A.3 The Instruction Set

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADD^+		00	01	 		DR	1		SR1		0	0	0		SR2	
ADD^+		00	01	I		DR	1		SR1		1		i i	nm5	5	
AND^+		01	01	1		DR			SR1		0	0	0		SR2	
AND^+		01	01	1		DR	1		SR1		1		i I	nm5	5 1	
BR		00	00	1	n	z	р		1	1	PC	offs	et9			
JMP		11	00	1		000	1	E	ase	R		I	000	000		
JSR		01	00	1	1		1	1	1	PC	offse	et11				
JSRR		01	00	I	0	0	ו 0	E	ase	R		1	000	000		
LD^+		00	10	I		DR	1		1		PC	offs	et9			
LDI ⁺		10	10	I		DR	I		1	1	PC	offs	et9			
LDR ⁺		01	10	1		DR	1	E	ase	R		I	offs	set6		
LEA^+		11	10	1		DR	1		1		PC	offs	et9			
NOT ⁺		10	01	1		DR	I		SR			I	111	111		
RET		11	00	1		000	1		111			I	000	000		
RTI		10	00	1		1	1	1	000	0000	000	000				
ST		00	11	1		SR			I	I	PC	offs	et9			
STI		10	11	I		SR	1		1		PC	offs	et9	I		
STR		01	11			SR	1	E	Base	R		I	offs	et6		
TRAP		11	11			00	00				t	rapv	ect8	}		
reserved		11	01													

Figure A.2 Format of the entire LC-3 instruction set. Note: + indicates instructions that modify condition codes

525

A.4 Interrupt and Exception Processing

Table A.2 Trap Service R		outines				
Trap Vector	Assembler Name	Description				
x20	GETC	Read a single character from the keyboard. The character is not echoed onto the console. Its ASCII code is copied into R0. The high eight bits of R0 are cleared.				
x21	OUT	Write a character in R0[7:0] to the console display.				
x22	PUTS	Write a string of ASCII characters to the console display. The characters are contained in consecutive memory locations, one character per memory location, starting with the address specified in R0. Writing terminates with the occurrence of x0000 in a memory location.				
x23	IN	Print a prompt on the screen and read a single character from the keyboard. The character is echoed onto the console monitor, and its ASCII code is copied into R0. The high eight bits of R0 are cleared.				
x24	PUTSP	Write a string of ASCII characters to the console. The characters are contained in consecutive memory locations, two characters per memory location, starting with the address specified in R0. The ASCII code contained in bits [7:0] of a memory location is written to the console first. Then the ASCII code contained in bits [15:8] of that memory location is written to the console. (A character string consisting of an odd number of characters to be written will have x00 in bits [15:8] of the memory location containing the last character to be written.) Writing terminates with the occurrence of x0000 in a memory location.				
x25	HALT	Halt execution and print a message on the console.				

Table A.	3 Device Register As	signments
Address	I/O Register Name	I/O Register Function
xFE00	Keyboard status register	Also known as KBSR. The ready bit (bit [15]) indicates if the keyboard has received a new character.
xFE02	Keyboard data register	Also known as KBDR. Bits [7:0] contain the last character typed on the keyboard.
xFE04	Display status register	Also known as DSR. The ready bit (bit [15]) indicates if the display device is ready to receive another character to print on the screen.
xFE06	Display data register	Also known as DDR. A character written in the low byte of this register will be displayed on the screen.
xFFFE	Machine control register	Also known as MCR. Bit [15] is the clock enable bit. When cleared, instruction processing stops.

A.4 Interrupt and Exception Processing

Events external to the program that is running can interrupt the processor. A common example of an external event is interrupt-driven I/O. It is also the case that the processor can be interrupted by exceptional events that occur while the program is running that are caused by the program itself. An example of such an "internal" event is the presence of an unused opcode in the computer program that is running.

Associated with each event that can interrupt the processor is an 8-bit vector that provides an entry point into a 256-entry *interrupt vector table*. The starting address of the interrupt vector table is x0100. That is, the interrupt vector table