Introduction to Computer Vision

2D Linear Systems




Review: Linear Systems

 We define a system as a unit that converts an input function into an
output function

| System

g(x) = HIA)]

/

Independent System operator or Transfer function
variable




Linear Time Invariant Discrete Time Systems

X(t)
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IF

 The input signal is bandlimited
» The Nyquist condition for sampling is met
» The digital system is linear and time

invariant

H(JQ)

|1Q <z /T
|1Q>x/T

THEN

The overall continuous time system is
equivalent to a LTIS whose frequency

response is H.




Overview of Linear Systems

Let 1 gi(x) = Hlfi(x)]

where f,(x) is an arbitrary input in the class of all inputs
{f(x)}, and g;(x) is the corresponding output.

It Hlaifi(x) + a;fi(x)] = a:iH|fi(x)] + a;H[f;i(x)]
a;gi(x) + a;g;(x)

Then the system H is called a linear system.

A linear system has the properties of additivity and homogeneity.




Linear Systems

The system H is called shift invariant if

gi(x) = H[fi(x)] implies that g;(x + x0) = H[fi(x + x0)]

for all f;(x) e{f(x)} and for all X,

This means that offsetting the independent variable of the input by x,
causes the same offset in the independent variable of the output. Hence,
the input-output relationship remains the same.




The operator H is said

Linear Systems

to be causal, and hence the system described by

H is a causal system, if there is no output before there is an input. In

other words,

flx) = 0 for x < xo implies that g(x) = H[flx)] = 0 forx < xop.

A linear system H is said to be stable if its response to any bounded input

is bounded. That is, if

|flx)| < K implies that |g(x)| < cK

where K and ¢ are constants.




Linear Systems

* A unitimpulse function, denoted d(a), is defined by the expression

j: Aa)S(x — a)da = fx).

5(a) o(x-a)

« The response of a system to a unit impulse function is called the impulse
response of the system.

h(x) = H[&X)]




Linear Systems

If H is a linear shift-invariant system, then we can find its reponse to any
input signal f(x) as follows:

g(x) = I:ﬂa)h(x — a)da.

This expression is called the convolution integral. It states that the response
of a linear, fixed-parameter system is completely characterized by the
convolution of the input with the system impulse response.




Linear Systems

Convolution of two functions of a continuous variable is defined as

f(X)*h(x) = ]O f (a)h(x—a)da

—00

In the discrete case

o0

f[n]*h[n]= > f[m]h[n—m]

M=—00




Linear Systems

In the 2D discrete case

oo o0

f[ny, n,I**h{n;,n,] = Z Z f[m,, m,]h[n, —m;, n, —m, ]

h[n,n,] isa linear filter.
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lllustration of the folding, displacement, and multiplication
steps needed to perform two-dimensional convolution

f(a,B) 9(cB)

Volume = f(x,y) * g(X,y)




Matrix perspective
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Convolution Example

" 1 1 1 Sy ny 1% *h[ny,n,] Z Z FIm, m)h[n, —m,,n, —m,]
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From C. Rasmussen, U. of Delaware
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Convolution Example
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Convolution Example
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Convolution Example
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Convolution Examp
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Convolution Example

1

*h
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Convolution Example
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Convolution Example

and so on...

From C. Rasmussen, U. of Delaware
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Example: averaging

Integration
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Example: edge detection

Deriving
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Try MATLAB

f=imread(‘saturn.tif’);

figure; imshow(f);
[height,width]=size(f);
f2=f(1:height/2,1:width/2);

figure; imshow(f2);
[height2,width2=size(f2);
f3=double(f2)+30*rand(height2,width2);
figure;imshow(uint8(f3));
h=[1111;1111;1111;1111])/16;
g=conv2(f3,h);

figure;imshow(uint8(g));
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Gaussian Lowpass Filter
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Gaussian Lowpass Denoising

! ! !
! ! !
| .Original - G: 2 B c=4
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Image Processing Algorithms




IP Algorithms

Spatial domain

Operations are performed in the
image domain

Image < matrix of number

Examples

— luminance adaptation
— chromatic adaptation
— contrast enhancement
— spatial filtering

— edge detection

— noise reduction

Transform domain

Some operators are used to
project the image in another space

Operations are performed in the
transformed domain

— Fourier (DCT, FFT)
— Wavelet (DWT,CWT)

Examples

— coding

— denoising

— image analysis

Most of the tasks can be implemented both in the image and in the transformed
domain. The choice depends on the context and the specific application.
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Spatial domain processing

Pixel-wise Local-wise

« Operations involve the single pixel | | = The neighbourhood of the
considered pixel is involved
— Any operation involving digital
filters is local-wise

* Operations:
— histogram equalization
— change of the colorspace

— addition/subtraction of images * Operations:
— get negative of an image — correlation
L — convolution
* Applications: _ filtering
— luminance adaptation _ transformation
— contrast enhancement o
— chromatic adaptation * Applications
— smoothing
— sharpening

— noise reduction
— edge detection
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Pixel-wise operations

* Histogram
— Straching/shrinking, sliding
— Equalization




Pixel-wise: Histogram equalization

Pixel features: luminance, color,

Histogram equalization: shapes
the intensity histogram to
approximate a specified
distribution

— It is often used for enhancing

200 -

contrast by shaping the image
histogram to a uniform distribution
over a given number of grey
levels. The grey values are
redistributed over the dynamic
range to have a constant number
of samples in each interval (i.e.
histogram bin).

— Can also be applied to colormaps
of color images. ’

180 -

160 -

140 -
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Histogram equalization

Can be used to compensate the distortions in the gray level distribution due to the
non-linearity of a system component

Gamma function <1
) Mo=1 ‘. % , o>
top top toqd
bottor bottom bottom
low height low height low height

T

gamma=0.1 ——l

31




Histogram equalization

Enhances the contrast of images by transforming the values in an
intensity image so that the histogram of the output image
approximately matches a specified histogram

— also applies to the values in the colormap of an indexed image
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H(l)

0 gi 1 or 255

In the continuous case

Histogram

Function H=H(g) indicating the number of pixels having gray-value
equaltog

— Non-normalized images: 0sg <255 — bin-size=1, can be integer
— Normalized images: 0=g <1 — bin-size<1

A

Max

A= j H(g)dg  areaunderthe

0 curve=number

\ of pixels
L, A= ZH[gi]
| g =1

H(g) = — 9) _ i, A9)~Alg+A9)
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Example: region-based segmentation

If the two regions have different graylevel distributions (histograms)
then it is possible to split them by exploiting such an information
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Example: region-based segmentation
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Types of operations

Histogram equalization — contrast enhancement

Histogram stratching/shrinking — expansion/compression of the
dynamic range

— Loss of resolution (the same set of pixel values are represented by a
subset of graylevel values)

Histogram sliding — change of the mean level
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H. stratching/shrinking

N0
stretch[1]=| ;2. }[glmax—ginm]w#m

0 0
_g max —J min

gﬁax = max I[I, J] = maximum gray value in the original image
g

gr?ﬂn min I[1, j] = minimum gray value in the original image
g

O, O = maximum and minimum gray values in the processed image
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H. original
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Histogram of the ariginal
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H. shrinked

Histogram of the shrinked




H. stratched

Histogram of the stratched
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iding

H. sl
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H. stratching/shrinking

stratching

shrinking
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Linear graylevel transformations

Onew|
/ -
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Non-linear tranformations

Used to emphasize mid-range levels

Anew = Jola™ Joid C (Joidmax = Jola)

Onew “/

gold
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gout

Common transformations

gout

gin

—_—

»
>

gin

Jout

gin

| -
—>

ldg,,

: .. gin
Intensity slicing
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Sigmoid transformation (soft thresholding)

H(g:) |

gout A f

S\

gin

H(g,]

o

)

gin

gout
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Histogram transformation

9, =7(g,)=9.=f"(g,) f non-decreasing function

H(9,,) = H(gy), namely

H (gout) =

HIF (0,01 .o

F I (Gou)]’ 9
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Histogram equalization

Let x be a random variable and let n, be the number of occurrences
of gray level i. The probability of an occurrence of (a pixel of level) i
In the image is

Ty

Pr(ijzﬁ'{f:ﬂ:E, 0<i<L

— L being the total number of gray levels in the image, n being the total
number of pixels in the image, and p, being in fact the image's
histogram, normalized to [0,1].

Let us also define the cumulative distribution function corresponding
to p, as
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We would like to create a transformation of the form y = T(x) to
produce a new image {y}, such that its CDF will be linearized across
the value range, i.e.

cdf, (i) = K -1

The properties of the CDF allow us to perform such a transform it is

defined as
y =T(x) = cdf, (x)
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Pictorially

pdf pdf
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Neighborhood operations

« Correlation « pattern recognition

« Convolution < Linear filtering
— Edge detection
— Denoising




Correlation

« Correlation
— Measures the similarity between two signals

— Difference from convolution: no ‘minus’ signs in the formula
 the signals need only to be translated

C(m,n)=> > f[m,nlhgdM+K,n+r] [g]

Application
database matching result
k‘ p7 * ﬂ oooooT
pattern T 1 ToooT
T 1
ﬂﬂﬁﬁ%
gt
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Convolution

g[m,n]= f[m,n]*hg, [m,n] = Z f[m, nJNgye [k —m, r —n]
k,r

G(ja)x’ Ja)y) = F(ja)x’ ja)y)HfiIter(ja)x’ Ja)y)

f[m, n]:original(input)image

glm, n]: filtered(output)image
h.....[m, n]: filterimpulseresponse

S7




Convolution and digital filtering

Digital filtering consists of a convolution between the image and the
impulse response of the filter, which is also referred to as
convolution kernel.

Warning: both the image and the filter are matrices (2D). If the filter
IS separable, then the 2D convolution can be implemented as a
cascade of two 1D convolutions

Filter types
— FIR (Finite Impulse Response)
— IR (Infinite IR)
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|deal low-pass digital filter

IH(Q)]

A

=217 -Q

Cc

Digital LP filter (discrete time)

The boundary between the pass-band and
the stop-band is sharp

The spectrum is periodic

The repetitions are located at integer
multiples of 21T

The low-pass filtered signal is still a digital
signal, but with a different frequency content

The impulse response h[n] in the signal
domain is discrete time and corresponds to
the sinc[] function

21T 0

Reconstruction LP filter (continuous time)

The boundary between the pass-band and
the stop-band is sharp

The spectrum consists of one repetition
only

The low-pass filtered signal is a continuous
time signal, that might have a different
frequency content

The impulse response h(t) in the signal
domain is continuous time and corresponds
to the sinc() function
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Digital LP filtering

@)

A

=217

-Q. Q. 2T

PS4

low-pass filtered

(digital) sigr?\
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LP and HP filtering

High-pass

~

Low-pass

IHR(Q) ¢

N

heeln] 1

¢

1

< ; integration

averaging

|HLp(Q)] 4

hypn] |

_/

\ z >

\J

g

< differentiation
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Phase (degrees)

Magnitude (dB)
=~
(]

Example: Chebyshev LP

LF, Chebyshev

O s s oo oo s s s S st s s s s

-2000
0

i I | i
0.1 0.2 0.3 04 0.5 0.6 07 0.8 0.9 1
Normalized Frequency (xr rad/sample)

| | | | I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency (x<r rad/sample)
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Magnitude (dB)

Phase (degrees)

Example: Chebyshev HP

HP, Chebyshev

a0

-2000
0

i I | i
0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
Normalized Frequency (xr rad/sample)

| | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (x<r rad/sample)
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Amplitude

06

05

04

03

0.2

01

-0.1

Example: Chebyshev Impulse Response

Impulse Response
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Samples

Amplitude
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01~

Impulse Response
T

02+
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-04

Samples

30
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Example: Chebyshev Step Response

Step Response
; :

Step Response
; 3
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Example: filtered signal

Qriginal signal
300 |

200 g

100 &

0 a0 100 1560 200 250

low pass
200 T

150

100

50

0 | | | |
0 50 10 150 200 250

0
high pass
40 |

40 | | I I
0 50 100 150 200 250

The transfer function (or, equivalently, the impulse response) of the filter
determines the characteristics of the resulting signal
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Switching to images qui

* Images are 2D digital signals (matrices) — filters are matrices
« Low-pass < averaging (interpolation) «» smoothing

« High-pass < differentiation «+» emphasize image details like lines,
and, more in general, sharp variations of the luminance

« Band-pass: same as high pass but selecting a predefined range of
spatial frequencies

Splitting low-pass and high-pass image features is the ground of multi-
resolution. It is advantageous for many tasks like contour extraction
(edge detection), image compression, feature extraction for pattern
recognition, image denoising etc.
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2D filters

Low-pass High-pass
N i =i, =il
hlowpass:§ 111 Phighpass =| =1 8 -1
111 1 -1 -1




Filtering in image domain

£

Filtering in image domain is performed by convolving the image with the filter kernel. This
operation can be though of as a pixel-by-pixel product of the image with a moving kernel,
followed by the sum of the pixel-wise output.
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Low-pass filtering: example
f[m,n] Niowpass[M:N] g[m,n]

%) Wfi i’ﬁﬁwyj"; /;(/5;//,; Gaussian fiter sigma=15 : ’ " .a‘ J;7” (j;/':?
/ / /o /_/ A [ / ﬁ / f ﬂ
4 /; = _,?' - 3 / / }:' g _ .

& p e : /, /%
o g




Averaging

hy,=1/25

N

N

e

L

[ e N e
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Gaussian

0.0030 0.0133 0.0219 0.0133
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o o
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Log

J.0239 0.0460 0.0499 0.0460 0.0239
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Asymmetric LP

0.8-

=
@

Magnitude
o
A
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Asymmetric HP

magnuae
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Sharpening

Goal: “improve” image quality

Solutions
— increase relative importance of details, by increasing the relative weight
of high frequencies components
» Increase a subset of high frequencies (non symmetric HP)
» High-boost filter
« Laplacian gradient

— The original image is assumed to be available

76




Sharpening Filters

To highlight fine detail or to enhance blurred details
— Averaging filters smooth out noise but also blur details

Sharpening filters enhance details
May also create artifacts (amplify noise)

Background: Derivative is higher when changes are abrupt

Categories of sharpening filters:
— Basic highpass spatial filtering
— High-boost filtering
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Original
image

Sharpening

HP

\ 4

Normalization

\ 4

Normalization

Sharpened
'(t) > image

The normalization step subtracts the mean and scales the amplitude of the

resulting image by dividing it for the dynamic range (graylevel values are
now in the range 0-255)

For the sharpening to be visible, the sharpened and original images must
then be displayed using the same set of graylevel values
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Basic Highpass Spatial Filtering

The filter should have positive coefficients near the center and
negative in the outer periphery:

Laplacian mask

ab
0 I 1 1 ¢ d
FIGURE 3.39

(a) Filter mask
used to
implement the

digital Laplacian, Other LapIaC|an maSkS

as defined in

0 1 1 1 b N mseil o (normalization factor is

implement an

extension of this mlSSlng)
0 -1 ol -1 equation that
includes the

diagonal
neighbors. (¢) and
(d) Two other
implementations

of the Laplacian.
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Basic Highpass Spatial Filtering

The sum of the coefficients is 0, indicating that when the filter is
passing over regions of almost stable gray levels, the output of the
mask is 0 or very small.

The output is high when the center value differ from the periphery.
The output image does not look like the original one.
The output image depicts all the fine details

Some scaling and/or clipping is involved (to compensate for possible
negative gray levels after filtering).
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originale laplaciano




High boost

Friatboost = O rigimatFhiahpass = (Wattpass+ Whichoass P doriginad = Whiskboost ¥ L origimnal

Examples

000 0o -1 0 D =1 D

i;;;ﬁiﬂ*-h‘n‘ﬂ = fﬁjaﬂwn'l'ﬁ}riqhn: =¢| Q01 0|+]-1 4 —-1|=|-1 44¢c -1
ooo| [0 -1 0 0 -1 o

o o0 -1 -1 -1 -1 -1 =1

Wiishbeest = WotlpearF Waighpess = | 0 1 O |4+ =1 8 =1 | =] =1 84¢c =1
0 0 0 -1 -1 -1 -1 -1 -1
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High-boost Filtering

« Highpass filtered image = Original — lowpass filtered image

« |f A is an amplification factor, then:
— High-boost = A - original — lowpass

— = (A-1) - original + original — lowpass
— = (A-1) - original + highpass

Unsharp masking (If A=2)
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Unsharp Masking and Sharpening operation

Signal Low- pass

(1) )

High-pass
ﬁ/\/;
B)=1)-7)

(A-1) (1) + (3)
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High-boost Filtering

A=1 : standard highpass result

A > 1 : the high-boost image looks more like the original with a
degree of edge enhancement, depending on the value of A.

A > 1 - Unsharp masking

w=9A-1, A=1
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ariginale+aplaciano originale




originale+laplaciana unsharp masking




Sharpening: asymmetric HP

Original image Sharpened image
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n Sharpening: the importance of phase
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Sharpening: the importance of phase
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Sharpening: the importance of phase
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Sharpening: the importance of phase
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QOriginal image

Sharpened image

Back to the natural image

Sharpened image
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