
Introduction to Computer Vision

2D Linear Systems
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Review: Linear Systems

• We define a system as a unit that converts an input function into an 
output function 

System operator or Transfer functionIndependent 
variable
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Linear Time Invariant Discrete Time Systems
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THEN
The overall continuous time system is 

equivalent to a LTIS whose frequency 
response is H.

IF
• The input signal is bandlimited
• The Nyquist condition for sampling is met
• The digital system is linear and time 
invariant
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Overview of Linear Systems

Then the system H is called a linear system.

where  fi(x) is an arbitrary input in the class of all inputs 
{f(x)}, and gi(x) is the corresponding output.

• Let

• If

• A linear system has the properties of additivity and homogeneity. 
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Linear Systems

for all fi(x) ∈{f(x)} and for all x0. 

• The system H is called shift invariant if

• This means that offsetting the independent variable of the input by x0
causes the same offset in the independent variable of the output. Hence, 
the input-output relationship remains the same. 
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Linear Systems

• The operator H is said to be causal, and hence the system described by 
H is a causal system, if there is no output before there is an input.  In 
other words,

• A linear system H is said to be stable if its response to any bounded input 
is bounded.  That is, if

where K and c are constants.
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Linear Systems

δ(a)

a
x

δ(x-a)

• A unit impulse function, denoted δ(a), is defined by the expression

• The response of a system to a unit impulse function is called the impulse 
response of the system.

h(x) = H[δ(x)]
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Linear Systems

• If H is a linear shift-invariant system, then we can find its reponse to any 
input signal f(x) as follows:

• This expression is called the convolution integral.  It states that the response 
of a linear, fixed-parameter system is completely characterized by the 
convolution of the input with the system impulse response.  
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Linear Systems
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• Convolution of two functions of a continuous variable is defined as

• In the discrete case
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Linear Systems
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1 2[ , ]h n n is a linear filter.

• In the 2D discrete case
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Illustration of the folding, displacement, and multiplication 
steps needed to perform two-dimensional convolution

f(α,β) g(α,β)

f(α,β)g(x - α ,y - β)
g(x - α ,y - β)

α α

α
α

β β

β
β

A
B

(a) (b)

x

y
y

x
B

Volume = f(x,y) ∗ g(x,y)

(c) (d)
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Matrix perspective
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Convolution Example

From C. Rasmussen, U. of Delaware
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Convolution Example
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Convolution Example
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Convolution Example
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Convolution Example
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Convolution Example
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Convolution Example
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From C. Rasmussen, U. of Delaware

Convolution Example

and so on…
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Example: averaging
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Example: edge detection
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Try MATLAB

f=imread(‘saturn.tif’);

figure; imshow(f);

[height,width]=size(f);

f2=f(1:height/2,1:width/2);

figure; imshow(f2);

[height2,width2=size(f2);

f3=double(f2)+30*rand(height2,width2);

figure;imshow(uint8(f3)); 

h=[1 1 1 1; 1 1 1 1; 1 1 1 1; 1 1 1 1]/16; 

g=conv2(f3,h);

figure;imshow(uint8(g));
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Gaussian Lowpass Filter



25

Gaussian Lowpass Denoising

σ = 2 σ = 4Original



Image Processing Algorithms
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IP Algorithms

Spatial domain

• Operations are performed in the 
image domain 

• Image ⇔ matrix of number

• Examples
– luminance adaptation 
– chromatic adaptation
– contrast enhancement
– spatial filtering
– edge detection
– noise reduction

Transform domain

• Some operators are used to 
project the image in another space

• Operations are performed in the 
transformed domain

– Fourier (DCT, FFT)
– Wavelet (DWT,CWT)

• Examples
– coding
– denoising
– image analysis

Most of the tasks can be implemented both in the image and in the transformed 
domain. The choice depends on the context and the specific application.
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Spatial domain processing

Pixel-wise

• Operations involve the single pixel

• Operations:
– histogram equalization
– change of the colorspace
– addition/subtraction of images
– get negative of an image

• Applications:
– luminance adaptation
– contrast enhancement
– chromatic adaptation

Local-wise

• The neighbourhood of the 
considered pixel is involved

– Any operation involving digital 
filters is local-wise

• Operations:
– correlation
– convolution
– filtering
– transformation

• Applications
– smoothing
– sharpening
– noise reduction
– edge detection



Pixel-wise operations

• Histogram 
– Straching/shrinking, sliding 
– Equalization
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Pixel-wise: Histogram equalization

• Pixel features: luminance, color, 

• Histogram equalization: shapes 
the intensity histogram to 
approximate a specified 
distribution

– It is often used for enhancing 
contrast by shaping the image 
histogram to a uniform distribution 
over a given number of grey 
levels. The grey values are 
redistributed over the dynamic 
range to have a constant number 
of samples in each interval (i.e. 
histogram bin).

– Can also be applied to colormaps
of color images. 
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Histogram equalization

gamma=4gamma=0.1

bottom bottom bottom

top top top

low height low height low height

Gamma function =1 <1 >1

Can be used to compensate the distortions in the gray level distribution due to the 
non-linearity of a system component
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Histogram equalization

• Enhances the contrast of images by transforming the values in an
intensity image so that the histogram of the output image 
approximately matches a specified histogram
– also applies to the values in the colormap of an indexed image
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Histogram

• Function H=H(g) indicating the number of pixels having gray-value 
equal to g
– Non-normalized images: 0≤g ≤255 → bin-size≥1, can be integer
– Normalized images: 0≤g ≤1 → bin-size<1

H(l)

g0 1 or 255gi

max
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( )
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= − =

Δ

area under the 
curve=number 
of pixels

In the continuous case
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Example: region-based segmentation

• If the two regions have different graylevel distributions (histograms) 
then it is possible to split them by exploiting such an information

A2

A1

H1

H2
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Example: region-based segmentation
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Types of operations

• Histogram equalization → contrast enhancement

• Histogram stratching/shrinking → expansion/compression of the 
dynamic range
– Loss of resolution (the same set of pixel values are represented by a 

subset of graylevel values)

• Histogram sliding → change of the mean level
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H. stratching/shrinking
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H. original
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H. shrinked
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H. stratched
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H. sliding
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H. stratching/shrinking

stratching

shrinking
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Linear graylevel transformations
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Non-linear tranformations

• Used to emphasize mid-range levels

• gnew = gold+ gold C (gold,max - gold)

gold

gnew
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Common transformations
gout

gin

gout

gin

gout

gin

ldgout

gin
Intensity slicing
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Sigmoid transformation (soft thresholding)

gout

gin

H(gin)

gin

H(gout)

gout
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Histogram transformation
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Histogram equalization

• Let x be a random variable and let ni be the number of occurrences 
of gray level i. The probability of an occurrence of (a pixel of level) i
in the image is 

– L being the total number of gray levels in the image, n being the total 
number of pixels in the image, and px being in fact the image's 
histogram, normalized to [0,1].

• Let us also define the cumulative distribution function corresponding 
to px as
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• We would like to create a transformation of the form y = T(x) to 
produce a new image {y}, such that its CDF will be linearized across 
the value range, i.e. 

• The properties of the CDF allow us to perform such a transform it is 
defined as 

( )ycdf i K i= ⋅

( ) ( )xy T x cdf x= =
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Pictorially
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Neighborhood operations

• Correlation ↔ pattern recognition

• Convolution ↔ Linear filtering
– Edge detection
– Denoising



56

Correlation
• Correlation

– Measures the similarity between two signals
– Difference from convolution: no ‘minus’ signs in the formula 

• the signals need only to be translated

pattern

database matching result

g
...∑∑ ++=

k r
template rnkmhnmfnmC ],[],[),(

Application
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Convolution
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Convolution and digital filtering

• Digital filtering consists of a convolution between the image and the 
impulse response of the filter, which is also referred to as 
convolution kernel.

• Warning: both the image and the filter are matrices (2D). If the filter 
is separable, then the 2D convolution can be implemented as a 
cascade of two 1D convolutions

• Filter types
– FIR (Finite Impulse Response)
– IIR (Infinite IR)
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Ideal low-pass digital filter
|H(Ω)|

ΩΩN 2π-2π Ωc-Ωc

Digital LP filter (discrete time)

The boundary between the pass-band and 
the stop-band is sharp

The spectrum is periodic

The repetitions are located at integer 
multiples of 2π

The low-pass filtered signal is still a digital 
signal, but with a different frequency content

The impulse response h[n] in the signal 
domain is discrete time and corresponds to 
the sinc[] function

Reconstruction LP filter (continuous time)

The boundary between the pass-band and 
the stop-band is sharp

The spectrum consists of one repetition 
only

The low-pass filtered signal is a continuous 
time signal, that might have a different 
frequency content

The impulse response h(t) in the signal 
domain is continuous time and corresponds 
to the sinc() function
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Digital LP filtering
|H(Ω)|

2 π-2π

|F(Ω)|

|F(Ω) H(Ω)|
low-pass filtered 
(digital) signal

-Ωc Ωc



61

LP and HP filtering
Low-pass High-pass

n

averaging

n

|HLP(Ω)| |HHP(Ω)|

hLP[n] hHP[n]
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Example: Chebyshev LP



63

Example: Chebyshev HP
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Example: Chebyshev Impulse Response
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Example: Chebyshev Step Response
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Example: filtered signal

The transfer function (or, equivalently, the impulse response) of the filter 
determines the characteristics of the resulting signal
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Switching to images qui

• Images are 2D digital signals (matrices) → filters are matrices

• Low-pass ↔ averaging (interpolation) ↔ smoothing

• High-pass ↔ differentiation ↔ emphasize image details like lines, 
and, more in general, sharp variations of the luminance

• Band-pass: same as high pass but selecting a predefined range of 
spatial frequencies

Splitting low-pass and high-pass image features is the ground of multi-
resolution. It is advantageous for many tasks like contour extraction 
(edge detection), image compression, feature extraction for pattern 
recognition, image denoising etc. 
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2D filters
Low-pass High-pass
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Filtering in image domain

Filtering in image domain is performed by convolving the image with the filter kernel. This 
operation can be though of as a pixel-by-pixel product of the image with a moving kernel, 
followed by the sum of the pixel-wise output.
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Low-pass filtering: example

x =

f[m,n] hlowpass[m,n] g[m,n]
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Averaging

11111
11111
11111
11111
11111

hlp=1/25
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Gaussian

hlp=
0.0030    0.0133    0.0219    0.0133    

0.0030
0.0133    0.0596    0.0983    0.0596    

0.0133
0.0219    0.0983    0.1621    0.0983    

0.0219
0.0133    0.0596    0.0983    0.0596    

0.0133
0.0030    0.0133    0.0219    0.0133    

0.0030
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Log
0.0239    0.0460    0.0499    0.0460    0.0239
0.0460    0.0061   -0.0923    0.0061    0.0460
0.0499   -0.0923   -0.3182   -0.0923    0.0499
0.0460    0.0061   -0.0923    0.0061    0.0460
0.0239    0.0460    0.0499    0.0460    0.0239
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Asymmetric LP

0 1 0

1 2 1

0 1 0
hlp=1/6
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Asymmetric HP

-1 -1 -1

-1 8 -1

-1 -1 -1

hlp=
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Sharpening

• Goal: “improve” image quality

• Solutions
– increase relative importance of details, by increasing the relative weight 

of  high frequencies components
• Increase a subset of high frequencies (non symmetric HP)
• High-boost filter
• Laplacian gradient

– The original image is assumed to be available 
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Sharpening Filters

• To highlight fine detail or to enhance blurred details
– Averaging filters smooth out noise but also blur details

• Sharpening filters enhance details

• May also create artifacts (amplify noise)

• Background:  Derivative is higher when changes are abrupt

• Categories of sharpening filters:
– Basic highpass spatial filtering
– High-boost filtering
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Sharpening

HP
Original 
image +

Normalization

Normalization
Sharpened 

image

The normalization step subtracts the mean and scales the amplitude of the 
resulting image by dividing it for the dynamic range (graylevel values are 
now in the range 0-255)

For the sharpening to be visible, the sharpened and original images must 
then be displayed using the same set of graylevel values
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Basic Highpass Spatial Filtering

• The filter should have positive coefficients near the center and
negative in the outer periphery:

Laplacian mask

Other Laplacian masks
(normalization factor is
missing)
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Basic Highpass Spatial Filtering

• The sum of the coefficients is 0, indicating that when the filter is 
passing over regions of almost stable gray levels, the output of the 
mask is 0 or very small.

• The output is high when the center value differ from the periphery.

• The output image does not look like the original one.

• The output image depicts all the fine details 

• Some scaling and/or clipping is involved (to compensate for possible 
negative gray levels after filtering).



81



82

High boost

Examples



83

High-boost Filtering

• Highpass filtered image = Original – lowpass filtered image

• If A is an amplification factor, then:

– High-boost = A · original – lowpass
– = (A-1) · original + original – lowpass
– = (A-1) · original + highpass

Unsharp masking (if A=2)
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(1) (2)

(3) = (1) - (2)
(A-1) (1) + (3)

Signal Low- pass

High-pass

Unsharp Masking and Sharpening operation
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High-boost Filtering

• A=1 : standard highpass result

• A > 1 : the high-boost image looks more like the original with a 
degree of edge enhancement, depending on the value of A.

w=9A-1, A≥1

A > 1 Unsharp masking
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Unsharp masking
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Sharpening: asymmetric HP
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Sharpening: the importance of phase
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Sharpening: the importance of phase
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Sharpening: the importance of phase
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Sharpening: the importance of phase
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Back to the natural image


