
Appendix A

Mathematical background

A.1 Vectors and matrices

A brief summary of vector and matrix conventions and operations is given here. An
excellent handbook for vector and matrix computation is (Barnett, 1990) and readers
should refer to it for details. An alternative that may also be found helpful is (Golub
and van Loan, 1989). The vector and matrix operations described should be available
in appropriate programming languages such as matlab.

Vectors Throughout the book, vectors are denoted in bold, for example

r =


 x

y


 or a =




a1

a2

a3


 .

Scalar product and vector product take their usual meanings and are denoted

a · b and a × b

respectively. In three dimensions, for instance,

a · b = a1b1 + a2b2 + a3b3.

and
a × b = (a2b3 − a3b2, a3b1 − a1b3, a3b1 − a1b3)T .
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The magnitude of a vector may be measured via its Euclidean norm:

|r| =
√

r · r
and a vector r for which |r| = 1 is said to be normalised, or a “unit” vector.

Matrices Matrices are generally non-bold capitals, for example A, with components
denoted Aij . The transpose AT is defined by

AT
ij = Aji.

The rank of a matrix A is the number of linearly independent vectors that comprise
its columns.

A matrix operation that is frequently useful is the Kronecker product

A ⊗ B =




A11B A12B . . .

A21B A22B . . .

. . . . . . . . .


 (A.1)

which combines two arrays of dimension M1 × N1 and M2 × N2 to make a larger one
of dimension M1M2 × N1N2.

Linear equations The linear simultaneous equations

Ax = b

have a unique solution when A is square and is non-singular — that is, detA �= 0,
where det A is the determinant of A. Then a solution can be found using the
standard inverse

x = A−1b.

If there is no solution, as may happen when A is not square, there may nonetheless be
a unique, optimal, approximate solution which is expressed using a pseudo-inverse
A+:

x = A+b where A+ = (AT A)−1AT .

(More general definitions of pseudo-inverse can be made, but are not used in this
book.)
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Rotation matrices Matrices for rotation about x, y and z axes are respectively
denoted Rx, Ry and Rz where, for example,

Rz(θ) =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1


 (A.2)

so that a point in three dimensions given by a vector r = (x, y, z)T is transformed to
a rotated point

r′ = Rz(θ)r.

In two dimensions, a rotation is a 2 × 2 matrix

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
.

Rotation matrices have the property that they are orthogonal, satisfying RT R =
I. Generally, an orthogonal matrix U satisfies UT U = I and, in three dimensions,
can be interpreted as a rotation (when detU = 1) or a combination of rotation and
reflection (det U = −1).

Eigenvalues and eigenvectors The eigenvalues λn and eigenvectors un of a square
N × N matrix A are defined as satisfying

Aun = λnun, n = 1, . . . , N.

Eigenvalues and eigenvectors may have complex values, unless A is symmetric (AT =
A) in which case they are guaranteed to be real.

The trace of the matrix is defined to be

tr(A) =
N∑

n=1

Ann

and has the property that

tr(A) =
N∑

n=1

λn.
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Diagonalisation Eigenvalues and eigenvectors can be used to decompose a square
matrix A as

A = UDU−1

where D is the “diagonal” matrix

D = diag(λ1, . . . , λN )

with the eigenvalues along the diagonal and zeros elsewhere. The matrix U consists
of columns which are normalised eigenvectors of A. One important application of the
diagonal form is in computing powers of A:

Ap = UDpU−1 where Dp = diag(λp
1, . . . , λ

p
N ).

Setting p = 1
2 allows a square root of A to be computed.

Singular value decomposition (SVD) An alternative form of decomposition of a
matrix A is the SVD, which applies not only to square matrices but also to rectangular
ones of size M × N . It has the form

A = UDV

where U is an M×M matrix, D is a diagonal M×N matrix and V is an N×N matrix.
Both U and V are orthogonal matrices. The diagonal values of D are Dnn = σn where
λn = σ2

n are eigenvalues of the symmetric matrix AT A and are hence guaranteed to
be positive.

A measure of the “size” of A is its spectral radius ‖A‖2 =
√

λ1 where λ1 is the
largest eigenvalue of AT A. The condition for an iterative process involving A, in which
arbitrarily large powers An of A are applied to vectors, to be stable is that ‖A‖2 < 1.

A.2 B-spline basis functions

Useful introductory reference books on splines are (Faux and Pratt, 1979; Foley et al.,
1990). An excellent, comprehensive reference is (Bartels et al., 1987).

In chapter 3, spline functions are written as a linear combination of a number of
spline “basis functions.” Basis functions are constructed using the following general
rule which can be used to define any arbitrary set of polynomial splines. Let Bn,d be
the nth basis function for a spline of order d. Then for a spline with single knots of
unit spacing, the following recursive rule applies:
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Ground instance

Bn,1(s) =


 1 if n ≤ s < n + 1

0 otherwise

Inductive step

Bn,d(s) =
(s − n)Bn,d−1(s) + (n + d − s)Bn+1,d−1(s)

d − 1

and some examples are shown in figure A.1. These functions satisfy the following
conditions:

Support Bn,d(s) = 0 for s /∈ [n, n + d)

Positivity Bn,d(s) ≥ 0 for all s

Normalisation
∑∞

−∞ Bn,d(s) = 1 for all s

Translational invariance Bn+1,d(s) = Bn,d(s − 1) for all s

and further, there is a smoothness constraint for d > 1, namely that Bn,d has contin-
uous (d − 2)th derivative for all s and all d > 1.

Non-uniform B-spline functions

The spline basis functions generated above, for which the knots are uniformly spaced
at unit intervals, can be generalised to produce spline functions with arbitrary knot
spacing. Consider a spline with NK knots at positions k0 ≤ k1 ≤ . . . ≤ kNK−1, then
the recursive rule becomes

Ground instance

Bn,1(s) =


 1 if kn ≤ s < kn+1

0 otherwise
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B1,1(s)
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s

Figure A.1: A spline basis function Bn,d of order d is built up recursively from basis functions
of lower order.
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Inductive step

Bn,d(s) =
(s − kn)Bn,d−1(s)

kn+d−1 − kn
+

(kn+d − s)Bn+1,d−1(s)
kn+d − kn+1

which reduces to the uniform case when kn = n. The rule can be used to generate
spline functions with knots of multiplicity m by setting m consecutive kn to be equal.
(Terms in the inductive step are zero when the denominator is zero. The validity of
this can be shown by taking a limit as the knots approach one another — it is easy to
see by induction that the basis function in the numerator is identically zero whenever
the denominator is zero). The conditions of positivity and normalisation still hold
in general, and now the support of the basis function Bn,d is [kn, kn+d). The basis
functions are clearly no longer necessarily translated copies of each other, however,
and the introduction of a multiple knot reduces the smoothness of a basis function;
the function is Cd−1−m at a knot of multiplicity m. This weakening of the smoothness
property is the motivation for using multiple knots; it permits B-spline functions, and
therefore curves, with sharp corners and discontinuities.

An implementation of B-spline functions

The recursive rule for generating Bn,d can be converted into an algorithm by express-
ing each basis function as a sequence of polynomials pn(s) defined over the intervals
[kn, kn+1). Since the support1 of Bn,d is [kn, kn+d), any spline basis function of order
d can be represented using just d polynomials Bσ

n,d, one for each of the d spans Sσ

in the support of Bn,d. Now the inductive step of the rule can be applied, over each
interval in turn, to obtain each of the Bσ

n,d.
Where a B-spline contains multiple knots, some of the inter-knot intervals have zero

length, so it is convenient to introduce the concept of “spans”. These correspond to
the non-empty inter-knot intervals above, and the span ends are called “breakpoints”.
A B-spline function, therefore, is a piecewise polynomial curve made up of a series
of L spans S0 . . . SL−1 connected at breakpoints s0 < s1 < . . . < sL. We adopt the
convention that all spans are unit length, (si = i), so the basis functions making up a
spline are uniquely determined by the knot multiplicities m0 . . . mL at the breakpoints.
A periodic B-spline function is constructed by considering the basis functions to be
periodic over the interval [0, L]. A periodic B-spline function must have m0 = mL and

1The support of a function is the interval over which it is non-zero.
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it has “multiple knot count”

M =
L∑
1

(mi − 1)

while for an aperiodic spline m0 = mL = d to control the boundary conditions of the
spline, and

M =
L∑
0

(mi − 1).

An L span B-spline is a linear combination of NB basis functions, where

NB = L + M = NK − m0

for a periodic spline, and

NB = L + M + 1 − d = NK − d

for an aperiodic spline. Thus, for example, a simple L span aperiodic quadratic B-
spline is a linear combination of NB = L+2 basis functions (see figure 3.6 on page 48).
The relationship between spans, knots and basis functions is illustrated for two cases
in figures A.2 and A.3.

Building a spline function from basis functions

B-spline functions can be evaluated efficiently using “span matrices.” Over the span
Sσ, any spline function is a linear combination of the basis functions Bbσ ,d . . . Bbσ+d−1,d

where

bσ =

(
σ∑

i=0

mi

)
− d

so

x(s)[σ,σ+1) = x(s)σ =
bσ+d−1∑

bσ

xiBi,d(s)
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SpanS0 S1 S2 S3

B0,3(s) B1,3(s) B2,3(s)B3,3(s)

B2,3(s) B3,3(s)

Knotk0 k1 k2 k3 k4

0 1 2 3 4

0.5

1.0

s

Figure A.2: A simple periodic B-spline with no multiple knots has L = 4 spans,
NK = 5 knots, and is a combination of NB = 4 (periodic) basis functions.

SpanS0 S1 S2 S3

B0,3(s)
B1,3(s)

B2,3(s)
B3,3(s)

B4,3(s)

B5,3(s)

B6,3(s)

Knotk0, k1, k2 k3 k4 k5, k6 k7, k8, k9

0 1 2 3 4

0.5

1.0

s

Figure A.3: An aperiodic spline must have knots of multiplicity d at its endpoints.
Here there is also a double knot between the third and fourth spans, leading to a discontinuity
in the first derivative of the function. Here L = 4, NK = 10, NB = 7.
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(with obvious variations for periodic splines). For each span, therefore, we can com-
pute a d × d span matrix BS

σ such that

x(s + σ)σ = (1 s . . . sd−1)BS
σ




xbσ

xbσ+1

...

xbσ+d−1




where the ith column of the span matrix corresponds to the polynomial coefficients of
the basis function Bbσ+i−1,d over the interval of that span (in practice it is convenient
to define each span matrix over the interval [0, 1)). The span matrices for the spline
in figure A.3 are as follows:

BS
0 =




1.00 0.00 0.00

−2.00 2.00 0.00

1.00 −1.50 0.50




BS
1 =




0.50 0.50 0.00

−1.00 1.00 0.00

0.50 −1.00 0.50




BS
2 =




0.50 0.50 0.00

−1.00 1.00 0.00

0.50 −1.50 1.00




BS
3 =




1.00 0.00 0.00

−2.00 2.00 0.00

1.00 −2.00 1.00




and the algorithm used to calculate them is given in figure A.4. Once span matrices
have been computed off-line, the spline can be evaluated efficiently at any values of s
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To calculate span matrices for a non-periodic B-spline of order d with knot multiplicities
mi, 0 ≤ i ≤ L.

1. Calculate the knot values ki:

(a) Initialise: p = 0, q = 0

(b) For i = 0 . . . L

i. For j = 1 . . . mi

kp = q, p = p + 1
ii. q = q + 1

2. For each span σ = 0 . . . L − 1:

(a) Find the index bσ of the first basis function whose support includes the span.

bσ =

(
σ∑
0

mi

)
− d

(b) For i = 1 . . . d recursively calculate the basis polynomial Bσ
bσ+i−1,d for span σ

using the following rule

i. Ground instance

Bσ
n,1(s) =


 1 if kn ≤ σ < kn+1

0 otherwise

ii. Recursive rule

Bσ
n,d(s) =

(s + σ − kn)Bσ
n,d−1(s)

kn+d−1 − kn
+

(kn+d − s − σ)Bσ
n+1,d−1(s)

kn+d − kn+1

where terms are zero when the denominator is zero.
iii. Store the coefficients of Bσ

bσ+i−1,d as the ith column of the d × d span
matrix BS

σ , where the top row corresponds to the constant polynomial
coefficient.

Figure A.4: Algorithm to calculate span matrices for aperiodic B-splines. Obvious
modifications must be made for the periodic case.



292 Appendix A

and x0 . . . xNB−1. For notational purposes it is convenient also to define the d × NB

“placement matrices” Gσ:

(Gσ)ij =




1 if i − bσ = j

0 otherwise
(A.3)

so that
x(s + σ) = (1 s . . . sd−1)BS

σ GσQ

where 0 ≤ s < 1. The derivative of the function can be calculated as

x′(s + σ) = (0 1 . . . (d − 1)sd−2)BS
σ GσQ

and so when considering a spline curve,
 x

y


 = (1 s . . . sd−1 1 s . . . sd−1)


 BS

σ Gσ 0

0 BS
σ Gσ




 Qx

Qy


 ,

the tangent to the curve is given by
 x′

y′


 = (0 1 . . . (d − 1)sd−2 0 1 . . . (d − 1)sd−2)


 BS

σ Gσ 0

0 BS
σ Gσ




 Qx

Qy


 ,

and the normal is given by 
 nx

ny


 =


 −y′

x′


 .

Calculating the spline metric matrix

Using the span matrices it is straightforward to compute the spline metric matrix B,
where

B =
1
L

∫ L

0
B(s)B(s)T ds (A.4)
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as described on page 50.

B =
1
L

L−1∑
σ=0

(∫ 1

0
B(s + σ)B(s + σ)T ds

)

=
1
L

L−1∑
σ=0

GT
σ (BS

σ )TPBS
σ Gσ

where

P =
∫ 1

0




1
...

sd−1



(

1 . . . sd−1
)

ds,

the “Hilbert” matrix (Barnett, 1990) whose coefficients are

Pij =
1

i + j − 1
.

Similarly, the matrix B′ used on page 65 to define the area coefficients A, was defined
as

B′ =
1
L

∫ L

0
B(s)B′T (s) ds

and may be calculated as follows:

B =
1
L

L−1∑
σ=0

GT
σ (BS

σ )TP ′BS
σ Gσ

where

P ′ =
∫ 1

0




1
...

sd−1



(

0 . . . (d − 1)sd−2
)

ds, so

P ′
ij =




0 if i = j = 1

j−1
i+j−2 otherwise

.
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A.3 Probability

An excellent introductory text on probability is (Papoulis, 1990). It is impossible
to cover the necessary ground here, but since much of the argument in the book is
probabilistic, a few basic concepts are reviewed here.

Probability distributions A continuous random variable x taking real values x ∈
R has a probability distribution defined by its density function p(x) ≥ 0. Its
interpretation is that, for an interval I = [a, b]:

P (x ∈ I) =
∫ b

a
p(x) dx.

This definition extends to a multi-dimensional random variable X ∈ R
NX so that, for

a subset I ∈ R
NX :

P (X ∈ I) =
∫
I

p(X) dX.

Since X has to take some value, p must satisfy the normalisation property that∫
R

NX

p(X) dX = 1.

A conditional distribution for X specifies the probable values of X given that
the value of some related variable Y is known and is defined by the density p(X|Y ).
This is interpreted, as before, via integration:

P (X ∈ I|Y) =
∫
I

p(X|Y) dX.

The associated normalisation property is∫
R

NX

p(X|Y) dX = 1.

Mean and variance The expectation or mean of the random variable X, denoted
E [X], is

E [X] =
∫

R
NX

p(X) dX
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which is a linear operation so that

E [AX + b] = AE [X] + b.

The variance of X, denoted V[X] is defined as an expectation:

V[X] = E [(X − X)(X − X)T ]

where X = E [X]. It scales quadratically, as V[AX + b] = AV[X]AT , and is invariant
to the additive constant b, naturally enough since it is a measure of “spread” about
the mean. It is also known as the “covariance matrix” of X and must be symmetric
and “positive semi-definite” (all eigenvalues positive or zero).

Bayes’ rule Suppose a density p(X) is given, based on prior knowledge of the state
X of some system and its likely values. Then suppose that observations Z are made
from an imperfect sensing device which is characterised by its observation density
p(Z|X), specifying the likely range of observations given a particular system state X.
Then Bayes’ rule gives the posterior density p(X|Z):

p(X|Z) = kp(Z|X)p(X),

where k is a constant, not dependent on X, whose value can be determined if need
be by insisting that the posterior be normalised. Note that p(Z|X) is also known as
a likelihood function for X.

Estimation When both the prior and observation density are available, a common
way to estimate the value of X given observations Z is simply to find the X that
maximises the posterior:

X̂ = arg max
X

p(X|Z).

This is known as the MAP (Maximum A Posteriori) estimate. Alternatively, if no
prior is available, an estimator can be defined by

X̂ = arg max
X

p(Z|X),

the MLE (Maximum Likelihood Estimator).
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Normal distribution Much use is made in the book of multi-variate normal or
Gaussian distributions. A vector variable X distributed as a Gaussian is denoted

X ∼ N (X, P ) (A.5)

where X is the mean of the distribution and P is its covariance matrix, assumed
non-singular. The density function for X is

p(X) =
1√

2π
NX

1√
det P

exp−1
2
(X − X)T S(X − X)

where S = P−1, the information matrix.
Alternatively, given a vector w of NX independent standard normal distributions,

so that each wn ∼ N (0, 1) and w ∼ N (0, INX
), X can be described as a linear

transformation of w:
X = Bw + X

where B =
√

P . Circles |w| < c map to confidence ellipsoids in X space, regions
which contain the value of X with probability χ2

NX
(c), where χ2

ν is the “chi-squared
distribution function” for ν degrees of freedom, and can be found in statistical tables.
For example, for NX = 2,

P (|w| < 2) = 86% and P (|w| < 3) = 99%.
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Stochastic dynamical systems

B.1 Continuous-time first-order dynamics

A first-order AR process (9.7) can be regarded as a first-order “stochastic differential
equation” (SDE) in continuous time that has been sampled at regular intervals. If the
sampling interval is τ so that tk = kτ , then the AR process is obtained by integrating
the SDE over successive sampling intervals. The SDE is expressed as

Ẋ = F (X − X) + Gẇ (B.1)

where X(t) is a vector in shape-space, F and G are NX × NX matrices and w(t) is a
NX -dimensional vector of independent, univariate Brownian processes in continuous
time. A univariate Brownian process w has the property that the value w(t) has a
Gaussian distribution with E [w(t)] = 0 and V[w(t)] = t. The derivative ẇ(t) is a
“white noise” signal, that is one with equal power at all frequencies. The coefficients
F are the deterministic parameters of the process, in the sense that its eigenvalues λi

are the so-called “poles” of the AR process, constants with units of inverse time that
represent the rates of decay of the various characteristic motions of the system. (This
applies to the case that all poles are real-valued and negative. Any real positive pole
will cause the process to be unstable. There is also the possibility of complex poles,
representing oscillations or damped oscillations.) The matrix G represents a coupling
to the multi-dimensional white noise ẇ that is driving the dynamical system. As in
the discrete case, there is a mean-state and a Riccati equation for continuous time:

˙̂X = F(X̂ − X) and Ṗ = FP + PFT + Q (B.2)
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where the “covariance coefficient” Q = GGT .

Conversion between continuous and discrete time

A continuous-time SDE can be converted to a discrete-time form (Gelb, 1974; Astrom
and Wittenmark, 1984) by computing A and C directly from F and Q:

A = expFτ and C =
∫ τ

0
(expFt)Q(exp F T t) dt. (B.3)

It is possible to evaluate the integral for C exactly by diagonalising F but in practice
the following approximation, to lowest order in τ , is convenient (and particularly so
for the second-order process):

A = (I − Fτ)−1 and C = Qτ so that B = G
√

τ . (B.4)

The approximation for A is known as the “backward difference” approximation and
is preferable to the more obvious “forward difference” A = Fτ because it preserves
stability: that is, any SDE that is stable is approximated as a stable AR process, with
‖A‖2 < 1.

Power spectrum

In chapter 9, a form (9.12) on page 199 for the power spectrum of a first-order ARP
is used. That form is derived briefly here. Restricting X(t) in the continuous process
above to be one-dimensional X(t), so that F and G are scalar coefficients, suppose
that

X(t) ∝ exp 2πift,

and set its mean to zero for simplicity. Then (B.1) becomes

2πifX = FX + Gẇ

so that
X =

Gẇ

2πif − F

and the power spectrum

SXX(f) =
∣∣∣∣ G

2πif − F

∣∣∣∣
2

Sẇẇ(f),
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where | · | denotes complex modulus. Now the power spectrum Sẇẇ(f) of white noise
is constant, so

SXX(f) ∝ G2

4π2f2 + F 2

which can be rewritten directly in the required form.

B.2 Second-order dynamics in continuous time

A second-order SDE can be written, as it was in the discrete case, as a first-order one
in a suitable state-space:

Ẋ = F (X − X ) + Gẇ (B.5)

where now

F =


 0 I

F1 F2


 and G =


 0

G0


 . (B.6)

This normal form is consistent with a state-space representation in terms of position
and velocity:

X =


 X

Ẋ


 .

The white noise ẇ can be interpreted mechanically as a (generalised) force applied to
a particle whose configuration is X. Now, from (B.3),

X (tk) −X = A′(X (tk−1) −X ) + B′wk

where A′ = expFτ,

which can be written in terms of its submatrices as

A′ =


 A′

11 A′
12

A′
21 A′

22


 .

The matrix A′ does not yet conform to the normal form (9.18) on page 204 for discrete
coefficients A, which would require A′

11 = 0 and A′
12 = I. To reach the normal form,
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a coordinate transformation X → MX with

M =


 I 0

A′
11 A′

12




must be applied. The transformed process has A = M−1A′M which is in normal
form, and B = M−1B′ which is only approximately (for small τ) in the normal form
for B in (9.18) on page 204.

The inverse transformation, obtaining continuous parameters F and G from dis-
crete ones A and B requires a matrix logarithm

F ′ =
1
τ

log A

followed by a coordinate change, similar to the one above, to reach the normal form.

Power spectrum

The expression (9.13) on page 200 for a second-order power spectrum is obtained
from (B.5) using a frequency analysis similar to the one in the first-order case.

B.3 Accuracy of learning

The claims concerning accuracy of learning, stated in chapter 11 on page 241, are
justified here. First the proportional error in the discrete dynamical parameters a1,
a2 and b0 is obtained. Then this is used to derive the proportional error of the
underlying continuous parameters f , β and ρ.

Discrete analysis

The error of estimators â1, â2 and b̂0 is derived from the Fisher information measure
for a maximum likelihood estimator (Kendall and Stuart, 1979). Asymptotically, for
large M ,

V[b0|b̂0]−1 = −E [∂2L/∂b2
0

]
,

where L is the log-likelihood function (11.1) on page 237. Using (11.2) on page 237,
this gives

V[b0|b̂0] =
b̂2
0

2(M − 2)
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so that the proportional error in b̂0, denoted ∆b̂0, is

∆b̂0 =

√
V[b0|b̂0]

b̂0

=
1√

2(M − 2)
. (B.7)

Applying a similar analysis to the vector a = (a1, a2)T obtains error variances and
covariances for a1 and a2. This gives

V[a|â]−1 = −E [∂2L/∂a2
]

= E

 1

b̂2
0


 r11 r12

r21 r22






= (M − 2)E [
1

b̂2
0

X (t)X (t)T ]

= (M − 2)
1

b̂2
0

P∞

where rij are the auto-correlation coefficients from the learning algorithm of figure 11.2
on page 238. Covariance P∞ is obtained as the steady-state solution for P in the state
equation (9.19) on page 204 for the process. After some manipulation, this gives

V[a|â] =
1 + â2

M − 2


 1 − â2 −â1

−â1 1 − â2


 . (B.8)

For all 3 parameters a1, a2 and b0 it seems that estimator error ∝ 1/
√

M − 2 so
that a typical training sequence of 1000 video fields should lead to error of just a few
percent. This is a little misleading however because small changes in a1 and a2 can
have a substantial effect on the ARP model. Looking at continuous parameters β, f
and ρ gives a clearer picture.

Continuous analysis

Making the assumption that βτ � 1 then, from (9.25) on page 206,

βτ ≈ 1
2
(1 + a2)
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so that, using (B.8),

V[βτ ] ≈ 1
4
V[a2] ≈ 1

M − 2
β̂τ

and finally

∆β̂ =

√V[β]

β̂
=

1√
β̂τ

1√
M − 2

≈ 1√
β̂T

,

as claimed in chapter 11. A similar analysis for f̂ shows that

∆f̂ ≡
√V[f ]

β̂
=

1
2π

1√
β̂T

Note that the error ∆f̂ in the estimated frequency is defined here relative to β̂. Finally,
it remains to establish an error bound for the estimated value of ρ. From (9.27) on
page 206, and given that ∆b̂0 (see above) can be neglected,

∆ρ̂ =
1
2
∆β̂

(
1 +

β̂

πf̂ sin 2πf̂τ

)
.
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Further shape-space models

C.1 Recursive synthesis of shape-spaces

Chapter 4 ended with a discussion about shape-spaces for articulated motion and a
summary comparing, for various hinged objects, the number of degrees of freedom of
the object and the dimension of linear shape-space needed to represent its motion.
There is a powerful general rule, presented here, for building up the dimension of a
shape-space as articulated components are tacked onto a body. The dimension is built
up recursively, tacking one component on at a time. It will be convenient to write
the equation of the curve in homogeneous coordinates, a standard geometric tool in
graphics and computer vision (Faugeras, 1993; Foley et al., 1990), giving

rh(s) =




x(s)

y(s)

1




so that the curve ranges over the shape-space swept out by

rh(s) = Trh(s)

where the template rh(s) (also in homogeneous coordinates) may be either two-
dimensional or three-dimensional as appropriate and T is a linear transformation. For
example, the Euclidean similarities discussed earlier are represented by the following
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transformation T :

Tr =


 X1

X2


+


 X3 −X4

X4 X3


 r

which can conveniently be written as a 3 × 3 matrix in homogeneous coordinates:

T =




X3 −X4 X1

X4 X3 X2

0 0 1


 . (C.1)

This is appropriate, of course, for a body moving rigidly in the plane. More generally,
it applies to the end link of a series of hinged links attached to a base that moves
rigidly in the plane.

The new component is attached so that it is free to be acted on by transformations
T ′ relative to the end body. For example, a simple planar hinge is represented in
homogeneous coordinates by

T ′(θ) =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 .

Incremental rule: now the general rule can be stated, that when the hinged com-
ponent is added, the dimension of the shape-space is increased by:

dim{T, TT ′}+ − dim{T}+, (C.2)

where {T}+ is the vector space of transformations T and {T1, T2}+ denotes the vector
space spanned by the two transformations taken jointly (simply concatenating the
elements of T1 and T2 into one vector). To make this clear, we will work through the
rule using the examples for T and T ′ given above of a planar base element moving
rigidly in the plane with a single hinged component.
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Planar rigid body with hinged appendage

First of all, dim{T}+ = 4, clearly, since T has 4 independent linear parameters
X1, . . . , X4. Next we compute TT ′:

TT ′ =




γ −δ X1

δ γ X2

0 0 1


 (C.3)

where γ = X3 cos θ − x4 sin θ and δ = X4 cos θ + X3 sin θ so now

dim{T, TT ′}+ = dim{X1, X2, X3, X4, γ, δ}+ = 6

so that adding the hinge increases the dimension of shape-space by

dim{T, TT ′}+ − dim{T}+ = 6 − 4 = 2

and the dimension of the new space is increased from 4 to 6.

Further hinged appendages

Now suppose we want to add a further hinged appendage. If it is added to the main
body (figure C.1a), the argument above is unchanged (it is not in the least affected by
the existence of the previous appendage) and the increase in dimension is still 2. Now
the total dimension of the shape-space increases to 8. If instead the new appendage is
tacked onto the end of the previous appendage (figure C.1b) we can apply the general
method as follows. The matrix TT ′ in (C.3) above becomes the new T , and now

T ′ ≡ T ′(φ) =




cos φ − sinφ 0

− sinφ cos φ 0

0 0 1


 ,

where φ is the angle of the latest appendage. Now the argument proceeds exactly as
for the addition of the first appendage except that we have γ, δ and φ where before we
had X3, X4 and θ, so again the subspace dimension is increased by 2. Alternatively, a
quicker way to get to the same conclusion, is simply to note that the shape-space of the
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a) b)

c) d)

Figure C.1: Hinged appendages Hinging an appendage onto: a) the main body; b) the end
of another appendage; c) the end of a chain of appendages. d) A general planar articulated
body consisting of a base in rigid motion with n hinged bodies.

first appendage, considered in isolation, is the space of Euclidean similarities. (It can
execute any rigid motion given that it is hinged to a base that can execute any rigid
motion.) Therefore we are simply solving again the problem of computing the increase
in shape-space dimension when an appendage is hinged to a base whose shape-space
is the Euclidean similarities. Clearly we could continue to add appendages to a chain
(figure C.1c), adding 2 to the shape-space dimension each time.

Now a simple inductive argument shows the following rule. A rigid planar body
with n hinged appendages (figure C.1d) has a shape-space with dimension 4 + 2n.
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This is true regardless of how the hinges are arranged, provided there is no closed
kinematic chain (sequence of hinged bodies forming a loop).

Adding telescopic appendages

How is the dimension of shape-space affected if an appendage is added with a “pris-
matic” or telescopic joint? In that case

T ′ ≡ T ′(d) =




1 0 d

0 1 0

0 0 1


 ,

where d is the variable length by which the joint is extended and taking T for Euclidean
similarities of the base object as in (C.1), gives

TT ′ =




X3 −X4 X3d + X1

X4 X3 X4d + X2

0 0 1


 ,

so that
dim({T, TT ′}+) = dim({X1, X2, X3, X4, X3d, X4d}+) = 6

(since X3d, X4d extend the basis by two elements — even though there is only one
new degree of freedom d, it appears non-linearly and requires two degrees of freedom
to represent linearly). Just as in the hinged case therefore, each telescopic appendage
to a rigid body also raises the dimension of shape-space by two.

Planar body with co-planar appendage, in three dimensions

From earlier discussion in chapter 4, we know that images of a planar body in three
dimensions form an affine space, so that {T}+ is the usual 6-dimensional planar affine
space. Unfortunately, unlike rigid planar bodies in which hinged appendages cost only
2 degrees of freedom each, in the planar affine case they come relatively expensively.
Each requires 4 degrees of freedom so that insisting on linear parameterisation is
relatively costly.
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The argument, applying the incremental rule (C.2) is as follows. Transformations
are

T =




X3 X6 X1

X5 X4 X2

0 0 1


 and T ′ =




cos φ − sinφ 0

− sinφ cos φ 0

0 0 1




and after a little calculation

dim({T, TT ′}+) = dim({X1, X2, ((Xn cos φ, Xn sinφ), n = 3, . . . , 6)}+) = 10,

an increase of 4 over the 6 affine degrees of freedom.

Proof of incremental rule

For completeness, a proof of the rule (C.2) for incrementing the dimension of shape-
space is included here. Consider a base shape γ which we would normally represent
by a template either as a parameterised curve r(s) in two dimensions or R(s) in three
dimensions, or as a control point vector Q in two or three dimensions. It is subject to
linear transformations T onto the image plane, parameterised (not necessarily linearly)
by a parameter set λ, giving a set of image shapes {T (λ)γ, λ ∈ Λ}. This set spans
a vector space denoted by the closure {T (λ)γ, λ ∈ Λ}+ which generally (for non-
degenerate γ) is isomorphic to the closure of the space of transformations {T (λ), λ ∈
Λ}+, regardless of the particular shape γ.

Next, it is assumed that the body to which an appendage is about to be added
is already articulated so that, already attached to the base, are a set of components
transformed relative to the base by a set of linear transformations Tn(λn), λn ∈
Λn for n = 1 . . . N . The nth component is thus transformed into the image plane
by the transformation TTn(λn). Finally, the appended component is attached via
T ′(λ′), λ′ ∈ Λ′. It is assumed that the parameters λ1, . . . , λN , λ′ are all independent
— the hinging/telescopic actions of the individual components are not coupled and this
is where closed kinematic chains are excluded. We also assume that all components
are non-degenerate so that we can continue to consider the transformations only and
drop any reference to the component shapes themselves.

The independence of parameters for components means that

dim{T, TT ′}+ + dim{T, TT1, . . . , TTN}+ = dim{T, TT1, . . . , TTN , TT ′}+ + dim{T}+
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(omitting for simplicity explicit reference to parameters λ, λ1 . . . λn and λ′) and this
is simply rearranged into a formula for the increase in shape-space dimension:

dim{T, TT1, . . . , TTN , TT ′}+ − dim{T, TT1, . . . , TTN}+ = dim{T, TT ′}+ − dim{T}+,

the right hand side of which is the required formula (C.2), simplified in that it involves
only the base and the new component.

Silhouettes

For smooth silhouette curves, it can be shown that a shape-space of dimension 11
is appropriate. This shape-space representation of the curve is an approximation,
valid for sufficiently small changes of viewpoint. The proof of this result follows from
results in the computer vision literature about the projection of silhouettes into images
(Giblin and Weiss, 1987; Blake and Cipolla, 1990; Vaillant, 1990; Koenderink, 1990;
Cipolla and Blake, 1992b).


