o n .



Rounded operations
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Fixed-size types are finite and cannot support exact arithmetic.

Instead, arithmetic is rounded, either upwards, downwards or to the nearest

representable value.

Real

re(RoundingMode , FloatPR) -> FloatPR;

RoundingMode down ward up ward near est

sub(Bounds <F> x1 , Bounds <F> x2) -> Bounds <F> {

return Bounds <F>( sub(down ,x1.lower (),x2.upper ()),

sub(up ,x1.upper (),x2.lower ())); }

Interval

Bounds
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Fixed-size types are finite and cannot support exact arithmetic.

Instead, arithmetic is rounded, either upwards, downwards or to the nearest

representable value.

In ARIADNE, we provide the same rounded arithmetic operations for Real. e.g.

re(RoundingMode , FloatPR) -> FloatPR;

where RoundingMode could be down(ward), up(ward) or near(est).

Arithmetic is performed safely on concrete classes using appropriate rounding:

sub(Bounds <F> x1 , Bounds <F> x2) -> Bounds <F> {

return Bounds <F>( sub(down ,x1.lower (),x2.upper ()),

sub(up ,x1.upper (),x2.lower ())); }

This approach is usually referred to as “interval arithmetic”.

In ARIADNE however, an Interval represents a set of numbers, so we refer to

Bounds on a single number.



Approximate objects
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Classical numerical packages work with floating-point numbers and do not control

the errors.

• e.g. In double-precision, π ∼= 3.141592653589793.

A common approximation is π ≈ 22/7 ∼= 3.142857142857143.

Approximate

bool un likely

ApproximateReal pi_approx = pi;

if (likely (pi_approx > 22/7_q)) { ... }
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Classical numerical packages work with floating-point numbers and do not control

the errors.

• e.g. In double-precision, π ∼= 3.141592653589793.

A common approximation is π ≈ 22/7 ∼= 3.142857142857143.

In ARIADNE, an object which is an approximation to some quantity is marked with

the Approximate tag.

Comparisons on approximate objects cannot be directly used, but must be

converted to a bool using (un)likely.

ApproximateReal pi_approx = pi;

if (likely (pi_approx > 22/7_q)) { ... }

Approximate objects are useful for preconditioning rigorous numerical algorithms,

and for testing.
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Comparison of objects from uncountable spaces is inherently undecidable.

• If x = 3.141592653 · · · , does x = π = 3.14159265358 · · · ?

Real Kleenean

operator< operator<= Real

Kleenean
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Comparison of objects from uncountable spaces is inherently undecidable.

• If x = 3.141592653 · · · , does x = π = 3.14159265358 · · · ?

I took x = 103993/33102 = 3.14159265301 · · · , so x 6= π; in fact x < π.

Real Kleenean

operator< operator<= Real

Kleenean
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Comparison of objects from uncountable spaces is inherently undecidable.

• If x = 3.141592653 · · · , does x = π = 3.14159265358 · · · ?

I took x = 103993/33102 = 3.14159265301 · · · , so x 6= π; in fact x < π.

Hence in ARIADNE, comparison x1 . x2 on Real numbers returns a Kleenean

value in K = {T,F, ↑}.

There is no difference between operator< and operator<= for Real

numbers; both return a Kleenean.



Decidability

Verona, 2 April 2019 The Rigorous Numerical Kernel of ARIADNE – 20 / 53

Comparison of objects from uncountable spaces is inherently undecidable.

• If x = 3.141592653 · · · , does x = π = 3.14159265358 · · · ?

I took x = 103993/33102 = 3.14159265301 · · · , so x 6= π; in fact x < π.

Hence in ARIADNE, comparison x1 . x2 on Real numbers returns a Kleenean

value in K = {T,F, ↑}.

There is no difference between operator< and operator<= for Real

numbers; both return a Kleenean.

Note: Even using a symbolic representation does not help much. It is unknown

whether equality of numbers defined using elementary functions is decidable!
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ARIADNE should facilite writing correct code.

• We use a strong type system. All types say what kind of information they hold,

and conversions between types cannot gain information.

ARIADNE should have a clean conceptual framework.

• Standard class naming system. Different classes modelling the same concept

should support the same operations.

ARIADNE should be theoretically complete and practically efficient.

• Support multiple-precision for accuracy and double-precision for speed.
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ARIADNE should facilite writing correct code.

• We use a strong type system. All types say what kind of information they hold,

and conversions between types cannot gain information.

ARIADNE should have a clean conceptual framework.

• Standard class naming system. Different classes modelling the same concept

should support the same operations.

ARIADNE should be theoretically complete and practically efficient.

• Support multiple-precision for accuracy and double-precision for speed.

It should be a joy to program with ARIADNE!
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ARIADNE should facilite writing correct code.

• We use a strong type system. All types say what kind of information they hold,

and conversions between types cannot gain information.

ARIADNE should have a clean conceptual framework.

• Standard class naming system. Different classes modelling the same concept

should support the same operations.

ARIADNE should be theoretically complete and practically efficient.

• Support multiple-precision for accuracy and double-precision for speed.

It should be a joy to program with ARIADNE!

It should be really, really hard to make mistakes when programming with ARIADNE!!!



Efficiency
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For computable real analysis, we need to be able to compute to arbitrary accuracy.

For most applications, computing numbers to very high accuracy

is not the main goal!

Indeed, in physics, even the fine-structure constant α = 0.00729735256[47:81]
is known to less than 10 significant decimal digits (about 32 binary digits), so is

easily representable in double precision.

Applications in dynamic systems can involve systems with tens to thousands of

variables, and may involve a global analysis.

It is more important to compute many numbers with reasonable accuracy but

very, very quickly!

For most of our work with ARIADNE, double precision suffices, and the key

innovation over traditional numerics is providing rigorous error bounds.

However, we still want to provide arbitrary-accuracy computations for theoretical

completeness and for those cases in practice where it is really needed.



Information
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In ARIADNE, classes have a prefix/tag indicating what information they provide.

• An Exat object is a finite, decidable description.

• An Effetive object has a complete but (potentially) infinite description.

• A Validated object provides partial information which is guaranteed correct.

• An Approximate object provides no guarantees about the value.

• A Rounded object has a finite description, decidable comparisons, but

approximate operations.

◦ Warning: Direct use of Rounded objects is dangerous!

• A Conrete object is a particular implementation of a GeneriType, with

properties() determining the accuracy of computation.

◦ FloatMPBounds is a concrete ValidatedReal, with PropertiesType

being MultiplePreision.



The Numeric Module
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Real numbers
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In ARIADNE, we try to be as agnostic as possible regarding the real number type.

However, given a real number, we still need to have some way of extracting

information about its value.

We currently use a two-stage process. We first create a ValidatedReal:

Real:: ompute(Auray a) -> ValidatedReal;

/ / Compute t o w i t h i n 2^−a

Real:: ompute(Effort e) -> ValidatedReal;

/ / Compute c o n v e r g e n t u p p e r and l o w e r b o u n d s

Concrete approximations can then be extracted:

ValidatedReal :: operator Bounds <Dyadi >();

/ / E x t r a c t d y a d i c l o w e r and u p p e r b o u n d s .

This approach has the advantage of not mixing the generic and concrete a views

more than necessary.

Hence every representation of R gives rise to both an effective and validated

object.



Kleenean logic
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In ARIADNE, comparisons on Real numbers return Kleenean values:

operator >(Real , Real) -> Kleenean

Kleenean objects must first be heked using a given Effort:

Kleenean :: hek(Effort ) -> ValidatedKleenean ;

ValidatedKleenean objects cannot be used directly in tests, but must be

converted to a builtin bool:

definitely (ValidatedKleenean k) -> bool;

possibly (ValidatedKleenean k) -> bool {

return not definitely (not k); }

ApproximateKleenean objects represent a “fuzzy” logical value which we don’t

know for sure is correct.

likely (ApproximateKleenean ) -> bool;

unlikely (ApproximateKleenean k) -> bool {

return not likely (k); }

Nonextensional decisions can be made using

hoose (LowerKleenean t, LowerKleenean f)

-> NondeterministiBoolean ;



Real number operations
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nul(Real) -> Real; / / n u l ( x ) = 0

pos(Real) -> Real; / / p o s ( x ) = + x

neg(Real) -> Real; / / neg ( x ) = −x

sqr(Real) -> PositiveReal ; / / s q r ( x ) = x ^ 2

re(Real) -> Real; / / r e c ( x ) = 1 / r

pow(Real , Integer) -> Real; / / pow ( x , n ) = x ^ n

add(Real , Real) -> Real;

sub(Real , Real) -> Real;

mul(Real , Real) -> Real;

div(Real , Real) -> Real;

fma(Real , Real , Real) -> Real; / / fma ( x , y , z ) = x ∗ y + z

sqrt(Real) -> Real;

exp(Real) -> Real;

log(Real) -> Real;

sin(Real) -> Real;

os(Real) -> Real;

tan(Real) -> Real;

atan(Real) -> Real;



Real number operations
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max(Real ,Real) -> Real;

min(Real ,Real) -> Real;

abs(Real) -> PositiveReal ;

dist(Real ,Real) -> PositiveReal ; / / D i s t a n c e

neq(Real ,Real) -> Sierpinskian ; / / I n e q u a l i t y c a n be v e r i f i e d

gtr(Real ,Real) -> Kleenean ; / / C o m p a r i s o n u n d e c i d a b l e

limit (FastCauhySequene <Real >) -> Real;



Rounded floating-point numbers
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ARIADNE currently supports Floating-point numbers based on double- and

multiple- precision, the latter implemented by MPFR.

The FloatDP class is finite, and the FloatMP class is graded into finite subsets

by the precision.

Operations characterised by the RoundingMode, which could be down(ward),

up(ward) or near(est).

To construct a rounded object, we need to specify both the rounding and the

precision.

Float <PR >( Rational q, RoundingMode rnd , PR pr);

Likewise, the rounding mode needs to be specified for non-exact operations e.g.

re(RoundingMode , Float <PR >) -> Float <PR >;

These classes support exactly the same arithmetic and elementary functions as

the Real number class.
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Given a type F supporting exact or rounded operations, we can derive several safe

approximation classes:

• Approximation<F> An approximation with no guarantees on the error.

• LowerBound<F> A lower bound on the value.

• UpperBound<F> An upper bound on the value.

• Bounds<F> Both a lower and upper bound.

• Ball<F,FE> An approximation together with an error bound (of type FE).

• (Exat)Value<F> An exact representation of some value.

Bounds, UpperBound and LowerBound are valid for any partially-ordered

space, and Ball for any metric space.

The supported operations, including comparisons, match that of the generic type.

operator >( LowerBound <F>, UpperBound <F>)

-> ValidatedLowerKleenean ; / / A v e r i f y a b l e t e s t



The Algebra Module
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Linear algebra
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Linear algebra is supported with Vetor<X> and Matrix<X> classes, supporting

standard arithmetic.

A vector (or matrix) can be constructed in many ways, such as from a

InitializerList or a function X(SizeType) e.g.

Vetor <FloatMPApproximation > v({2,3,5}, MultiplePreision (128));

Vetor <Dyadi > v(size=3u, [&℄( SizeType i){ return 1/( two^i);}); /

Solvers for linear equations are provided:

PLUMatrix <X> plu=triangular_deomposition (a);

Vetor <X> x = solve (plu ,b);

x=gauss_seidel_step (a,b, x);

Functionality for computing eigenvalues is in development, and already includes

QR factorisations.

Pair <OrthogonalMatrix <X>,UpperTriangularMatrix <X>>

qr=orthogonal_deomposition (a);



Differential algebra
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Since differentiation is important for many numerical methods, but is formally

uncomputable, we need ways of (partial) derivatives from symbolic data.

ARIADNE supports automatic differentiation using the Differential object.

These can be created using named constructors:

Differential <X>:: variable (ArgumentSize n, Degree d, X x, Index i)

-> Differential <X>;

/ / C r e a t e s t h e d e r i v a t i v e s o f y ( x [ 0 ] , . . . , x [ n −1 ] )

/ / w i t h r e s p e c t t o x [ i ] up t o d e g r e e d .

Explicit specialisations are provided for degrees 1, 2 and for a single independent

variable for efficiency.

Lower-order derivatives can be extracted:

gradient (Differential <X>) -> Covetor <X>;

hessian(Differential <X>) -> Matrix <X>;

Once we have the derivatives of an quantity, we can often compute the derivatives

of related quantities.



The Function Module
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Function classes
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ARIADNE currently supports functions on Euclidean space.

Function types are templated on the information provided P, and the type of the

domain D and codomain C.

– In the future, template on the signature R(A1,A2,...).

Hence a Funtion<ValidatedTag,ExatBoxType,RealLine> defines a

validated function B → R defined on a box B ⊂ Rn.

Convenience typedefs are given, which correspond to Python names e.g.

EffetiveVetorUnivariateFuntion R → Rn.

Functions can be evaluated on FloatBounds and FloatApproximation

objects, on Differential objects, and on general Algebras.

Funtion <... >:: operator () (FloatBounds <PR >) -> FloatBounds <PR >;

Concrete functions include Constant, Coordinate, Affine and Polynomial,

and Elementary functions with a Symboli representation.



Function operations
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Derivatives up to a given degree can be computed directly

f.derivatives (x,deg);

This method will fail if the function does not have enough information to compute

the derivative.

Functions classes support arithmetic f ⋆ g, elementary operations exp(f),

composition ompose(f,g), and vector operations join(f1,f2).

We are looking into providing support for lambda-calculus like syntax.



Function patches
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When computing approximations to functions, we are usually restricted to

compact domains.

A FuntionPath is a function defined on an interval or box domain.

For functions on compact domains, we can compute the supremum norm:

norm(FuntionPath <...> f) -> PositiveUpperReal ;

The model is typically a concrete approximation with a uniform error bound.

Often, we prescale the original box domain D into the unit box [−1:+1]n.

ba

s−1

−1 +10

e

f(x)

p(z)

x z

The representation is then f(x) = p(s−1(x))± e.



Function models
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Concrete operations are provided by FuntionModels, which are balls around

an exact concrete representation over some standard domain.

A TaylorModel is a polynomial with a uniform error bound over the unit box.

They have fast arithmetic operations, especially multiplication.

By sweeping terms into the error bound, the representation can be kept small.

By rescaling, they can represent functions on arbirary box domains.

Work on ChebyshevModel class is in progress.



The Geometry Module
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Abstract sets
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Abstract classes of open, closed, regular overt and compact sets are given,

defined by predicates:

OpenSet :: ontains (Point) -> Sierpinskian ;

ClosedSet :: ontains (Point) -> Negated <Sierpinskian >;

RegularSet :: ontains (Point) -> Kleenean ;

OvertSet :: intersets (OpenSet) -> Sierpinskian ;

CompatSet :: subset (OpenSet) -> Sierpinskian ;

A RegularSet “is” open and closed.

A LoatedSet is both overt and compact.

We can compute preimages and preimages:

preimage (OpenSet , Funtion ) -> OpenSet;

preimage (RegularSet , Funtion ) -> RegularSet ;

image (OvertSet , Funtion ) -> OvertSet ;

image (CompatSet , Funtion ) -> CompatSet ;



Concrete sets
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Concrete sets in ARIADNE are based on Interval and Box classes.

They include the paving-based GridTreeSet and GridCell.

Concrete sets based on functions include:

• ConstraintSet g−1(C), which are Regular.

• BoundedConstraintSetD ∩ g−1(C), which are Regular and Loated.

• ConstrainedImageSet f(D ∩ g−1(C)), which are Loated.

Tests for emptiness and intersection are implemented using constraint

propagation and nonlinear programming.



The Solver Module
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Solver classes
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In ARIADNE, complicated operations are performed by solver classes.

These implement abstract interfaces providing support for a related class of

problems

This approach allows for different solution methods to be tried for the same kind of

problem.

Concrete implementations should support a common global accuracy parameter,

and may have other precision parameters.



Algebraic equations
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Algebraic equations, including implicit function problems, are addressed by the

SolverInterfae:

solve (ValidatedFuntion f, ExatBox bx) -> Vetor <Bounds <X>>;

/ / F i n d a s o l u t i o n o f f ( x ) = 0 i n b o x bx

impliit (ValidatedFuntion f, ExatBox dom ,

ExatBox odom) -> ValidatedFuntion ;

/ / F i n d a f u n c t i o n h o v e r dom s a t i s f y i n g f ( x , h ( x ) ) = 0



Differential equations
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Differential equations are addressed by the IntegratorInterfae:

flow_bounds (ValidatedFuntion f, ExatBox dom ,

Approximation hsug) -> Pair <ExatValue ,UpperBox >;

/ / F i n d a p a i r ( h , b b x ) s u c h t h a t t h e f l o w o f f

/ / s t a r t i n g i n dom f o r t i m e hmax s t a y s i n b b x

flow(ValidatedFuntion f, ExatBox dom , ExatValue h,

UpperBox bbx) -> ValidatedFuntion ;

/ / F i n d p h i ( x0 , t ) s a t i s f y i n g d p h i / d t = f ( p h i )

/ / f o r x0 i n dom and t i n [ 0 , h ]



Conclusion
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Summary
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ARIADNE is a general-purpose tool for implementing types and operations from

computable analysis with data structures and algorithms from rigorous numerics.

It allows users to perform calculutions yielding results which are not only

guaranteed to be correct, but to yield arbitrarily small error bounds.

It provides a structured conceptual framework for understanding how to use

existing functionality and to develop new methods.

It covers almost all of the most important basic operations of continuous

mathematics, including

• arithmetic, linear algebra, continuous/smooth functions, open/compact sets;

• solution of algebraic and differential equations and optimisation problems.



Improvements
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General clean-up of code base.

Make sure expected operations are present and nonambiguous.

Update Python interface to conform as fully as possible to C++ interface.

Clarify relationships between classes/concepts and make these explicit.

Efficiency improvements, especially in the solution of differential equations.

Improve the documentation!

• We really need specific feedback from users!



Extensions
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Linear algebra:

• Eigenvalues and eigenvectors

Function calculus:

• Chebyshev and Fourier bases, rational approximation;

Analytic, differentiable, piecewise-continuous, measurable,

and Sobolev function spaces;

Lambda calculus.

Geometric calculus:

• Open covers, set-valued functions, simplification of sets.

Dynamic systems:

• Parametrised systems, stiff ordinary differential equations, partial differential

equations, differential inclusions.

Probability and stochastics:

• Distributions, random variables.
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Try it yourself!
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You should try ARIADNE for yourself!

You can download, compile and install the tool using:

git lone https://bitbuket.org/ariadne-ps/development.git \

ariadne/

mkdir ariadne/build; d ariadne/build/

git hekout working

make -DCMAKE_CXX_COMPILER=lang++ ../

make [-j <proesses>℄

sudo make install

make do

Feel free to contact Luca Geretti or myself for questions, comments, feedback etc.


