Programming Models

Parallel Computing Patterns

Parallel Computing Patterns

* Design guidelines to implement a parallelized version from a
sequential code

* Based on 4 design spaces concerning both algorithm
expression and software construction:

11/02/2008

Motivation

MFEG Gir sream
|

——

macroliocks, modon vedlers

aélﬂ
frEquEncy encoged

TRETO0GERS '--\.,_'.‘Mwsn‘.'en:{- coged
- . Tt =K

T 3

[T‘—"—] Motion Vecior Dacods

[“;BT] . Rapaat
_l—

L J
[Saturation]
- —
SOaNEY BNCo0ed MATONOKS e =" MOlion vEckos
Jain

[T lU

recoversd piciure

MPEG Decoder

Plcturs Reoroar

e Example: MPEG
decoder

e Program complexity
ask for design
guidelines for
parallelization

Example: MPEG Decoder

MFES Gir sfream
|

MPEG Decoder
WL

MBSOBIOCHS, Motion Verars
=pii
T e _dMerentiaiy cogsd
gt

IQuantization Motion Vector Dacods

]
SpaEly aNCoYEC MCIOBIOCKS =m0 =" MONN IECirs
Join

/Ev;g\“
Motlon U
Compenzation
recoversd piCive

Plcture Reoroar

* Task decomposition

— Independent coarse-
grained computation

— Inherent to algorithm

* Sequence of statements

(instructions) that operate
together as a group
— Corresponds to some
logical part of program

— Usually follows from the
way programmer thinks
about a problem

11/02/2008

Example: MPEG Decoder

MFEG LT siream
|

MPEG Decoder .
—— __* Taskdecomposition
Eﬁ;’r"@m‘d—aﬁjmnaw~ — Parallelism in the
e IPONOA VR .]
|Quantization m app|lcat|0n
= Sepe e Data decomposition
Saturation p
SPSNY SNCO0EN MECTONOCKS =~y o 000N 1BCrS _ Same compUtation is

applied to small data
chunks derived from
large data set

Example: MPEG Decoder

MPEG Decoder "= e Task decomposition —,
’lmlm modon vectars P lleli i h
mmmmq_f‘tj- vetars — Parallelism in the

ey oo application

meemes] o Data decomposition ﬁ]

— Same computation many

5pANEY BNGo0Ed METIN0GHS ___..-—".}Co}_i:a veclrs d ata

i

* Pipeline decomposition
— Data assembly lines
— Producer-consumer

chains oees

11/02/2008

Patterns & Decompositions

e Patterns are more specific than decomposition
strategies as we discussed earlier in the course

Pattern Decomposition
Task-level parallelism Task

Divide and Conquer Task/Data
Geometric Decomposition Data

Pipeline Data Flow
Wavefront Data Flow

Design Spaces in Constructing a
Parallel Program

| Finding Concurrency |

| Algorithm Structure | .

| Supporting Structure |

L

| Implementation Mechanism |

Structure the problem to
expose exploitable concurrency
Structure the algorithm to take
advantage of concurrency
Intermediate stage between
Algorithm Structure and
Implementation

— program structuring

— definition of shared data

structures

Mapping of the higher level
patterns onto a programming
environment

11/02/2008

Finding Concurrency Design Space

e Result

— A task decomposition that identifies tasks that can
execute concurrently

— A data decomposition that identifies data local to
each task and data shared among tasks

— A way of grouping tasks and ordering them

according to data dependencies and temporal
constraints

e This will be used as an input for the Algorithm
Structure design space

Algorithm Structure Design Space

e Given a collection of concurrent tasks, what’s the
next step?

e Map tasks to units of execution (e.g., threads)

e Important considerations

— Magnitude of number of execution units platform will
support
— Cost of sharing information among execution units
— Avoid tendency to over constrain the implementation
e Work well on the intended platform
¢ Flexible enough to easily adapt to different architectures

11/02/2008

Major Organizing Principle

* How to determine the algorithm structure
that represents the mapping of tasks to units
of execution?

e Concurrency usually implies major organizing
principle
— Organize by tasks
— Organize by data decomposition
— Organize by flow of data

Organizing Principles

organize by ordering organize by task organize by data
regular irregular linear recursive linear recursive
Pipeline Asynchronous W Divide and Geometric Recursive
: : Partitioning .
processing computation Conquer decomposition Data
—
independent dependent
Embarrassingly Separable . Inseparable‘
parallel dependencies dependencies
Separable Protected
dependencies dependencies
Organize by tasks Organize by data Organize by flow of
decomposition data
Task Parallelism Geometric
decomposition
Divide and Conquer Event-baszed
coordination

11/02/2008

11/02/2008

Organize by Tasks?

Task Parallelism

* Problem can be decomposed into a collection
of tasks that can execute concurrently

e Tasks can be completely independent
(embarrassingly parallel) or can have
dependencies among them

* All tasks might be known at the beginning or
might be generated dynamically

Task Parallelism

e Tasks:

— There should be at least as many tasks as UEs (Units of
Execution) - typically many, many more

— Computation associated with each task should be
large enough to offset the overhead associated with
managing tasks and handling dependencies

* Types of dependencies:

— Ordering constraints: sequential composition of task-
parallel computations

— Shared-data dependencies: several tasks have to
access the same data structure

Shared Data Dependencies

» Shared data dependencies can be categorized as
follows:

— Removable dependencies: an apparent dependency that
can be removed by code transformation

e e I Fht Apparent dependency
for (i=0; i<N; i++) { iable ii dii
ii = ii + 1; (variable ii and jj
d[ii] = big_time_ consumirg—work (ii);
i1 =33 + ii
a[jj] = other big time consuming werk (3jj):

! Removed dependency

for (i=0; i<N; i++) { ‘4 using closed form expression
d[i] = big_time_consuming work (i);

a[(i*i+i) /2] = other_ big_time consuming work ((i*i+i) /2); i

1 PR

11/02/2008

Shared Data Dependencies

» Separable dependencies:
— Write-once updates or accumulative sum on shared
variables

— Can be pulled outside the concurrent execution by
replicating the shared data structure before and
combine the copies into a single structure after the
concurrent execution

e Other dependencies: non-resolvable, have to be
followed

— Protected dependencies: variables read and written
during the concurrent execution

Embarrassingly Parallel Pattern

* Independent tasks

e Computation of solutions
— Independent on distinct variables

— Accumulated in a shared data structure (if no ordering
is required)

e Examples:
— Vector addition
— Ray tracing codes
— Database searches
— Branch and bound

11/02/2008

Application Examples

* Low level image processing
e Mandelbrot set
e Monte Carlo Calculations

Partitioning into Regions for Individual
Processes

Shifting
¢ Object shifted by Dx in the x-dimension and Dy in the y-dimension:
X =X+ Ax

y'=y+A4y
e where x and y are the original and x¢ and y¢ are the new coordinates.
Scaling
* Object scaled by a factor S, in X
x-direction and S, in y-direction: a0 Process
x'=x8S, y — 640 -
y'=yS, o0 | - Wap
Rotation
e Object rotated through an angle 9
system:

. 480
X’ =xcosd +y sin &

y’=-xsin 3 +y cos &

Square region for each process (can also use strips)

11/02/2008

10

Complexity Analysis: Sequential

* Suppose each pixel requires one computational step
and there are n x n pixels.

Sequential
* t.=n?and a sequential time complexity of O(n?)

Pseudocode to Perform Image Shift

Master

for (1 = 0, row = 0; 1 = 48; 144, row = row + 10)/* for sach process*/
aand{row, Dij; /* send row no.*/

for (1 = 0; 1 = 480; 1++)
for (4 = 0; § = 640; j++)

f* initialize temp */

temp_map[i][1]1 = O;
for (1 = 0; 1 = (640 * 480); 1++) { /* for each plxel */
recv{oldrow, oldocol, newrow, newcool, Pand /* accept new coords */
1f !{(newrow = 0] || (newrow »= 480) || (newcol = 0} || (newcol == 640))

tamp_map [newrow] [newcol] =map [cldrow] [oldcol] ;
}
for (1 = 0; 1 = 480; 1++) /* update bitmap */
for (1 = 0; 1 = 640; J++)
map[1]1[]] = temp_mapl[i] [11;

Slave
recv (row, Ppictar) /* recelve row no. */

for (eldrow = row; oldrow < (row + 10); oldrow++)
for {eldeel = 0; oldeol = £40; oldcol++) { /* transform coords */

newrow = oldrow + delta x; A% ahift in x direction */
newcol = oldeol + delta ¥;: J/* shift in ¥ direction */
send (oldrow,cldcol , newrow , newcol, Praceer); /* coords to master */

}

11/02/2008

11

Complexity Analysis: Parallel

Parallel
¢ Communication oldcol, oldraw, newcol, newraw
= tomm = tstartup + Mty / for each pixel

- tcomm =p (tstartup +2 tdata) + 4n2(tstartup + tdata) = O(p + n2)

send raw

¢ Computation
P For each process

- tcomp= z(nz/p)=o(n2/p)

newrow=, newcol=
¢ Overall Execution Time for each pixel

- tp = tcomp + teomm

— For constant p, this is O(n?).

¢ However, the constant hidden in the communication part far
exceeds those constants in the computation in most practical
situations.

Separable Dependencies Pattern

* Necessary global data are replicated and partial results are
stored in local data structures

* Global results are obtained by reducing results from
individual tasks

e Examples S

— Matrix-vector multiplication

replicat!

— Numerical integration

comipute
logal
result

reduce

independent
tasks

11/02/2008

12

Task scheduling

e Schedule: the way in which tasks are assigned to
UEs for execution
— Minimize the overall execution of all tasks
— Finish the work at the same time (load balance)

e Two classes of schedule:

— Static schedule: distribution of tasks to UEs is
determined at the start of the computation and not
changed anymore

— Dynamic schedule: the distribution of tasks to Ues
changes as the computation proceeds

Task scheduling - example

* Embarrassingly parallel pattern

F
o 2 [==
Independent tasks A E

Poor mapping to 4 UEs Good mapping to 4 UEs
A A E
= (o]l

11/02/2008

13

Static Schedule

* Tasks are associated into blocks
— Blocks are assigned to Ues
— Each UE should take approximately same amount of
time to complete task
 Static schedule usually used when

— Availability of computational resources is predictable
(e.g. dedicated usage of nodes)

— UEs are identical (e.g. homogeneous parallel
computer)

— Size of each task is nearly identical

Dynamic scheduling

* Used when

— Effort associated with each task varies widely/is
unpredictable

— Capabilities of UEs vary widely (heterogeneous
parallel machine)

e Common implementations:

— usage of task queues: if a UE finishes current task, it
removes the next task from the task-queue
— Work-stealing:
¢ each UE has its own work queue

¢ once its queue is empty, a UE steals work from the task
gueue of another UE

11/02/2008

14

11/02/2008

Dynamic scheduling

e Trade-offs:

— Fine grained (=shorter, smaller) tasks allow for
better load balance

— Fine grained task have higher costs for task
management and dependency management

Task Parallelism using Master-Worker
framework

15

Task Parallelism using work stealing

Divide and Conquer

int solve (| Problem P)
{

int solution;

/* Check whether we can further partiticn the problem */

if (paseCase (F)) {

solution = baseSolwve (P); /* Wo, we can't */
}
else | f* yes, we can */

Precblem subprcblems [N];
int subsclutions[N];

subproblems = split (B); /* Partition the problem */
for (i=0; 1 < M; 1++) {
subsolutions[i] = sclwve (subproblems[i]);
1
solution = merge (subscluticns);

}

return ([solution); m
]

11/02/2008

16

Divide and Conquer

* A problem is split into a number of smaller sub-problems

* Each sub-problem is solved independently

* Sub-solutions of each sub-problem will be merged to the
solution of the final problem
— Useful if the base case is large compared to the work needed for

splitting-merging

* Problems of Divide and Conquer for Parallel Computing:

— Amount of exploitable concurrency decreases over the lifetime

— Trivial parallel implementation: each function call to solve is a
task on its own. For small problems, no new task should be
generated, but the baseSolve should be applied

Divide and Conquer

* Implementation:

— On shared memory machines, a divide and conquer
algorithm can easily be mapped to a fork/join model
¢ A new task if forked(=created)
¢ After this task is done, it joins the original task (=destroyed)
— If the problem is not regular, better to use fine grained
tasks and a task queue
* Often implemented using the Master/Worker framework
— OpenMP can be used to parallelize the loop only if it
supports nesting of parallel regions which is not
always true [Mat03]

11/02/2008

17

Divide and Conquer

* [ssues:
— Sub-problems may not be uniform
— May require dynamic load balancing

split

subproblem

split split
. Join Join
@;Jﬂi@ Ql:ll_:l probl_edrp/
- _L_:___q___h___h-- jain /
=

Divide and Conquer

o e

-..

_— split T

. p—_
T -

-

A A
_~ split ~ - split ~—
LTIy BTy Iy CET T T T

Base solve Base solve

o
_.__.!-ﬂlt.erge//

11/02/2008

18

Divide and Conquer:
Task Assignment

Inifial problem

Example: Mergesort

function mergesort (m)
var list left, right
if length(m) = 1
return m
else
middle = length(m) / 2
for each x in m up to middle
add x to left
for each x in m after middle
add x to right
left = mergesort (left)
right = mergescrt (right)
result = merge(left, right)
return result
end if

11/02/2008

19

Example: Adding a List of Numbers

* A sequential recursive definition for adding a
list of numbers is

int add{int *a) J/* add list of numbers, s */
{
if (number{s] =< Z) return (nl + n2j; [* seea syplanation */
elae |
Divide (=, =1, =2); /* divide = into two parts, 21 and =2 */
part_suml = add(sl); f*recuraive calls to add sub lists */

part_sum2 = add(a2);
return (part_suml + part_sum};

M-ary Divide and Conquer

* Divide and conquer can also be applied where a task is
divided into more than two parts at each stage

* For example, if the task is broken into four parts, the
sequential recursive definition would be

int add{int *s) J* add list of numbers, = */

{

1f (numberis) =< 4) returninl + n2 + n3 + ndj;

elae |
Divide (=,8l,32,83,84); /* divide 2 1into =l1,22,8
part_suml = add(sl); J*racursive calls to add:
part_sum2 = add(s2);

part_sum3 = add(s3);
part_sumd = add(sd);
return (part_suml + part_sum2 + part_sum? + part_sumd)

quadtree

11/02/2008

20

Bucket Sort

¢ One “bucket” assigned to hold numbers that fall within each region.
Numbers in each bucket sorted using a sequential sorting algorithm

Unsorted numbers

Sorted numbers

* Sequential sorting time complexity: O(nlog(n/m).

¢ Works well if the original numbers uniformly distributed across a known
interval, say 0 to a -1.

Parallel Version of Bucket Sort

* Assign one processor for each bucket

Unsarted numbers

p processors | Do) T j

[. "
Buckets I ? |
S e B —
Sort l l l
contents
of buckets " e o
Merge lists | | | e | |

Sorted numbers

11/02/2008

21

Further Parallelization

By partitioning the sequence into m regions, one region for each processor
Each processor maintains p “small” buckets and separates the numbers in
its region into its own small buckets

These small buckets are then “emptied” into the p final buckets for

sorting, which requires each processor to send one small bucket to each of
the other processors (bucket i to processor i)

Another Parallel Version

n/m numbers

. . Unsorted numbers
N x/\ (\ N4 \ ;\/

pprocessors |) [) [) emmme e L)

-‘? r/ N _‘_/ A T.. \\? 'I_/
Small EaTas s L
buckets oy Y Oy S {JT
Empty
small
buckets
Large = 7 7 T
buckets " + ‘(J e A ‘L ’]"
Sort
contents
of buckets ~ e

Merge lists | | | | ”””””””””””””””””””
Sorted numbers

Introduces new message-passing operation - all-to-all broadcast.

11/02/2008

22

Analysis

* The following phases are needed:
1. Partition numbers
2. Sort into small buckets.
3. Send to large buckets.
4. Sort large buckets.

Phase 1 — Computation and Communication
tcompl =n

tcomml = tstartup + tdatan

Phase 2 — Computation
tcompz = n/p

Analysis

Phase 3 — Communication
¢ If all the communications could overlap:

tcomm3 = (p - 1) (tstartup + (n/ pZ) tdata)

total number of small buckets=p?

Phase 4 — Computation
tcomp4 = (n/p)/Og(n/p)

Overall
* tp = tstartup * tdatan + n/p * (p - 1)(tstartup + (n/pz)tdata) +(n/p)IOg(n/p)

¢ Itis assumed that the numbers are uniformly distributed to obtain
these formulas. The worst-case scenario would occur when all the
numbers fell into one bucket!

11/02/2008

23

All-to-all Routine

* Sends data from each process to every other process

See also
Corresponds to one next slide
Proiss 0 big bucket Procef p-1
/,. - \\
Send [tn \ Receive
buffer | / buffer
Ve \
Corresponds to |'|
set of small buckets | e s
\
IIII .
L
A ™
/ \ ;I -1 / -
Vi N /
S N e
Process 1 Process p-1 Process 0

Other Interesting Examples

e Gravitational N-Body problem
— Barnes-Hut algorithm

— Orthogonal recursive bisection

11/02/2008

24

Algorithm Structure — Summary so far

Organize by tasks Organize by data Organize by flow of
decomposition data
| Task Parallelism | Geometric

decomposition Eventbased

| Divide and Conquer| ’m‘ coordination

e Task parallelism:
— Implemented by Task queues
— Task distribution vs. work stealing
* Divide and Conquer for recursive problems

— Split problem into sub-problems until a lower limit in the
problem size has been reached

— Solve the sub-problem
— Merge the results of the sub-problems into the final result

Organize by Data?

e Operations on a central data structure
— Arrays and linear data structures
— Recursive data structures

yes
Recursive Data

Geometric
Decomposition

11/02/2008

25

Geometric Decomposition

* For all applications relying on data
decomposition
— All processes should apply the same operations on
different data items
e Key elements:
— Data decomposition
— Exchange and update operation
— Data distribution and task scheduling

Geometric Decomposition: Example

e Scalar product and matrix vector
multiplications are used to solve differential
equations

e They can be performed in parallel using
geometric decomposition

11/02/2008

26

Scalar Product

e Scalar product: Process with Process with
rank=0 | rank=1
Nl all.Ng-1 b0 NG -1) alNg N BN LN
> afi]*bli] . e &
i—0 .
e Parallel algorithm: E I E I
il N1
5= Tla[;]*b[;]}+ T:al;] bl
.a:.-r'zat Az Wil
= zlafmﬂ'“]*bfomr“”_'- Zl:al'ocm'“];Irbl’ar:ﬂ'“lj
Fry i=0
. rank=0 - I - v:rr.:k L

— requires communication between the processes

Matrix-Vector product in Parallel

[-50 30 Tx1] | processo
20 -50 30 x, | |rhs,

20 -50 30 |x, rhs,
I 20 —50x,| |rhs,| | %]

[-30x] +B0x,] =[rhs]

_+ =|rhs,

|2(]:'c2|~|5{].1:3|-I-|3'[l1r.1 |= rhs, |+ Process 1 needs x,
[20x,]50x, |=[rhs,]

Process 0 needs x,

11/02/2008

27

11/02/2008

Matrix-Vector product in Parallel

 Introduction of ghost cells

* Looking at the source code, e.g ...

e ...since the vector used in the matrix vector
multiplication changes every iteration, you always
have to update the ghost cells before doing the
calculation

Recursive Data

» Typically applied in recursive data structures
— Lists, trees, graphs
» Data decomposition: recursive data structure is
completely decomposed into individual elements
e Example: prefix scan operation

— Each process has an element of an overall structure
(e.g. a linked list), e.g. an integer x

* Lets denote the value of the x on process i xi

— At the end of the prefix scan operation process k holds
the sum of all elements of xi for i=0...k

28

Recursive Data

e Example for eight processes

Process Process Process Process Process Process Process Process
0 1 2 3 4 5 B 7

oot] | D]
prefix scan o 1 2 3 4 5 5 7

After
prefix scan Ky +xy [g #x+ ||] Xg 20+ ||| 2g 40+ || Xg X%
*a Ky +My || Xp R+ ||| Xo +Ha+
X, X, +Xg

Sequential implementation

e Each process forwards its sum to the next process
— n messages/ time steps required for n processes

Process Process Process Process Process Process Process Process
1 2 3 4 5 B 7

R YA YaYa"a™

Sy E1°

|x:, ST PRSI || A A | | PO || A
Xy Xy +Xg ||[3y 0y 4 ||| %o #Xg+
X, X, g

Time t

11/02/2008

29

Recursive data approach

2eix ‘a|

120)| [w)| [[T)| [)] [0)| [T 3

Sl ‘a|

|Z[.1;,:.1‘,,]| |E[.l‘,3:.1',3| |Z[.1‘I:.1'_\3| |Z[.1'!:.1'3}| |Z[.1'J:.1'43| |Z[.1'4:.1'5]| |Z[.1‘5:.1'°}
T T T T T F

\ AN I A AN J
[T 0] [20n)] [)] [)| 2)| [(2| [Towis)]
% ! | | F ¥ F f
- — —~ -./' /r'.
> %) [2w 0] [Zmin)]| [(Zemn)| 2w [Zen)] [Zww)] [T

Another Example: Find the Root

* Given a forest of rooted directed trees, for each
node, find the root of the tree containing the node
— Parallel approach: for each node, find its successor’s
successor, repeat until no changes
¢ O(logn) vs. O(n) /_,@__‘

)
AT _,("‘\ Iy

(T
Ay O A3
AD A5 ff//-;; Fv
) o, 1IN
./'\:/"‘3\ ["}’:J\\\ / ‘t—’) /j
O [oy y H7d
y \ =~ LB
I =) () i
5o ® @ 5 @
W WS
Step 1 Step 2
P Step 2 Step 3

* Inthe example, three steps are needed to converge
(all the nodes have no more iterations to do)

11/02/2008

30

11/02/2008

Recursive data approach

e Very fine grained concurrency
e Restructuring of the original algorithm often
required

e Parallel algorithm requires substantially more
work, which can however be executed in less
time-steps

Organize by Ordering or Flow of Data?

yes
Regular?
no \

31

Pipeline pattern

¢ Amount of concurrency limited to the number of stages of the
pipeline

e Patterns works best, if amount of work performed by various
stages is roughly equal

¢ Filling the pipeline: some stages will be idle

* Draining the pipeline: some stages will be idle

* Non-linear pipeline: pattern allows for different execution for
different data items

/.| Stage 3a .
Stage 1 Stage 2 i\ ',} Stage 4
B

Pipeline pattern

* Implementation:
— Each stage typically assigned to a process/thread
— A stage might be a data-parallel task itself

— Computation per task has to be large enough to
compensate for communication costs between
the tasks

11/02/2008

32

Event-based coordination

¢ Pipeline pattern assumes a regular, non-changing data
flow

¢ Event-based coordination assumes irregular interaction
between tasks

* Real world example: /| Fact checker

Submits repo n;_’_::":FIetuma report

Submits report - Z:::":.Submits repart .
Reporter »| Editor P2+ | Printer

Asks for correction
* Data items might flow in both directions
— Each data item might take a different path
* Major problem: deadlock avoidance

Supporting structures

e Supporting structures describe software
constructions for parallel algorithms

Program Structures Data Structures

Structuring
concurrent SPMD | | Shared Data |
execution
— Master / Worker
Representing 7| | Shared Queue
computational ‘| Loop Parallelism |
 resources | Distributed Array

N Fork/dJoin |

11/02/2008

33

SPMD

e SPMD - Single Program Multiple Data

e Each UE carries out similar/identical
operations

* Interaction between UEs performance critical

— Basically all applications scaling up to several
thousand nodes/processors are written in the
SPMD style

SPMD

e Basic elements:
— Initialize: establish common context on each UE
— Obtain unique identifier: e.g. using MPl_Comm_rank()

— Run the same program on each UE using the unique
identifier to differentiate behavior on different UEs

e Differentiation could also be done based on data
items

— Distribute data: e.g. geometric decomposition
— Finalize

11/02/2008

34

SPMD Example

Anti-differentiation: Given a function f(x), find a
function F(x) with the property that F'(x) = f (x)

e Example: [f=a" —— F)=——a""+c
n+1
b
* Calculating the Integral of a function | f{x)dx=F(b)—F(a)
* Graphical interpretation o
fix)
¥
| /,,/
[r@
o a - h " X

Sequential Code using MPI

]

b n &
e Trapezoid rule [rear=3 [fodx ==%Zi.1'.-—.1'.-.)[._I'i.r,-|)+__f't.1',-'JI

i |_\'I,__ =1
$include <stdio.h>
int main (int arge, char **argv)
¥ {
int i, num_steps=100000;

\ double x, xn, pi, step, sum=0.0;

/* Required input:

- a,b : boundaries of the integral
AN - f(x): function
[!
L TX
a=X A X x=b step = (b-a)/num_steps;
for (i=0; i<num steps; i++) {

x = i * stegp;

xn = (i+l) * step;

sum = sum + 0.5* (xn—x)* (£ (x)+£ (xn) ;
} ——

return (0); ' > -
L idcs

11/02/2008

35

Parallel Code using MPI

int rank, size, start, end, i, num steps=100000;
double x, xn, end, step, sum, lsum=0.0;

MPI_Init (&argec, &argv);
MPI_Comm rank (MPI_COMM WORLD, &rank);
MPI_Comm size (MPI_COMM WORLD, &size);

step = (b-a)/num_steps;
start = rank * num_steps/size;
end = start + num steps/size;

for (i=start; i<end; i++) {
x = i * step;
¥xn = (i+l) * step;
lsum = lsum + 0.5% (xn—x)* (£ (x)+£ (xn) ;
¥
MPI_Allreduce (lsum, sum,1l, MPI _DOUBLE, MEI_SUM, MPI_COMM WORLD);
MPI_Finalize (}; f

F/ ol
At

Master-Worker Pattern

master \ I I H

/I\ /I\ VAR /@

/\/\/\/

worker worker worker worker

Master Process Worker Process 1 Worker Process 2

Result queue Task queue

11/02/2008

36

Master-Worker Pattern

Particularly relevant for problems using task parallelism
pattern where task have no dependencies
— Embarrassingly parallel problems

In general, it is useful if

— Workload associated with tasks are highly variable — MW has
‘built-in’ load balancing

— Capabilities of PEs are strongly varying
— Tasks are not tightly coupled — each worker process typically
only has to communicate with the master process but not with
other workers
Not useful usually if the computationally intensive part of
the program structure is organized in a big loop

Master-Worker Pattern

Main challenge in determining when the entire
problem is complete

Approach:

— Two logically different entities: master process managing a
work-queue, worker processes executing a task assigned to
them by the master

— Completion: explicit notification of master to worker
processes typically required

Can become very complicated for adaptive and

recursive problems, where a worker can also

‘generate’ new tasks

11/02/2008

37

Example Code using MPI

¢ Main function

£define MASTERRANE O

tdefine WORK_TAG 10
4define RES_TAG 11
#define NO WORK_LEFT TAG 12

int main { int arge, char ** argv) {
int rank;

MPI_Init (&argc, &argv);
MEI_Comm_rank (MPI_COMM WORLD, &rank);

if (rank == MASTERRANK) |
master () ;

telse {
worker () ;

i

MPI_Finalize ();

return (0);

Example Code using MPI

e Worker

int worker ([wvoid)

{
int done=0; /* condition set to false */
MPI_Status status;

while (!deone) {
MPI_Recv (&work, maxcnt, MPI_DOUBLE, MASTERRANE,
MPI_ANY TAG, MPI_CCMM WORLD, &status);
if | status.MPI_TAG == NO WORK_LEFT_TAG) |

done = 1; /* condition set to true */
i
else |
result = do_calculations (work };

MPI_Send (&result, rescnt, MPI_DOUBLE, MASTERRANE,
RES_TAG, MPI_COMM WORLD);
i

return (0); o

T
5

11/02/2008

38

Example Code using MPI

* Master part |

int master (woid)

{

int done = 0;

/* distribute initial work */
for (proc=1; proc<maxwerkers; proc++) {
next = get_next _work ();
MPI_Send (&next, xx, MPI_DOUBLE, proc, WORE_TAG,
MPI_COMM WORLD) ;
marc_work _as_assigned (proc, next);

1

while (done < maxworkers) |
MPI_Recv (&deltares, xy, MPI_DOUBLE, MPI_ANY_SOURCE,
RES_TAG, comm, &status);
proc = status.MPI SCOURCE;
store_work_result ([proc, deltares); /P-—— ==
L next = get_next_work (); A

Example Code using MPI

* Master part |l

if (next != NO_WORK_LEFT) {
MPI_Send (&next, xx, MPI_DOUBLE, proc, WORK TAG,
MPI_COMM WORLD);
}
else |
MEI_Send (&next, 0, MPI_DCUBLE, 3j, NO_WORK_LEFT TAG,
MPI_COMM WORLD);
done ++;
¥
} /* end while loop */

return (0);

11/02/2008

39

11/02/2008

Master-Worker Pattern

e Master/worker pattern works well, if a master
has sufficient worker processes

* Master process can become a bottleneck if
tasks are too small and number of worker
processes is very large

Loop Parallelism Pattern

* In many scientific applications, the most compute intensive
part is organized in a large loop

* Splitting the loop execution onto different processes is a
straight forward parallelization, if the internal structure
(=dependencies) allow that

* Most applications of the loop parallelism pattern rely on
OpenMP

* Especially good when code cannot be massively restructured

#pragma omp parallel for
for(i = 0; i < 12; i++)
c[i] = A[i] + B[i];

40

Loop Parallelism: OpenMP Example

* Numerical integration

[#include <stdic.h>
#include “cmp.h>

int main (int argc, char **argv)
{

int i, num steps=100000;

double x, xn, pi, step, sum=0.0;

step = (b-a)/num_steps;

#pragma omp parallel for private (x,xn) reduction (+:sum)
for [i=0; i<num_steps; i++) ({
b4 i * step;
xn = (i+1l) * step;

sum = sum + 0.5*% (xn-—x)* (f (x)+£ (xn);

1

B
return (0); f =
} |
) CUISC 439/ - Paralel Comoueation P -

Fork/Join Pattern

Useful if the number of concurrent tasks varies
during execution

— Tasks are created dynamically (= forked)

— Tasks are terminated when done (= join with parents)

[TakBt] [TaskBz) [TaskBa] [Taskst]

[Task C|

| Task‘_[-]_1-_|_-_| Task D2_|-__|-fésk D3 |

11/02/2008

41

Fork/Join Pattern

Can be useful for divide and conquer

algorithms

Often used with OpenMP

— Can be used with MPI — 2 dynamic process
management as well

Creating and terminating processes/threads
has a significant overhead

Reduction Pattern

Concurrently executing
processes or threads
cooperate

A collection of data
items is reduced to a
single item by
repeatedly combining
them pairwise with a
binary operator

Exploit concurrency in
reduction operation

L2 | [ag | [2 | [am
D - -
1] 7 -

Serial reduction
(computing sum of a[0] through a[3])

11/02/2008

42

Three-Based Reduction

* nsteps for 2" units of execution
* When reduction operator is associative
* Especially attractive when only one task needs result

[am | [au | [aa | [am1 |
Ex

Recursive-Doubling Reduction

* nsteps for 2" units of execution
¢ [f all units of execution need the result of the reduction

| A[o_] | | A_[l] | | A[z_] | | A_[3] |
(}r______-_-a-.-::_::_‘e 69"::::“:::::" @

‘ A[D:1] ‘ ‘ A[[I.:ll ‘ ‘ A[2:3] ‘ ‘ A[Z':S] ‘
rf* - ""*(P

‘A[D:S] ‘ ‘A[D:S] ‘ ‘A[O:S] ‘ ‘A[u:a] ‘

11/02/2008

43

Advantages

» Better than tree-based approach with
broadcast

— Each units of execution has a copy of the reduced
value at the end of n steps

— In tree-based approach with broadcast to send the
result to all the processors:
* In recursive approach reduction takes n steps
¢ Broadcast cannot begin until reduction is complete
* Broadcast takes n steps (architecture dependent)
* O(n) vs. O(2n)

Summary:
Algorithm vs Supporting Space

e Patterns can be hierarchically composed so that a program
uses more than one pattern

Task Divide Geometric Recursive | Pipeline | Event-based
parallelism | and decomposition | data coordination
conguer
SPMD * kK% *kk * kKK *% * % * *%
Loop ok *k *dk
Parallelism
Master/ *okkk * k * * *okkk *
Warker
50_”‘-" * & dok kK * % ke ke -
oin

11/02/2008

44

