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Abstract—Background subtraction methods are widely exploited for moving

object detection in videos in many applications, such as traffic monitoring, human

motion capture, and video surveillance. How to correctly and efficiently model and

update the background model and how to deal with shadows are two of the most

distinguishing and challenging aspects of such approaches. This work proposes a

general-purpose method that combines statistical assumptions with the object-

level knowledge of moving objects, apparent objects (ghosts), and shadows

acquired in the processing of the previous frames. Pixels belonging to moving

objects, ghosts, and shadows are processed differently in order to supply an

object-based selective update. The proposed approach exploits color information

for both background subtraction and shadow detection to improve object

segmentation and background update. The approach proves fast, flexible, and

precise in terms of both pixel accuracy and reactivity to background changes.

Index Terms—Background modeling, color segmentation, reactivity to changes,

shadow detection, video surveillance, object-level knowledge.

�

1 INTRODUCTION

DETECTION of moving objects in video streams is the first relevant
step of information extraction in many computer vision applica-
tions, including video surveillance, people tracking, traffic mon-
itoring, and semantic annotation of videos. In these applications,
robust tracking of objects in the scene calls for a reliable and
effective moving object detection that should be characterized by
some important features: high precision, with the two meanings of
accuracy in shape detection and reactivity to changes in time;
flexibility in different scenarios (indoor, outdoor) or different light
conditions; and efficiency, in order for detection to be provided in
real-time. In particular, while the fast execution and flexibility in
different scenarios should be considered basic requirements to be
met, precision is another important goal. In fact, a precise moving
object detection makes tracking more reliable (the same object can
be identified more reliably from frame to frame if its shape and
position are accurately detected) and faster (multiple hypotheses
on the object’s identity during time can be pruned more rapidly).
In addition, if object classification is required by the application,
precise detection substantially supports correct classification.

In this work, we assume that the models of the target objects and
their motion are unknown, so as to achieve maximum application
independence. In the absence of any a priori knowledge about target
and environment, the most widely adopted approach for moving
object detection with fixed camera is based on background subtraction
[1], [2], [3], [4], [5], [6], [7], [8], [9]. An estimate of the background
(often called a background model) is computed and evolved frame by
frame: moving objects in the scene are detected by the difference
between the current frame and the current background model. It is

well-known that background subtraction carries two problems for
the precision ofmoving object detection. The first problem is that the
model should reflect the real background as accurately as possible,
to allow the system accurate shape detection of moving objects. The
detection accuracy can be measured in terms of correctly and
incorrectly classified pixels during normal conditions of the object’s
motion (i.e., the “stationary background” case). The second problem
is that the background model should immediately reflect sudden
scene changes such as the start or stop of objects, so as to allow
detection of only the actual moving objects with high reactivity (the
“transient background” case). If the background model is neither
accurate nor reactive, background subtraction causes the detection
of false objects, often referred to as “ghosts” [1], [3]. In addition,
moving object segmentation with background suppression is
affected by the problem of shadows [4], [10]. Indeed, we would like
the moving object detection to not classify shadows as belonging to
foreground objects since the appearance and geometrical properties
of the object can be distorted which, in turn, affects many
subsequent tasks such as object classification and the assessment
of moving object position (normally considered to be the shape
centroid). Moreover, the probability of object undersegmentation
(where more than one object is detected as a single object) increases
due to connectivity via shadows between different objects.

Many works have been proposed in the literature as a solution to
an efficient and reliable background subtraction. Table 1 is a
classification of themost relevant papers based on the features used.
Most of the approaches use a statistical combination of frames to
compute the background model (see Table 1). Some of these
approaches propose to combine the current frame and previous
models with recursive filtering (adaptivity in Table 1) to update the
background model. Moreover, many authors propose to use pixel
selectivity by excluding from the background update process those
pixels detected as in motion. Finally, problems carried by shadows
have been addressed [4], [10], [17]. In this paper, we propose a novel
simplemethod that exploits all these features, combining them so as
to efficiently provide detection of moving objects, ghosts, and
shadows. Themain contribution of this proposal is the integration of
knowledge of detected objects, shadows, and ghosts in the
segmentation process to enhance both object segmentation and
backgroundupdate. The resultingmethod proves to be accurate and
reactive and, at the same time, fast and flexible in the applications.

2 DETECTING MOVING OBJECTS, GHOSTS, AND
SHADOWS

The first aim of our proposal is to detect real moving objects with
high accuracy, limiting false negatives (object’s pixels that are not
detected) as much as possible. The second aim is to extract pixels
of moving objects with the maximum responsiveness possible,
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avoiding detection of transient spurious objects, such as cast
shadows, static objects, or noise.

To accomplish these aims, we propose a taxonomy of the
objects of interest in the scene, using the following definitions (see
also Fig. 1):

. Moving visual object (MVO): set of connected points
belonging to object characterized by nonnull motion.

. Uncovered Background: the set of visible scene points
currently not in motion.

. Background (B): is the computed model of the background.

. Ghost (G): a set of connected points detected as in motion
by means of background subtraction, but not correspond-
ing to any real moving object.

. Shadow: a set of connected background points modified by
a shadow cast over them by a moving object. Shadows can
be further classified as MVO shadow (MVOSH), that is, a
shadow connected with an MVO and, hence, sharing its
motion, and ghost shadow (GSH), being a shadow not
connected with any real MVO.

Static cast shadows are neither detected nor considered since they
do not affect moving object segmentation if background subtraction
is used: In fact, static shadows are included in the background
model. A ghost shadow can be a shadow cast either by a ghost or an
MVO: the shape and/or position of the MVO with respect to the
light source can lead to the shadow not being connected to the object
that generates it.

Our proposal makes use of the explicit knowledge of all the
above five categories for a precise segmentation and an effective
background model update. We call our approach Sakbot (Statistical
And Knowledge-Based ObjecT detection) since it exploits statistics
and knowledge of the segmented objects to improve both back-
ground modeling and moving object detection. Sakbot is depicted
in Fig. 1, reporting the aforementioned taxonomy. Sakbot’s
processing is the first step for different further processes, such as
object classification, tracking, video annotation, etc.

Let us call p a point of the video frame at time t (It). ItðpÞ is the
value of point p in the color space. Since images are acquired by
standard color cameras or decompressed from videos with
standard formats, the basic color space is RGB. Thus, ItðpÞ1 is a
vector with R, G, B components. The goal is to compute, at each
time t, both the set KOt of known objects and the background
model Bt; in accordance with the taxonomy, KOt is defined as:

KOt ¼ fMVOtg [ fMVOt
SHg [ fGtg [ fGt

SHg: ð1Þ

Bt is the background model at time t and is defined for each
point of the image. If p is a point of the uncovered background,
then BtðpÞ should correspond to its value in the current frame;
however, if p is a point of a known object (i.e., that has been
segmented and classified), BtðpÞ is an estimation of the value of
background covered by the object itself.

If point p does not belong to any known object, the background
value in p is predicted using only statistical information (Btþ�t

s ðpÞ)
on the following set S of elements:

S ¼ fItðpÞ; It��tðpÞ; . . . ; It�n�tðpÞg [ wbfBtðpÞg: ð2Þ

As it is possible to note from (2), in order to improve the stability of
the model, we exploited adaptivity, too. We include an adaptive
factor by combining the n sampled frame values and the back-
ground past values (with an adequate weight wb). The n frames are
subsampled from the original sequence at a rate of one every �t
(typically, one every 10). Then, the statistical background model is
computed by using the median function (as in [11], [12]) as follows:

Btþ�t
s ðpÞ ¼ arg min

i¼1;...;k

Xk
j¼1

Distanceðxi;xjÞ xi;xj 2 S; ð3Þ

where the distance is a L-inf distance in the RGB color space:

Distanceðxi;xjÞ ¼ maxðjxi:c� xj:cjÞ with c ¼ R;G;B: ð4Þ

In our experiments, the median function has proven effective
while, at the same time, of less computational cost than the
Gaussian or other complex statistics.

Foreground points resulting from the background subtraction
could be used for the selective background update; nevertheless, in
this case, all the errors made during background subtraction will,
consequently, affect the selective background update. A particularly
critical situation occurs whenever moving objects are stopped for a
long time and become part of the background. When these objects
start again, a ghost is detected in the area where they were stopped.
This will persist for all the following frames, preventing the area to
be updated in the background image forever, causing deadlock [10].
Our approach substantially overcomes this problem since it per-
forms selectivity not by reasoning on single moving points, but on
detected and recognizedmoving objects. This object-level reasoning
has proven much more reliable and less sensitive to noise than
point-based selectivity. Therefore, we use a knowledge-based
background model defined as:

Btþ�t
k ðpÞ ¼ BtðpÞ if p 2 O;O in fMVOtg [ fMVOt

SHg
Btþ�t

s ðpÞ if p 2 O;O in fGtg [ fGt
SHg:

�

ð5Þ
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Fig. 1. Sakbot architecture.

1. We use a bold notation to represent the vectors (like images) and a
nonbold notation to indicate the single vector element.



The knowledge of the scene’s components in the current frame
will be used to update the background model:

Btþ�tðpÞ ¼ Btþ�t
s ðpÞ if 69 O 2 KOt : p 2 O

Btþ�t
k ðpÞ otherwise:

�
ð6Þ

The expression in (6) defines a selective background update, in the
sense that a different background model is selected whether the
point belongs to a known object or not. Differently from other
proposals ([1], [10], [2], [8]), selectivity is at object-level and not at
pixel-level only, in order to modify the background in accordance
with the knowledge of the objects detected in the scene. The
advantage is that the background model is not “corrupted” by
moving objects and, thus, it is possible to use a short �t and a
small n so as to also achieve reactivity.

In our approach, after background subtraction, a set of points
called foreground points is detected and then merged into labeled
blobs according to their connectivity. An initial camera motion
compensation might have been performed previously, should the
application require it (for example, to compensate small camera
vibrations due to nonideal operational conditions). This step is
based on the choice of a fixed reference in the scene assumed to be
never occluded at run time. In order to improve detection,
background subtraction is computed by taking into account not
only a point’s brightness, but also its chromaticity, as in (4):

DBtðpÞ ¼ DistanceðItðpÞ;BtðpÞÞ: ð7Þ

The L-inf distance has proven effective in our experiments, while
at the same time, being less computationally expensive than other
distances. In fact, other metrics can be used as the Euclidean
distance or the Mahalanobis distance used in [5], but this last is
computationally more severe since it associates the correlation
between parameters using the covariance matrix.

The selection of the initial set of foreground points is carried out
by selecting the distance image DBt defined in (7) with an
adequately low threshold TL. Among the selected points, some are
discarded as noise, by applying morphological operators. Then,
the shadow detection process is applied (as described in Section 3)
and the detected points are labeled as shadow points. A region-
based labeling is then performed to obtain connected blobs of
candidate moving objects and shadows. Eventually, blob analysis
validates the blobs of candidate moving objects as either moving
objects or ghosts. MVOs are validated by applying a set of rules on
area, saliency, and motion as follows:

. The MVO blob must be large enough (greater than a
threshold TA that depends on the scene and on the signal-
to-noise ratio of the acquisition system); with this valida-
tion, blobs of a few pixels (due, for instance, to high-
frequency background motion, like movements of tree
leaves) can be removed;

. The MVO blob must be a “salient” foreground blob, as
ascertained by a hysteresis thresholding. The low thresh-
old TL set on the difference image DBt inevitably selects
noise together with all the actual foreground points. A
high threshold TH selects only those points with a large
difference from the background and validates the blobs
which contain at least one of these points;

. TheMVOblobmust havenonnegligiblemotion. Tomeasure
motion, for each pixel belonging to an object, we compute
the spatiotemporal differential equations for optical flow

approximation, in accordance with [18]. The average optical
flow computed over all the pixels of an MVO blob is the
figure we use to discriminate betweenMVOs and ghosts: In
fact, MVOs should have significant motion, while ghosts
should have a near-to-zero average optical flow since their
motion is only apparent.

Optical flow computation is a highly time-consuming process;
however, we compute it only when and where necessary, that is
only on the blobs resulting from background subtraction (thus, a
small percentage of image points). The same validation process
should also be carried out for shadow points, in order to select
those corresponding to the set of MVO shadows and those
belonging to ghost shadows. However, computing the optical flow
is not reliable on uniform areas such as shadows. In fact, the spatial
differences in the optical flow equation are nearly null because
shadows smooth and make uniform the luminance values of the
underlying background. Therefore, in order to discriminate
MVO shadows from ghost shadows, we use information about
connectivity between objects and shadows. Shadow blobs con-
nected to MVOs are classified as shadows, whereas remaining ones
are considered as ghost shadows. The box of Fig. 2 reports the
rules adopted for classifying the objects after blob segmentation.
All foreground objects not matching any of the rules in Fig. 2 are
considered background and used for background update.

In conclusion, by including (5) in (6), the background model
remains unchanged for those points that belong to detected MVOs or
their shadow. Instead, points belonging to a ghost or ghost shadow
are considered potential background points and their background
model is updated by use of the statistic function.

3 SHADOW DETECTION

By shadow detection, we mean the process of classification of
foreground pixels as “shadow points” based on their appearance
with respect to the reference frame, the background. The shadow
detection algorithm we have defined in Sakbot aims to prevent
moving cast shadows beingmisclassified asmoving objects (or parts
of them), thus improving the background update and reducing the
undersegmentation problem. The major problem is how to
distinguish between moving cast shadows and moving object
points. In fact, points belonging to bothmoving objects and shadows
are detected by background subtraction bymeans of (7). To this aim,
we analyze pixels in the Hue-Saturation-Value (HSV) color space.
The main reason is that the HSV color space explicitly separates
chromaticity and luminosity and has proven easier than the
RGB space to set a mathematical formulation for shadow detection.

For each pixel belonging to the objects resulting from the
segmentation step, we check if it is a shadow according to the
following considerations. First, if a shadow is cast on a back-
ground, the hue component changes, but within a certain limit. In
addition, we considered also the saturation component, which was
also proven experimentally to change within a certain limit. The
difference in saturation must be an absolute difference, while the
difference in hue is an angular difference.

We define a shadow mask SPt for each point p resulting from
motion segmentation based on the following three conditions:

SPtðpÞ ¼
1 if � � ItðpÞ:V

BtðpÞ:V � � ^ jItðpÞ:S � BtðpÞ:Sj
� �S ^ DH � �H ; � 2 ½0; 1�; � 2 ½0; 1�

0 otherwise;

8<
: ð8Þ
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Fig. 2. Validation rules.



where the :H denotes the hue component of a vector in the
HSV space and is computed as:

Dt
HðpÞ ¼ minð jItðpÞ:H � BtðpÞ:Hj; 360� jItðpÞ:H �BtðpÞ:HjÞ: ð9Þ

The lower bound � is used to define a maximum value for the
darkening effect of shadows on the background and is approxi-
mately proportional to the light source intensity. Instead, the upper
bound � prevents the system from identifying as shadows those
points where the backgroundwas darkened too little with respect to
the expected effect of shadows. Approximated values for these
parameters are also available based on empirical dependence on
scene luminance parameters such as the average image luminance
and gradient that can be measured directly. A preliminary
sensitivity analysis for �, �, �H , and �S is reported in [9]. A detailed
comparison of this method with others proposed in the literature is
reported in [17].

Figs. 3a and 3c are two frames (#180 and #230) of a video from an
indoor scene with distributed light sources creating many shadows.
In the scene, a person keeps on moving in the same zone for a while
and the points of his connected shadows occupy always a same area.
Fig. 3b shows the detectedMVOand its connected shadows at frame
#180; shadow suppression is evidently needed for achieving precise
segmentation of the MVO. Moreover, the use of shadowed areas is
essential also for obtaining an accurate and reactive background
modeling. To demonstrate this, Fig. 3c shows a later frame of the
same sequence (frame #230), where the personmoves from the area.
Fig. 3d shows the correct segmentation achievedwith Sakbot, which
correctly updates the background (see (5)). Figs. 3e and 3f show the
results achieved without exploiting the shadow classification in the
background update process. The MVO’s shape is evidently affected
by errors, arising as follows: Let us suppose that, in frame #180 the
background is updated using all the shadows; in frame #230, an area
previously occupied by shadows is now uncovered, thus creating
apparent foreground points; some of them are grouped into isolated
blobs, which can be easily classified as ghosts, their average optical
flow being null; however, other apparent foreground points
connected with the real MVO points are instead included in the

MVO segmentation, thus substantially affecting the object’s shape.
Fig. 3f shows the differently classified points. Although difficult to
be quantified, the corrupting effects of including shadows in the
background modeling update are relevant in real cases.

4 RESULTS EVALUATIONS

In the following, we describe some relevant cases. The first
example measures reactivity in a limit condition when the
background reflects changes from a car that starts its motion after
having previously been part of the background (a reverse out of a
parking lot).

While the car is parked, it is included in the background image.
At frame #65, (Fig. 4, first column), it starts reversing. Until about
frame #100 (Fig. 4, second column, upper image), the moving object
still substantially covers the area where it was stopped, preventing
separation from its forming ghost. However, after a few frames, the
correct background update and the correct segmentation can be
achieved with Sakbot (Fig. 4, third column, upper image).

This result could not be achieved by using statistics only. As an
example, the use of a statistical background, using onlyBS in (6) (Fig.
4, second column, lower image), almost correctly updates the new
background only after about 40 frames, even with still considerable
errors (the black area). Moreover, results comparable with those of
Sakbot cannot be achieved by only adopting selectivity at pixel-
level, being the usual approach that excludes from the background
update pixels detected as inmotion [1], [8], [2]. In fact, if the value of
the detected foreground points is never used to update the
background, the background will never be modified; consequently,
the ghost will be detected forever (Fig. 4, second column, lower
image). If, instead, the value of the detected foreground points is
used in the statistic update, but with a limited weight as in [8], the
udpate will still be very slow.

This different reactivity is compared in the graphs in Fig. 5,

where false negatives (FN) and false positives (FP) are compared

against the ground-truth. The three lines show FN and FP results

with the same statistical function ((2) and (3) with n ¼ 7), comparing
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Fig. 3. The effects of shadow classification on the background modeling. Frame #180 is reported in (a) a raw image and in (b) with the detected MVOs and MVO shadows.

In frame #230 (c), the detected classes are reported in (f). Sakbot is able to correctly segment the image (d), while using shadow suppression only the result is incorrect,

as reported in (e).



the statistical background (Bs curve), selectivity at pixel-level

(Bs+pix_sel curve) and with the knowledge-based selectivity of

Sakbot (Sakbot curve); all the approaches include shadow suppres-

sion and classification. The FN curves are similar for all three

approaches since FN accounts for false negatives that are due to

incorrect segmentation (mostly some parts of the car window,

erroneously classified as shadows). Instead, the FP curves account

for false positives, differing much depending on the different

background reactivity. The Sakbot curve proves that immediately

after an object has moved away from its initial position (frame #103

in the graph), nearly no ghost points are segmented as MVO points.

Starting from frame #105, the FP increases slowly: This is due to the

fact that the moving car is turning parallel to the road, increasing its

size and that of its shadow; the FP increases proportionally due to

the unavoidable imperfections of the shadow detection algorithm.

The ghost remains forever instead in the case of pixel selectivity

(Bs+pix_sel curve), while it decreases slowly in the case of pure

statistics (Bs curve). In frame #103, the Bs curve still shows a

nonnegligible value of FP; this is due to the still partially erroneous

background shown in Fig. 4, second column, lower image.
In Sakbot, high responsiveness to background changes is given

by the concurrence of two features, namely, the limited number of

samples in the statistics and the knowledge-based selectivity at

object level. Differently from purely statistical methods, the

knowledge-based selectivity allows the system a limited observa-

tion window without an erroneous background update. Differ-

ently from pixel-level selective methods, the classification of ghosts

is more robust and deadlock is avoided.

5 CONCLUSIONS

This paper has presented Sakbot, a system for moving object

detection in image sequences. This system has the unique

characteristic of explicitly addressing various troublesome situa-

tions such as cast shadows and ghosts. Cast shadows are detected

and removed from the background update function, thus

preventing undesired corruption of the background model. Ghosts

are also explicitly modeled and detected so as to avoid a further

cause of undesired background modification. Actually, in scenes

where objects are in constant motion (i.e., no ghosts are present),

any common background suppression algorithm already performs

effectively. However, if the dynamics of the scene were more

complex, with objects stopping and starting their motion, standard

techniques would suffer from significant errors, due to the absence

of the object-level knowledge that is instead accounted for in our

proposal. With Sakbot, when an object starts to move, only initially

it will be connected to its ghost. This connected object-ghost blob

can be either globally accepted as a true object or rejected based on

its AOF. In either case, this will cause inevitable transient errors in

the background model. However, as soon as the ghost separates

from the actual object, it will be quickly classified as ghost object

and, unlike any other common approaches, the background will

recover immediately. This will significantly reduce the impact of

ghost errors in highly dynamic scenes such as dense urban traffic

scenes with mixed vehicles and people. The approach has been

proven fast, flexible, and precise in terms of both shape accuracy

and reactivity to background changes. These results are mainly

due to the integration of some form of object-level knowledge into

a statistical background model.
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Fig. 5. Reactivity comparison between a simply statistical background, a pixel-level selective background, and the statistical and knowledge-based background models.

Segmentation is provided via background subtraction including shadow detection. (a) False positives and (b) false negatives.

Fig. 4. The reactivity of the background model. The first column contains the background model at frame #65. The second column contains a zoomed detail of frame

#100 (upper image) and of detected MVOs (in black) by using pixel selectivity only (lower image): False positives are due to the ghost. The third column reports the

detected MVO by using Sakbot (upper) and by using statistical background update only at frame #134 (lower).



The Sakbot system has been tested in a wide range of different

environments and applications. Fig. 6 shows some of these

applications: domotics, intelligent rooms, outdoor surveillance,

traffic control on US highways, and object segmentation in video

for semantic transcoding [19]. Sakbot resulted to be a general-

purpose approach that can be easily tuned for various contexts.

This approach was intentionally designed to be completely

independent of the tracking step in order to retain maximum

flexibility. Since tracking is often application-dependent, this might

jeopardize the generality of this moving object detection approach.

Actually, if feedback from the tracking level to the object detection

level could be exploited, it is likely that the object classification

could be improved by verification of temporal consistency.
Finally, the method is highly computationally cost-effective

since it is not severe in computational time (excluding the
computation of approximate optical flow equation, which is,
however, limited to the pixels of foreground blobs only). Unlike
other background subtraction methods that compute multiple and
more complex background statistics at a time, the very simple
median operator requires very limited computation. This approach,
consequently, allows fast detection of moving objects which for
many applications is performed in real time even on common PCs;
this, in turn, allows successive higher-level tasks such as tracking
and classification to be easily performed in real time. For example,
we analyzed the time performance with a Pentium 4 1.5 GHz for a
video with 320� 240 frames (24 bits per pixel) in which the Sakbot
system is able to obtain an average frame rate of 9.82 fps with
�t ¼ 10, and reaches 10.98 fps (performance obtained on the video
of Fig. 6a).
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Fig. 6. Examples of different applications of Sakbot. (a) Domotics application, (b) US Intelligent Room, (c) outdoor surveillance, (d) traffic control on US highways, and

(e) video segmentation for transcoding.


