Acknowledgement and contacts

- **Credits**
 - Part of the course material is based on slides provided by the following authors
 - Pietro Michiardi, Jimmy Lin

- **Contacts**
 - Office hours (Ca’ Vignal 2, 1st floor, #82)
 - Thursday, 14.30 - 16.30 (check the website for last-minute changes)
 - Based on agreement (via email)
 - Email:
 damiano.carra@univr.it
Information and Background

- Main source of information
 - course web site
 - Slides
 - Detailed course schedule
 - roughly: 2 hours (theory) + 2 hours (lab) per week
 - Note that the schedule may change, so keep checking it!

- Background
 - Necessary: Java programming
 - Suggested: Basic Database course

Exam

- Based on a project
 - Design and implementation of solutions to analyze different data sets
 - Focus on the efficiency and the performance of the proposed solution

- The project output will be
 - The implementation (source code)
 - A technical report with
 - implementation details of the solution
 - results of the analysis of the data sets
 - performance analysis
 - varying cluster size or system parameters
 ➔ The code will probably be used on a real cluster of machines... still working on that, so stay tuned
Course material

- The principal textbooks for this course are:
 - Jimmy Lin, Chris Dyer: “Data-Intensive Text Processing with MapReduce”
 - The pdf can be downloaded here: http://lintool.github.io/MapReduceAlgorithms/ed1n.html
 - Tom White: “Hadoop: The Definitive Guide”
 - A copy will be available at the library
 - A. Rajaraman, J. Leskovec, J.D. Ullman: “Mining of Massive Datasets”
 - Not necessary, it covers many other topics, but some chapters are interesting
 - The pdf can be downloaded here: http://infolab.stanford.edu/~ullman/mmds.html

- Readings from other sources will be pointed during the classes.

- **IMPORTANT:** The slides are a reference to the topics covered during the course
 - Their content has much less information than the textbooks

Introduction and motivations
A lot of keywords...

- Hadoop
- Big data
- Data center
- NoSql
- Cloud computing
- MapReduce

- After this course, these keywords (and much more) will have, hopefully, a meaning

- Let’s start with... Big data

How much data?

- Google → 20 PB/day (2008)
- Facebook → 90 TB/day (2010)
- LSST → 3 TB/day of image data
- LHC → 10/15 PB/year

- and much more...
 - Amazon, NYT, DNA sequencing

- Is a lot of data enough for big data?
 - Volume, Velocity, Variety
Challenges

- Traditional parallel supercomputers are not the right fit for many problems (given their cost)
 - Optimized for fine-grained parallelism with a lot of communication
 - Cost does not scale linearly with capacity
- Clusters of commodity computers
 - Even more accessible with pay-as-you-go cloud computing

Parallel computing is hard!

Fundamental issues
- scheduling, data distribution, synchronization, inter-process communication, robustness, fault tolerance, ...

Different programming models
- Message passing
- Shared memory

Architectural issues
- Flynn’s taxonomy (SIMD, MIMD, etc.), network typology, bisection bandwidth
- UMA vs. NUMA, cache coherence

Common problems
- livelock, deadlock, data starvation, priority inversion...
- dining philosophers, sleeping barbers, cigarette smokers, ...

Different programming constructs
- mutexes, conditional variables, barriers, ...
- masters/slaves, producers/consumers, work queues, ...

The reality: programmer shoulders the burden of managing concurrency...
How to process big data?

- We are looking at newer
 - Programming models
 - Supporting algorithms and data structures
 - More data leads to better accuracy
 - With more data, accuracy of different algorithms converges

- NSF refers to it as “data-intensive computing” and industry calls it “big-data” and “cloud computing”

How to process Big-data? Main Ideas

- Scale “out”, not “up”
- Assume failures are common
 - Probability of “no machine down” decreases rapidly with scale...
- Move processing to the data
 - Bandwidth is scarce
- Process data sequentially
 - Seeks are *very* expensive
- Hide system-level details from the application developer
Big-Data: Targeted problems

- Embarrassingly parallel problems
 - Simple definition: independent (shared nothing) computations on fragments of the dataset
 - It’s not easy to decide whether a problem is embarrassingly parallel or not

- Batch processing of data-intensive workloads
 - Involving (mostly) full scans of the dataset
 - Generally not processor demanding
 - E.g., read and process the whole Internet dataset from a crawler
 - Relevant datasets are too large to fit in memory

This course

- We will study current BigData solutions
 - Systems challenges
 - Programming models
 - Dealing with failures

- We will look at some applications
 - Information retrieval, data mining, graph mining, traffic processing, ...

- Possibly
 - Identify shortcomings, limitations
 - Address these!
Basic example: Word count

- Assume to have a large collection of texts
 - e.g., Web pages from the whole Internet
- We would like to count how many times each word is mentioned all over the collection
 - it represents the basis for more complex computations, such as frequencies, pairings, etc

- Assuming that the collection is distributed among N machines, how would you proceed?

Basic example: Word count

- In a single machine, the solution is trivial
 - final output: [(fog, 3), (winter, 2), (and, 4), ...]
Basic example: Word count

- In a single machine, the solution is trivial
 - final output: \([(fog, 3), (winter, 2), (and, 4), \ldots]\)

- With multiple machines
 1. Use the solution for the single machine in each machine
 - intermediate output: \([(fog, 3), (winter, 2), (and, 4), \ldots]\)
 2. Join the results collected from the different machines and produce the final output
 - final output: \([(tree, 8), (fog, 13), (cold, 3), (winter, 6), (and, 22), \ldots]\)

Divide and Conquer

"Work"

- Partition
- Combine
Parallelization Challenges

- How do we assign work units to workers?
- What if we have more work units than workers?
- What if workers need to share partial results?
- How do we aggregate partial results?
- How do we know all the workers have finished?
- What if workers die?

What's the common theme of all of these problems?

Common Theme?

- Parallelization problems arise from:
 - Communication between workers (e.g., to exchange state)
 - Access to shared resources (e.g., data)
- Thus, we need a synchronization mechanism
Managing Multiple Workers

- Difficult because
 - We don’t know the order in which workers run
 - We don’t know when workers interrupt each other
 - We don’t know when workers need to communicate partial results
 - We don’t know the order in which workers access shared data

- Thus, we need:
 - Semaphores (lock, unlock)
 - Conditional variables (wait, notify, broadcast)
 - Barriers

- Still, lots of problems:
 - Deadlock, livelock, race conditions...
 - Dining philosophers, sleeping barbers, cigarette smokers...

- Moral of the story: be careful!

In summary

- Concurrency is difficult to reason about
- Concurrency is even more difficult to reason about
 - At the scale of datacenters and across datacenters
 - In the presence of failures
 - In terms of multiple interacting services
- Not to mention debugging...
- The reality:
 - Lots of one-off solutions, custom code
 - Write you own dedicated library, then program with it
 - Burden on the programmer to explicitly manage everything
Parallel computing: Concerns

- A parallel system needs to provide:
 - Data distribution
 - Computation distribution
 - Fault tolerance
 - Job scheduling

The execution framework should hide these system-level details
- Separate the what from the how
A final thought

Chris Stucchio

Don’t use Hadoop - your data isn’t that big

Posted: Mon, 18 Sep 2013

big data buzzwords hadoop

“So, how much experience do you have with Big Data and Hadoop?” they asked me. I told them that I use Hadoop all the time, but rarely for jobs larger than a few TB. I’m basically a big data neophyte - I know the concepts, I’ve written code, but never at scale.

The next question they asked me. “Could you use Hadoop to do a simple group by and sum?” Of course I could, and I just told them I needed to see an example of the file format.

They handed me a flash drive with all 600MB of their data on it (not a sample, everything). For reasons I can’t understand, they were unhappy when my solution involved pandas.read_csv rather than Hadoop.

Hadoop is limiting. Hadoop allows you to run one general computation, which I’ll illustrate in pseudocode: