

<section-header><section-header><text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

SIMD Architecture

- SIMD = "single-instruction multiple-data"
- SIMD exploits data-level parallelism
 - a single instruction can apply the same operation to multiple data elements in parallel
- SIMD units employ "vector registers"
 - each register holds multiple data elements
- SIMD is pervasive in the BE
 - PPE includes VMX (SIMD extensions to PPC architecture)
 - SPE is a native SIMD architecture (VMX-like)

Local Store

Never misses

- No tags, backing store, or prefetch engine
- Predictable real-time behavior
- Less wasted bandwidth
- Software managed caching
- Can move data from one local store to another

- Algorithm complexity study
- Data layout/locality and Data flow analysis
- Experimental partitioning and mapping of the algorithm and program structure to the architecture
- Develop PPE Control, PPE Scalar code
- Develop PPE Control, partitioned SPE scalar code
 Communication, synchronization, latency handling
- Transform SPE scalar code to SPE SIMD code
- Re-balance the computation / data movement
- Other optimization considerations
 - PPE SIMD, system bottle-neck, load balance
- NOTES: Need to push all computational tasks to SPEs

Hands-on Exercise – Example 1b

■ Adding to Example 1a ... the following

- Develop a PPU program that
 - Creates a buffer containing a character string "Good morning!"
 - Creates an spu thread that contains the above buffer as one of its arguments
- Develop an SPU program that
 - Creates a local buffer to contain the data to be dma'ed in
 - Initiates a dma transfer to receive the buffer
 - Modifies the buffer into "Guten Morgen!"
 - Transfers the buffer back to the ppu

<pre>#include <stdio.h> #include <stdio.h> #include <libmisc.h> #include <libmisc.h> #include <libmisc.h> #include <string.h> extern spe_program_handle_t example1b_spu; int main (vold) { speid_t speid; int status; char * buffer; buffer, "Good morning!"); // create SPU threads speid = spe_create_thread (0, &example1b_spu, (vold *)buffer, 128, -1, 0); spe_wali(speid, &status, 0); print("New modified buffer is %s\n", buffer); return 0; }</string.h></libmisc.h></libmisc.h></libmisc.h></stdio.h></stdio.h></pre>	<pre>#include <stdio.h> #include <stdio.h> #include <string.h> #include <string.h< tr=""> #include <strin< th=""></strin<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h<></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></string.h></stdio.h></stdio.h></pre>
	<pre>wait_on_mask(tag_mask);</pre>

University of Bologna Italy

Our approach

Our Focus:

Statically Scheduled Task Graph Applications

Our Objective:

- Complete approach to allocation and scheduling;
- High computational efficiency w.r.t. commercial solvers;
- High accuracy of generated solutions;

Our Methodology:

- Problem decomposition;
- Allocation Sub-problem:
 - Integer Programming.
- Scheduling Sub-problem:
 - Constraint Programming.

<section-header><section-header><section-header><text>

Computational Efficiency											
		TD		BD		Timed out					
ntasks	SPE it.	MEM it.	time	PM it.	time	$TD \wedge BD$	$\neg \operatorname{T}\!D \wedge BD$	$T\mathbf{D}\wedge \neg \mathbf{B}\mathbf{D}$			
10-11	12	13	3.95	12	71.10	0	0	0			
12-13	17	21	11.59	13	151.38	0	1	0			
14-15	19	28	14.78	14	145.19	0	0	0			
16-17	29	38	42.61	18	388.89	0	2	0			
18-19	46	70	245.17	28	863.00	1	5	0			
20-21	70	90	665.35	23	1291.90	4	8	0			
22-23	33	69	1304.92	19	1686.00	12	6	1 🔶			
24-25	29	42	1486.15	8	1623.00	11	4	3			
26-27	18	41	1523.50	4	1701.67	12	4	3			
28-29	13	19	1800.00	3	1721.00	19	0	1			
Table 1. Performance tests											
 Up to the 	20 - 21	group, T	D is muc	h more	efficient	than BD.					
 Starting f 	rom grou	up 22–23,	the high	numb ח	er of time	ed out instar	nces biases th	e average			
execution time.											
 TD is doi 	ng consi	derably b	etter unt	il group	24 - 25						
 After 	that, mo	st instand	es are n	ot solve	ed within	the time lim	it by any of th	e approaches			
TD has a lower execution time, despite it generally performs more iterations than BD:											
 TD works by solving many easy sub-problems 											
BD performs fewer and slower iterations.											

Thank you!

Contacts: martino.ruggiero@unibo.it luca.benini@unibo.it