
1

Cell
Systems and Technology Group

Cell STI BE

2

Cell BE Solutions

Memory wall:
More slower threads

INCREASE

CONCURRENCY:
Asynchronous loads

Frequency wall:
More slower threads
Specialized function

Power wall:
Reduce transistor power

operating voltage
Reduce switching per function

Multi-Core

INCREASE
Reduce switching per function SPECIALIZATION:

Non-Homogeneous

3

Cell System Features

Heterogeneous multi-core
system architecture

SPE

SXU
SPU

SXU
SPU

SXU
SPU

SXU
SPU

SXU
SPU

SXU
SPU

SXU
SPU

SXU
SPU

system architecture
Power Processor Element
for control tasks
Synergistic Processor
Elements for data-
intensive processing

Synergistic Processor
Element (SPE) consists of

Synergistic Processor
Unit (SPU)
Synergistic Memory Flow
Control (MFC)

16B/cycle (2x)16B/cycle

BICMIC

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

PPE

LS

MFC

PPU

LS

MFC

LS

MFC

LS

MFC

LS

MFC

LS

MFC

LS

MFC

LS

MFC

Control (MFC)
Data movement and
synchronization
Interface to high-
performance Element
Interconnect Bus

FlexIOTMDual
XDRTM

64-bit Power Architecture with VMX

PXUL1
16B/cycle

L2
32B/cycle

Cell Broadband Engine TM:
A Heterogeneous Multi-core
Architecture

* Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc.

4

Power Processor Element (PPE):
G l P 64 bit RISC

PPU Organization

• General Purpose, 64-bit RISC
Processor (PowerPC 2.02)

• 2-Way Hardware Multithreaded
• L1 : 32KB I ; 32KB D
• L2 : 512KB
• VMX (Vector Multimedia Extension)
• 3 2 GHz• 3.2 GHz

5

8 SPEs
-128-bit SIMD instruction set
- Local store – 256KB
- MFC

SPE Organization
Local Store is a private
memory for program and

SPU Core
SPUmemory for program and

data

Channel Unit is a
message passing I/O
interface

SPU programs DMA Unit
with Channel Instructions

DMA Unit

Channel Unit Local Store

SPU

SPE

DMA transfers data
between Local Store and
system memory

on chip interconnect

System Memory

6

SIMD Architecture
SIMD = “single-instruction multiple-data”
SIMD exploits data-level parallelism

a single instruction can apply the same operation to multiple
data elements in parallel

SIMD units employ “vector registers”
each register holds multiple data elements

SIMD is pervasive in the BE
PPE includes VMX (SIMD extensions to PPC architecture)
SPE is a native SIMD architecture (VMX-like)

A SIMD Instruction Example

A 0 A 1 A 2 A 3Reg VA

vector regs add VC,VA,VB

A.0 A.1 A.2 A.3

B.0 B.1 B.2 B.3

+ + + +

C.0 C.1 C.2 C.3

Reg VA

Reg VB

Reg VC

Example is a 4-wide add
each of the 4 elements in reg VA is added to the
corresponding element in reg VB
the 4 results are placed in the appropriate slots in reg VC

7

Local Store

Never misses
No tags backing store or prefetch engineNo tags, backing store, or prefetch engine
Predictable real-time behavior
Less wasted bandwidth
Software managed caching
Can move data from one local store to another

DMA & Multibuffering
DMA commands move data between system memory & Local Storage
DMA commands are processed in parallel with software execution

D bl b ff iDouble buffering
Software Multithreading

16 queued commands

8

Element Interconnect Bus (EIB)()
- 96B / cycle bandwidth

Element Interconnect Bus - Data Topology

Four 16B data rings connecting 12 bus elements
Physically overlaps all processor elementsPhysically overlaps all processor elements
Central arbiter supports up to 3 concurrent transfers per data ring
Each element port simultaneously supports 16B in and 16B out data
path

Ring topology is transparent to element data interface

16B 16B 16B 16B 16B 16B 16B 16B

SPE7SPE5SPE3SPE1PPE IOIF1

Data Arb

16B 16B16B 16B16B 16B16B 16B

16B

16B
16B

16B

16B

16B
16B

16B

SPE0 SPE2 SPE4 SPE6MIC BIF/IOIF0

9

Example of eight concurrent transactions

Ramp Ramp Ramp Ramp Ramp Ramp

PPE SPE1 SPE3 SPE5 SPE7 IOIF1PPE SPE1 SPE3 SPE5 SPE7 IOIF1

Ramp

7

Controller

Ramp

8

Controller

Ramp

9

Controller

Ramp

10

Controller

Ramp

11

Controller

ControllerControllerControllerControllerControllerController

Controller

Ramp

6

Controller

Ramp

7

Controller

Ramp

8

Controller

Ramp

9

Controller

Ramp

10

Controller

Ramp

11

Data

Arbiter

Controller Controller Controller Controller ControllerController Controller Controller Controller Controller Controller

MIC SPE0 SPE2 SPE4 SPE6 BIF /
IOIF1

Ramp

0

Ramp

1

Ramp

2

Ramp

3

Ramp

4

Ramp

5 Ramp

7

Ramp

8

Ramp

9

Ramp

10

Ramp

11

Ramp

5

Ramp

4

Ramp

3

Ramp

2

Ramp

1

Ramp

0

PPE SPE1 SPE3 SPE5 SPE7 IOIF1MIC SPE0 SPE2 SPE4 SPE6 BIF /
IOIF0

Ring1
Ring3

Ring0
Ring2

controls

CELL Software Design Considerations
Two Levels of Parallelism

Regular vector data that is SIMD-able
Independent tasks that may be executed in parallelIndependent tasks that may be executed in parallel

Computational
SIMD engines on 8 SPEs and 1 PPE
Parallel sequence to be distributed over 8 SPE / 1 PPE
256KB local store per SPE usage (data + code)

CommunicationalCommunicational
DMA and Bus bandwidth

DMA granularity – 128 bytes
DMA bandwidth among LS and System memory

Traffic control
Exploit computational complexity and data locality to
lower data traffic requirement

10

Typical CELL Software Development Flow

Algorithm complexity study
Data layout/locality and Data flow analysis
Experimental partitioning and mapping of the algorithm Experimental partitioning and mapping of the algorithm
and program structure to the architecture
Develop PPE Control, PPE Scalar code
Develop PPE Control, partitioned SPE scalar code

Communication, synchronization, latency handling
Transform SPE scalar code to SPE SIMD code
Re-balance the computation / data movement
Other optimization considerations

PPE SIMD, system bottle-neck, load balance
NOTES: Need to push all computational tasks to SPEs

Linux Kernel Support

PPE runs PowerPC applications and operating systems

PPE handles thread allocation and resource management among SPEs

PPE’s Linux kernel controls the SPUs’ execution of programs
Schedule SPE execution independent from regular Linux threads
Responsible for runtime loading, passing parameters to SPE programs,
notification of SPE events and errors, and debugger support

PPE code – Linux tasks
a Linux task can initiate one or more “SPE threads”

SPE code – “local” SPE executables (“SPE threads”)SPE code – local SPE executables (SPE threads)
SPE executables are packaged inside PPE executable files

An SPE thread:
is initiated by a task running on the PPE
runs asynchronously from initiating task
has a unique identifier known to both the SPE thread and the initiating task

11

PPE vs SPE

Both PPE and SPE execute SIMD instructions
PPE processes SIMD operations in the VXU within its PPU
SPEs process SIMD operations in their SPU

Both processors execute different instruction sets
Programs written for the PPE and SPEs must be compiled by
different compilers

Communication Between the PPE and SPEs

PPE communicates with SPEs through MMIO registers supported by the MFC of
each SPE
Three primary communication mechanisms between the PPE and SPEs

ilbMailboxes
Queues for exchanging 32-bit messages
Two mailboxes are provided for sending messages
from the SPE to the PPE

SPU Write Outbound Mailbox
SPU Write Outbound Interrupt Mailbox

One mailbox is provided for sending messages to the SPE
SPU Read Inbound Mailbox

Signal notification registers
Each SPE has two 32-bit signal-notification registers, each has a corresponding
memory-mapped I/O (MMIO) register into which the signal-notification data is
written by the sending processorwritten by the sending processor
Signal-notification channels, or signals, are inbound (to an SPE) registers
They can be used by other SPEs, the PPE, or other devices to send information,
such as a buffer-completion synchronization flag, to an SPE

DMAs
To transfer data between main storage and the LS

12

PPE and SPE MFC Command Differences
Code running on the SPU issues an MFC command by
executing a series of writes and/or reads using channel
i t tiinstructions

Code running on the PPE or other devices issues an MFC
command by performing a series of stores and/or loads to
memory-mapped I/O (MMIO) registers in the MFC

Data-transfer direction for MFC DMA commands is always
referenced from the perspective of an SPEp p

get: transfer data into an SPE (from main storage to local
store)
put: transfer data out of an SPE (from local store to main
storage)

Data Transfer Between Main Storage and
LS Domain

An SPE or PPE performs data transfers between the SPE’s LS
and main storage primarily using DMA transfers controlled
by the MFC DMA controller for that SPEby the MFC DMA controller for that SPE

Channels
Software on the SPE’s SPU interacts with the MFC through
channels, which enqueue DMA commands and provide other
facilities, such as mailboxes, signal notification, and access
auxiliary resources

DMA transfer requests contain both an LSA and an EA
Thus they can address both an SPE’s LS and main storage Thus, they can address both an SPE s LS and main storage

Each MFC can maintain and process multiple in-progress
DMA command requests and DMA transfers

Each DMA command is tagged with a 5-bit Tag Group ID.
This identifier is used to check or wait on the completion of
all queued commands in one or more tag groups

13

Barriers and Fences

Uses of Mailboxes
To communicate messages up to 32 bits in length,
such as buffer completion flags or program statussuch as buffer completion flags or program status

e.g., When the SPE places computational results in main
storage via DMA. After requesting the DMA transfer, the
SPE waits for the DMA transfer to complete and then
writes to an outbound mailbox to notify the PPE that its
computation is complete

Can be used for any short-data transfer purpose,
such as sending of storage addresses, function
parameters command parameters and state-parameters, command parameters, and state-
machine parameters

14

Mailboxes - Characteristics
Each MFC provides three mailbox queues of 32 bit each:
1. PPE (“SPU write outbound”) mailbox queue

SPE writes, PPE reads
1 deep
SPE stalls writing to full mailbox

2. PPE (“SPU write outbound”) interrupt mailbox queue
like PPE mailbox queue, but an interrupt is posted to the PPE when
the mailbox is written

3. SPU (“SPU read inbound”) mailbox queue
PPE writes, SPE reads
4 deep
can be overwritten

Hands-on: Example

A simple hello world program

15

Example 1a – code sample
#include <stdio.h>
#include <libspe.h>
extern spe program handle t hello spu;

ppu program

hello.c

spu program

hello_spu.c

extern spe_program_handle_t hello_spu;
int main (void)
{

speid_t speid;
int status;
speid = spe_create_thread (0, &hello_spu, NULL, NULL, -1, 0);
spe_wait(speid, &status, 0);
return 0;

}

#include <stdio.h>
int main(unsigned long long speid, unsigned long long argp, unsigned long long

envp)
{

int a=0;
printf("Hello world (0x%llx),(0x%llx),(0x%llx)\n", speid, argp, envp);
return a;

}

spu Makefile

DIRS = spu

PROGRAM_ppu = hello

IMPORTS = -lspe spu/hello_spu.a

include $(CELL_TOP)/make.footer

PROGRAM_spu := hello_spu

LIBRARY_embed := hello_spu.a

include $(CELL_TOP)/make.footer

ppu Makefile

spu Makefile

Hands-on: DMA

Example 1b - Develop an SPU program to create a
buffer for a "hello" message that it will DMA in,
modify, and DMA back to the PPU program

16

Hands-on Exercise – Example 1b
Adding to Example 1a … the following

Develop a PPU program thatp p g
Creates a buffer containing a character string
“Good morning!”
Creates an spu thread that contains the above
buffer as one of its arguments

Develop an SPU program that
Creates a local buffer to contain the data to be
dma’ed in dma ed in
Initiates a dma transfer to receive the buffer
Modifies the buffer into “Guten Morgen!”
Transfers the buffer back to the ppu

#include <stdio.h>
#include <libspe.h>

ppu program

hello.c
#include <libmisc.h>
#include <string.h>
extern spe_program_handle_t example1b_spu;
int main (void)
{

speid_t speid;
int status;
char * buffer;
buffer = malloc_align(128,7);
strcpy (buffer, "Good morning!");
// create SPU threads
speid = spe_create_thread (0, &example1b_spu, (void *)buffer,

128, -1, 0);
spe_wait(speid, &status, 0);
printf("New modified buffer is %s\n", buffer);

#include <stdio.h>
#include <string.h>
#include <libmisc.h>
#include <spu_mfcio.h>
#define wait_on_mask(x) mfc_write_tag_mask(x);

mfc_read_tag_status_any();
int main(unsigned long long speid, unsigned long long argp, unsigned

long long envp)
{

char * buffer;
int tag = 1, tag_mask = 1<<tag;
// we should probably check here to make sure envp/size is a
valid DMA size but for the sake
// of readability I'm going to assume it is....

spu program

example1bspu.c

p (\ ,);
return 0;

}

// y g g
printf("ARGP = 0x%llx, ENVP = %d\n", argp, envp);
buffer = malloc_align(envp, 7);
// receive buffer
mfc_get(buffer, (unsigned int)argp, envp, tag, 0, 0);
wait_on_mask(tag_mask);
printf("SPE 0 received buffer \"%s\"\n", buffer);
// modify buffer
strcpy (buffer, "Guten Morgen!");
// DMA out buffer to SPE 1
mfc_put(buffer, (unsigned int)argp, envp, tag, 0, 0);
wait_on_mask(tag_mask);
return 0;

}

17

Parallel Application Development
toolkit with Run-Time Support for

MPSoC Processors

Martino Ruggiero
martino.ruggiero@unibo.it

Luca BeniniLuca Benini
luca.benini@unibo.it

University of Bologna
Italy

Providing support for multimedia applications on MPSoC platforms
remains a significant research challenge.

Enhancing Programmability Efficiency
on Multi Processor System-on-Chip Platforms

Challenges in:
The design of applications
Programmability efficiency

New tools for efficient developing and mapping of applications onto hardware
platforms

Easy to use
Flexibility

The problem of allocating and scheduling task graphs on processors in a
distributed real-time system is NP-hard.

18

Application Mapping
T1

T2 T3

…Proc. 1 Proc. 2 Proc. N

T1 T2 T3T4 T5 T6T8 T7

T2 T3

T4 T5 T6

T7

T8

INTERCONNECT

Private

Mem

Private

Mem

Private

Mem
…

es
ou

rc
es

T T T

Deadline

New tool flows for efficient developing and mapping of multi-task
applications onto hardware platforms
The problem of allocating and scheduling task graphs on processors in a
distributed real-time system is NP-hard.

Time

R
e

T1 T2

T3

T4

T5 T7

T8

Related Work
Main approaches:

Incomplete:
L t ti l tLow computational cost;
No guarantees about the quality of the final solution;

Complete:
Mainly based on Integer Linear Programming;
High computational cost;
Suitable for small problems instances;

Problem decomposition:
Good way to tackle problem complexity;
Divide up the problem into sub-problems & leverage their structures;
Mainly heuristic approachMainly heuristic approach.

19

Our approach
Our Focus:

Statically Scheduled Task Graph Applications

Our Objective:
Complete approach to allocation and scheduling;
High computational efficiency w.r.t. commercial solvers;
High accuracy of generated solutions;

Our Methodology:
Problem decomposition;
Allocation Sub-problem:

Integer Programming.
Scheduling Sub-problem:

Constraint Programming.

Application Developing:
Design Flow

Optimization tools need abstraction
t d lto model:

Application
Programming model
Hardware platform

The abstraction gap between high
level optimization tools and standard
application programming models can
introduce unpredictable and undesired
behaviours.

Optimization
Tool

Code
Implementation

Phase
Abstraction

gap

20

The main idea

A software development toolkit to help programmers in software
implementation
Starting from a high level task and data flow graph software developers

Application Development Toolkit

Optimization
Tool

Off-Line
Support

On-Line
Support

Starting from a high level task and data flow graph, software developers
can easily and quickly build their application infrastructure.
Programmers can intuitively translate high level representation into C-
code using our facilities and library

a generic customizable application template OFFLINE SUPPORT;
a set of high-level APIs ONLINE SUPPORT in RT-OS

The main goals are:
guarantees on high performance and constraint satisfaction;
predictable application execution after the optimization step.

Target architecture

…

PPE

PPU
Storage Subsystem

PPU

DMA

SPE 0

MFC

SPU

MMU Synch.

Local Storage

DMA

SPE 7

MFC

SPU

MMU Synch.

Local Storage

Heterogeneous system architecture:
One 64-bit Power Processor Element (PPE) Unary Resource
8 Synergistic Processing Elements (SPEs) Unary Resource

Bus/if

Element Interconnect Bus (EIB)

DRAM
Memory

Bus/if Bus/if

8 Synergistic Processing Elements (SPEs) Unary Resource
Element Interconnect Bus Cumulative Resource
Limited Local Memory Cumulative Resource

Several MPSoC platforms available on the market match this
template:

Data processing engine similar to our homogeneous tile vector with explicit
memory management

21

Target Application: Task Graph (TG)

Statically scheduled Task Graph
Applications:

N

N

A TG is a couple <T,A>, where:
T i h f d d lli i

Applications:
Explicit parallelism;
Message Passing Communication;
Single-token Communication.

N

NN

N

N C

N

N

T is the set of nodes modelling generic
tasks (e.g. elementary operations,
subprograms, ...);
A the set of arcs modelling precedence
constraints (e.g. due to data
communication);
WCET for Comp. & Comm. Modelling.

N

m
 B

us

Sh
ar

ed

M
em

SPE LS

Task memory requirements

Each task has three kinds
of memory requirements:

•Program Data;

#1#2

Sy
st

em

S

SPE LS

Program Data & Internal State can be allocated:
• On the local LS;

O th t Sh d M

•Program Data;
•Internal State;
•Communication queues.

The communication task might run:
• On the same SPE → negligible communication cost
• On a remote SPE → costly read or write procedure
• On Shared Memory → costly message exchange procedure

• Communication queues in LS → more efficient message passing
• Memory size limit!

• On the remote Shared Memory.

22

m
 B

us

Sh
ar

ed

M
em

SPE LS

Task memory requirements

Each task has three kinds
of memory requirements:

•Program Data;

#1

Sy
st

em

S

SPE LS

•Program Data;
•Internal State;
•Communication queues.

#2

Program Data & Internal State can be allocated:
• On the local LS;

O th t Sh d M• On the remote Shared Memory.

The communication task might run:
• On the same SPE → negligible communication cost
• On a remote SPE → costly read or write procedure
• On Shared Memory → costly message exchange procedure

• Communication queues in LS → more efficient message passing
• Memory size limit!

m
 B

us

Sh
ar

ed

M
em

SPE LS

Task memory requirements

Each task has three kinds
of memory requirements:

•Program Data;

#1

Sy
st

em

S

SPE LS

•Program Data;
•Internal State;
•Communication queues.

#2

Program Data & Internal State can be allocated:
• On the local LS;

O th t Sh d M• On the remote Shared Memory.

The communication task might run:
• On the same SPE → negligible communication cost
• On a remote SPE → costly read or write procedure
• On Shared Memory → costly message exchange procedure

• Communication queues in LS → more efficient message passing
• Memory size limit!

23

Logic Based Benders Decomposition

ALLOCATION:
INTEGER PROGRAMMING

Memory constraints

Valid
allocation

SCHEDULING:
CONSTRAINT PROGRAMMING

No good: linear
constraint

Real Time
constraint

Application Development Support

Optimization
Tool

Off-Line
Support

On-Line
Support

Decomposes a problem into 2 sub-problems:
Allocation → IP
Scheduling → CP

The process continues until the master problem and sub-problem
converge providing the same value.
Methodology has been proven to converge to the optimal solution
[J.N.Hooker and G.Ottosson].

Multi-stage Benders Decomposition
SPE

When the SCHED problem is solved (no matter if a solution has been

MEM

SCHED

A

B

p (
found), one or more cuts (labelled A) are generated to forbid (at least) the
current memory device allocation and the process is restarted from the
MEM stage;
if the scheduling problem is feasible, an upper bound on the value of the
next solution is also posted.
When the MEM & SCHED sub-problem ends (either successfully or not),
more cuts (labelled B) are generated to forbid the current task-to-SPE
assignment.
When the SPE stage becomes infeasible the process is over converging to
the optimal solution for the problem overall.

24

SPE Allocation

min z

Given a graph with n tasks, m arcs and a platform with p processing Elements

1,...,0;1,...,0}1,0{

1,...,01

1,...,0

..

1

0

1

0

−=∀−=∀∈

−=∀=

−=∀≥

∑

∑
−

=

−

=

pjniT

niT

pjTz

ts

ij

p

j
ij

n

i
ij

Each task can be assigned to a single PE;The makespan objective function depends only on scheduling decision variables.

We adopt an heuristic objective function:

Needed to express the objective function

1,...,0)(
1

0

−=∀≤∑
−

=

pjdlineTiDMIN
n

i
ij

ij
to spread tasks as much as possible on different SPEs, which often provides good

makespan values pretty quickly.
It forces the objective variable z to be

greater than the number of tasks allocated on any PE.
DMIN(i) is the minimum possible duration of task i and dline is a deadline

Constraints on the total duration of tasks on a single SPE.
To discard trivially infeasible solutions.

Schedulability test
SPE

MEM

SCHED

SCHED TEST

SPE allocation choices are by themselves very relevant:
a bad SPE assignment is sometimes sufficient to make the scheduling
problem unfeasible.

if the given allocation with minimal task durations is already
infeasible for the scheduling component, then it is useless to
complete it with the memory assignment that cannot lead to any
feasible solution overall.

25

Memory device allocation

∀
−=∀∈
−=∀∈

10}10{
1,...,0}1,0{
1,...,0}1,0{

r

i

R
mrW
niM Mi = 1 if task i allocates its computation data on the

local memory of the SPE it is assigned to

∑∑ ∑
−

++=

==
≠≤+

−=∀∈

)()(

1

0
)()()()(_

)()(
)()(1

1,...,0}1,0{

tta
r

ta

p

i
r

rr

rr

r

WrcommMiimemRrcommjusagebase

kpehpeifWR
kpehpeifWR

mrR

Wr = 1 if the communication buffer is on SPE pe(h) (that of the producer),
Rr = 1 if the buffer is on SPE pe(k) (that of the consumer).

Pr Cn
Wr=1;

Pr Cn
Wr=0;

Pr Cn
Wr=0;

Pr Cn
Wr=1;

Pr Cn
Wr=0;

∑∑
−=−=

≠
=

=
=
−= =

≤−+−+−+

=∀−=∀

),(),(

)()(
)(

),(
)(

),(0

)()1()()1()()1()(_
:)(..;1,...,0

hrhr

khrhr

ta
jr

ta
ir

kpehpe
jkpe
tta

jhpe
ta i

CrcommWimemMrcommRjusagebase
jipetsipj

Wr=1;
Rr=0;

Wr=0;
Rr=1;

Wr=0;
Rr=0;

;
Rr=1;

0;
Rr=0;

Memory device allocation

∀
−=∀∈
−=∀∈

10}10{
1,...,0}1,0{
1,...,0}1,0{

r

i

R
mrW
niM

∑∑ ∑
−

++=

==
≠≤+

−=∀∈

)()(

1

0
)()()()(_

)()(
)()(1

1,...,0}1,0{

tta
r

ta

p

i
r

rr

rr

r

WrcommMiimemRrcommjusagebase

kpehpeifWR
kpehpeifWR

mrR

mem(i) is the amount of memory required to store internal data of task I;
comm(r) is the size of the communication buffer associated to arc r.
The base_usage(j) expression is the amount of memory needed to
store all data permanently allocated on the local device of processor j.

∑∑
−=−=

≠
=

=
=
−= =

≤−+−+−+

=∀−=∀

),(),(

)()(
)(

),(
)(

),(0

)()1()()1()()1()(_
:)(..;1,...,0

hrhr

khrhr

ta
jr

ta
ir

kpehpe
jkpe
tta

jhpe
ta i

CrcommWimemMrcommRjusagebase
jipetsipj

26

Scheduling subproblem

)()(2,...,0 1rlrl rdstartrdendhl =−=∀ +

Each communication buffer must be written before it can be read.

)()(2,...,
)()(
)()(

)()(, ,

1

1

1

rlrl

rhi

irh

rlrl

wrstartwrendkhl
wrstartexecend
execstartrdend

=−=∀
=
=

+

−

+

• An activity for each:
• execution phase (exec)

)()(1,...,0 rr rdstartwrendmr ≤−=∀

Rd Rd Rd Wr WrExec

Rd Wr WrExec

• buffer reading/writing operation (rd,wr).
• Task are not preemptive;

Computational Efficiency

• Up to the 20 − 21 group, TD is much more efficient than BD.
• Starting from group 22−23, the high number of timed out instances biases the average
execution time.
• TD is doing considerably better until group 24 − 25.

• After that, most instances are not solved within the time limit by any of the approaches
• TD has a lower execution time, despite it generally performs more iterations than BD:

• TD works by solving many easy sub-problems
• BD performs fewer and slower iterations.

27

Computational Efficiency:
distribution of the allocation/scheduling time ratio for the solvers

TD Solved TD Unsolved

BD Solved BD UnsolvedThe solution time for instances not solved within the
limit appears to be strongly unbalanced with most of

For the BD solver where substantially all the process
time is spent in solving allocation subproblems.

the time absorbed by the scheduling component.

Optimization Models
Application model:

Pipeline
Generic Task GraphGeneric Task Graph
Conditional Task graph

Objective Function:
Throughput
Makespan
Power

Constraints:

?
??

??

Constraints:
Memory occupation
Frequency Switching
Bus Traffic

28

T2 T3

T1

Framework

CPU CPU
T1 T2 T3T4 T5 T6T8 T7

OnLine
Support

OnLine
Support

Application Development Toolkit

Optimization
Tool

Off-Line
Support

On-Line
Support

P1
P2

T4 T5 T6 T7

T8 T9 T10

T11

T

INTERCONNECT

MemMem

Number of nodes : 12
Graph of activities
Number of CPU : 2

• Allocation;
• Scheduling;

Application Development Support

Optimization
Tool

Off-Line
Support

On-Line
Support

T12

uint queue_consumer [..] [..] = {
{0,1,1,0,..},
{0,0,0,1,1,.},
{0,0,0,0,0,1,1..},
{0,0,0,0,..}..};

#define N_CPU 2
uint task_on_core[TASK_NUMBER] = {1,1,2,1};
int schedule_on_core[N_CPU][TASK_NUMBER] = {{1,2,4,8}..};

Number of CPU : 2
Allocation
Scheduling

#define TASK_NUMBER 12

• Communication;
• Synchronization.

Available scheduling engines:
• optimum static scheduler based

on integrated IP and CP solvers (Benders decomposition)
• fast & suboptimal list-based scheduler for dynamic scheduling

Task Computational Model Vs Generated Code

INPUT EXEC OUTPUT

//Initialization

EXEC

//Initialization
Init_task_structures(); //Task State and Private Data Init.
Init_queues(); //Buffers and Semaphores Init.
…
//Task Core
//Reading phase
Read_input();
….

INPUT

OUTPUT

//Task Execution
Exec(); //The only section which is up to

//the application programmer
….
//Writing phase
Write_output();

29

On-line Support Tile0

Local Mem

Tile1

Local Mem

Tile2

Local Mem

1

2 3

4 5

Main Memory
Application Allocation

64 5

7

8
Application Development Support

Optimization
Tool

Off-Line
Support

On-Line
Support

The Task Graph and the allocation are described by data
structures:

At application boot time, the allocation support reads these
data structures and allocates resources to tasks and
communication buffers.

On-line Support
SPE … SPESPEPPE

Allocate queue

Q i f

Allocation info

No-OS on SPEs:

Automatic Application Configuration:
Mailbox system
Task Generation and Configuration

Root Segment 0
Scheduler

Segment 1

Local Storage

Queue info

Task 0 info
Task 1 info

Task N info

…

…

…

…

Physical
addresses

Local scheduling support
Local Memory Limitation:

Code overlays

Task Generation and Configuration
Buffer allocations

Main Memory

Task 0 Task 1 Task 2

30

Methodology

Platform Optimizer

TG
Characterization

Phase

Platform

Optimization
Phase

Optimizer

Application
Profiles

Application
Development

Support

Optimal SW
Application

Implementation

Support

Platform
Execution

Validation of optimizer solutions

Optimizer

Optimal
Allocation
& Schedule

Platform

Throughput comparison between the predicted by the optimizer
and the real one;
MAX error lower than 10%;
AVG error equal to 4.8%, with standard deviation of 2.41;

validation

31

Cellflow: Experimental results

4

5

6

7

 u
p Theoretical Limit

Mat mult

0

1

2

3

4

0 1 2 3 4 5 6 7

SPEs
Sp

ee
d Mat-mult

SW Radio
FFT

Mat-mult SW Radio FFT

• The Mat-mult benchmark scales almost perfectly:
• efficiency of the runtime environment
• almost negligible overhead.

• Good speed-ups also for the FFT ;
• The software radio benchmark shows good speedup until only three SPEs:

• A critical path limits the performance boost
• Functional pipeline case.

Ongoing work
Dynamic resource management
Performance tuning of the middlewarePerformance tuning of the middleware
Interaction with high level tools:

OpenMP support
Full dataflow (i.e. streaming) support
Model-based environments

Matlab

Integration with advanced architecturesIntegration with advanced architectures
NoC support for dataflow;
Transactional Memories;
Etc.

32

Progettino: Cellsim

Progettino: plug-in eclipse

33

Progettino: Parallelizzare 3D graphic kernels

Thank you!

C t tContacts:
martino.ruggiero@unibo.it
luca.benini@unibo.it

