
In Proc. of 2nd Int. IEEE/Create-Net Conf. on Testbeds and Research Infrastructures for the Development of Networks and

Communities, Mar. 2006, Barcelona, Spain.

Abstract—Wireless networks in combination with image

sensors open up a multitude of previously unthinkable sensing

applications. Capable tools and testbeds for these wireless image

sensor networks can greatly accelerate development of complex,

yet efficient algorithms that meet application requirements. In this

paper, we introduce WiSNAP, a Matlab-based application

development platform intended for wireless image sensor

networks. It allows researchers and developers of such networks

to investigate, design, and evaluate algorithms and applications

using real target hardware. WiSNAP offers standardized and

easy-to-use Application Program Interfaces (APIs) to control

image sensors and wireless motes, which do not require detailed

knowledge of the target hardware. Nonetheless, its open system

architecture enables support of virtually any kind of sensor or

wireless mote. Application examples are presented to illustrate the

usage of WiSNAP as a powerful development tool.

I. INTRODUCTION

IRELESS sensor networks open up an entirely new field

for research and development. These types of networks

conceptually offer many exciting features including scalability,

self-configuration, self-healing, multicast routing, and easy

deployment [1]. For these reasons, they are well suited for a

wide range of applications in monitoring, control, surveillance,

and distributed sensing among many others [2]. In particular,

image sensor-based wireless networks are deemed

advantageous for many of these applications [3]. However,

specific applications still need to be defined, and their

implementation requires further work.

The availability of suitable tools can greatly aid

investigation and development of applications for wireless

sensor networks. Although several testbeds for wireless sensor

networks have been proposed [4]–[6], they often lack high-

level support for effective algorithm development or they are

tailored to a limited set of hardware. For this purpose, Matlab

[7] may serve as one appropriate rapid-prototyping tool. Its

high-level programming environment would allow for easy

design, implementation, and emulation of algorithms and

applications for wireless image sensor networks if interfaces to

Author affiliations: S. Hengstler, Avago Technologies, San Jose, CA

95131, USA, Email: stephan.hengstler@ieee.org; H. Aghajan, Wireless

Sensor Networks Lab, Department of Electrical Engineering, Stanford

University, Stanford, CA 94305, USA, Email: aghajan@stanford.edu.

wireless motes and image sensors exist. Such interfaces could

be realized as standardized libraries, which provide easy-to-use

functions to communicate with a variety of image sensors and

wireless motes. The use of such libraries unburdens its

potential user from having to deal with mote- or sensor-specific

interface details. A set of such standardized libraries could

form a Matlab-based framework for wireless image sensor

networks, in which algorithms and applications can be

developed in an efficient manner.

Wireless image sensor networks in particular often require a

great deal of algorithm work since robust and reliable

information extraction from image data typically results in

complex, fine-tuned image processing algorithms. Use of high-

level development testbeds can significantly accelerate cycle

time for development and verification of image-based sensor

algorithms. Following the design flow referred to, the

algorithm is first developed and evaluated in a high-level

development platform, which provides easier and more

comprehensive insight into algorithm performance than most

low-level target hardware tools. Once the desired performance

criteria are met, the algorithm can be ported to the final target

hardware without the need for further algorithm design. A

limitation of this design flow however, which one frequently

encounters, lies in the insufficient real-time capability of high-

level development environments. Nonetheless, equivalent-time

emulation can adequately model real-time performance of

many algorithms.

Conceptually, the approach outlined here to create a

development platform for wireless image sensor networks can

be applied to high-level simulation and analysis environments

other than Matlab. For example, Agilent VEE Pro [8] and

LabVIEW [9], which both provide extensive interface

capabilities to test and measurement equipment, represent

possible choices although they target primarily data acquisition

and analysis. In our research, we prefer the Matlab interactive,

high-level language environment mostly due to its powerful

features in algorithm development and graphical visualization.

The remainder of the paper is organized as follows. In

Section II, we describe the overall system architecture of our

proposed application development platform for wireless image

sensor networks. A more detailed explanation of its application

program interface layer and its device libraries follow in

Sections III and IV, respectively. Application examples for

WiSNAP: A Wireless Image Sensor Network

Application Platform

Stephan Hengstler and Hamid Aghajan

W

event detection and node localization are presented and

discussed in Section V. Finally, Section VI summarizes the

main aspects of the application development platform

introduced and outlines directions for further work.

II. SYSTEM ARCHITECTURE

For the reasons stated in the introduction, the Wireless

Image Sensor Network Application Platform (WiSNAP)

introduced in this paper provides a Matlab framework for

researching, developing, and investigating algorithms and

applications for wireless image sensor networks. WiSNAP can

be obtained from the web site of Stanford’s Wireless Sensor

Networks Lab [10]. Fig. 1 illustrates its program stack.

WiSNAP consists of two Application Program Interfaces

(APIs): an Image Sensor API and a Wireless Mote API. These

APIs provide the user for application development with simple,

easy-to-use functions to interface with image sensors and

wireless motes. Thus, there is no need to deal with hardware-

and device-specific details. These are taken care of by

underlying device libraries that execute the necessary

hardware-specific protocols and functions. The device libraries

can either be implemented as Matlab scripts or as Matlab

executables. Through functions provided by the operating

system, they gain low-level access to the computer’s hardware

including its peripheral interfaces.

The APIs and libraries are written to facilitate easy

extension to other image sensors and wireless motes or to

utilize some device-specific functionality. The current

implementation of WiSNAP includes device libraries for

Agilent’s ADCM-1670 camera module [11], Agilent’s ADNS-

3060 optical mouse sensor [12], and for Chipcon’s CC2420DB

IEEE 802.15.4 compliant demonstration board [13]. The

details of each device library are briefly described in Section

IV. At this point, WiSNAP does by no means represent a

complete or exhaustive implementation of available image

sensors or wireless motes. It rather intends to establish an

open-system development structure that can be easily extended

by other developers based on their particular application needs.

III. APPLICATION PROGRAM INTERFACES

As mentioned before, the role of the API layer is to provide

simple, hardware-independent functions to the application

layer for application and algorithm development. Currently

WiSNAP includes two APIs: the Image Sensor API enables

frame capturing from images sensors and the Wireless Mote

API provides access to wireless motes. Nonetheless, the open

architecture of the WiSNAP framework allows easy integration

of additional APIs. For example, a separate API for sensors

providing scalar outputs like temperature, pressure,

acceleration, or velocity can readily be added to the existing

application platform presented in this paper.

A. Image Sensor API

The purpose of the Image Sensor API lies in allowing its

user to capture frames from an attached image sensor. Hence

this API requires only a very limited function set, which is

summarized in Table I.

A user interested in capturing a number of frames from a

particular image sensor would first open a communications

session to the image sensor (‘open’), initialize it (‘init’),

capture as many frames as desired (‘frame’), and finally close

the communications session (‘close’).

To give an example, the syntax of the function ‘frame’ is

imager = image_sensor_api(device,‘frame’,handle),

where device denotes a string containing the device name of

the attached image sensor, handle is a device handle provided

by the function ‘open’, and imager returns the image array data

captured by the sensor.

B. Wireless Mote API

The Wireless Mote API presents an easy-to-use application

interface to wireless motes. Most importantly it provides

functions for mote initialization and medium access control

Fig. 1. Program stack of WiSNAP.

Serial Port

(RS-232)

Parallel Port

(IEEE-1284)
Hardware

Image

Sensor API

Wireless

Mote API

ADCM-

1670 Lib

ADNS-

3060 Lib

CC2420DB

Library

Application

Matlab
®

Operating System

ADCM-1670

Image Sensor

ADNS-3060

Image Sensor

CC2420DB

Wireless Mote

U

A

R

T

S

P

I

Image

Sensor API

Wireless

Mote API

Application
TABLE I

IMAGE SENSOR API FUNCTIONS

Function Description

‘open’ Opens a communications session with the image sensor.

‘init’ Initializes the image sensor.

‘frame’ Captures the current frame from the image sensor.

‘close’ Closes the communications session with the image sensor.

TABLE II

WIRELESS MOTE API FUNCTIONS

Function Description

‘open’ Opens a communications session with the wireless mote.

‘init’ Initializes the wireless mote’s channel and node address.

‘recv’ Receives a MAC packet from a wireless mote.

‘send’ Transmits a MAC packet to a wireless mote.

‘close’ Closes the communications session with the wireless mote.

(MAC) packet transmission to other motes and reception from

other motes in the network. Table II summarizes this API’s

function set.

A user wanting to send and receive packets within the

wireless sensor network would proceed as follows. Similar to

the steps described for the Image Sensor API, open a

communications session to the wireless mote (‘open’) and

initialize it with the desired channel number and node address

(‘init’) before sending (‘send’) and receiving (‘recv’) MAC

packets to and from other motes within the network.

For instance, the syntax of the function ‘send’ is

status = wireless_mote_api(device,'send',handle,TxMacPckt),

where device denotes a string containing the device name of

the attached wireless mote, handle is a device handle provided

by the function ‘open’, and status indicates whether the packet

transmission completed successfully. The structure TxMacPckt

contains at least the destination mote’s address and the packet

payload.

IV. DEVICE LIBRARIES

The device libraries reside below the API layer. For a

specific image sensor or wireless mote, a device library

provides a set of hardware-dependent functions, which match

the corresponding set of functions of the overlaid API. Thus,

the device library “knows” the interface and instruction set of

the device it is written for.

A. Agilent ADCM-1670 Image Sensor

Agilent’s ADCM-1670 camera module (Fig. 2) can be used

as a cost effective, medium resolution image sensor for image

sensing applications. Its low power dissipation of typically less

than 90 mW makes it especially appealing for energy-

constrained wireless sensor networks. The ADCM-1670

camera module offers a programmable resolution of up to

352x352 pixels, selectable output format between JPEG,

YCbCr, RGB, or grayscale only and built-in pan and zoom

capability. In addition, an internal frame buffer can store image

data up to 48 Kbytes.

Both sensor control and image output take place over a

simple Universal Asynchronous Receiver-Transmitter (UART)

interface. Utilizing a RS-232 level-shifter, this sensor can be

directly connected to a computer’s serial port. This allows the

ADCM-1670 device library to operate the image sensor by

transferring character data through an available serial port.

B. Agilent ADNS-3060 Image Sensor

Agilent’s ADNS-3060 optical mouse sensor is actually

intended for tracking applications in high-performance optical

computer mice. However, its programming capabilities allow

for reading out the raw image captured by the sensor’s pixel

array. Operated this way, the ADNS-3060 makes a suitable low

resolution image sensor for image sensor networks as it

provides fixed 30x30 pixel, 6-bit grayscale images. Its

extraordinary frame rates of up to almost 6500 frames per

second may especially appeal to applications that require target

or object detection of high acceleration or velocity.

The ADNS-3060 image sensor employs a four-wire Serial

Peripheral Interface (SPI) for programming and image

acquisition. The ADNS-3060 device library can directly

communicate with the sensor’s interface by bit-banging the SPI

protocol onto the computer’s IEEE-1284 parallel port. Our

WiSNAP implementation uses a Logitech MX310 Optical

Mouse [14], which has an ADNS-3060 optical mouse sensor

built in, but the SPI interface is intercepted by the computer’s

parallel port.

C. Chipcon CC2420DB Wireless Mote

The Chipcon CC2420DB IEEE 802.15.4 compliant

demonstration board (Fig. 3) pairs an Atmel 8-bit AVR

ATmega128L microcontroller [15] with a Chipcon CC2420

2.4 GHz IEEE 802.15.4 RF transceiver [16], which makes it a

powerful wireless mote. Furthermore, the demonstration board

comes with a micro-strip antenna, RS-232 and SPI interfaces,

and several general-purpose input-output pins. Hence it can

Fig. 2. Agilent’s ADCM-1670 camera module mounted on serial interface

board. Equipment courtesy of Agilent Technologies.

Fig. 3. Chipcon’s CC2420DB demonstration board. Photo and equipment

courtesy of Chipcon AS.

easily interface to a multitude of additional input or output

devices like sensors or indicators.

To readily interface to the CC2420DB device library, the

microcontroller executes a custom-designed terminal

application firmware that receives commands through one of

the on-board serial RS-232 ports. Commands supported by the

terminal application include microcontroller register

read/write, transceiver register read/write, transceiver

initialization, and IEEE 802.15.4 MAC packet reception and

transmission. In addition, the terminal application also accepts

commands in the form of MAC packets. Thus, the CC2420DB

device library can completely control the wireless mote either

through the serial interface or through IEEE 802.15.4 MAC

communication. Conceptually, one instance of WiSNAP may

therefore remotely configure and operate an entire network of

CC2420DB wireless motes.

D. Extension to Other Devices

It should be straightforward to develop device libraries for

virtually any sensor or wireless mote following the concept of

the library examples presented in this paper. In short,

additional device libraries first need to establish an interface

from the computer to the device of interest, and subsequently

implement the device-dependent functions required by the

overlaid API for this type of device.

V. APPLICATION EXAMPLES

The following two application examples demonstrate the use

of WiSNAP for algorithm and application implementation and

emulation. The key sections of the examples’ Matlab source

code are listed in Appendix A and B, respectively. The

application examples presented here are primarily intended to

introduce the potential of WiSNAP in the development of

wireless image sensor networks. More innovative, complex and

demanding applications can be easily envisioned and are

currently under development.

A. Event Detection

The first application example illustrates the usage of

WiSNAP’s image sensor API for visual event detection. More

specifically, the computer running WiSNAP has an Agilent

ADCM-1670 image sensor attached to a serial port. The sensor

looks at two digits of a numeric counter dial. The application

attempts to detect the event of a changing counter reading. Our

straightforward approach accomplishes this detection by

tracking the number of pixels that differ substantially between

successive images. Once this number exceeds a threshold

preset above the camera’s noise level, the event has occurred

and the algorithm can issue a notification for further action.

For instance, this case occurs in applications for automatic

meter reading or, more generally, in applications that require

event detection in an image sensor’s field of view.

A screenshot of this event detection example is presented in

Fig. 4. Subplots (a) and (b) show the meter reading before and

after the event detection along with subplot (c) graphing the

number of pixels differing from frame to frame and the preset

detection threshold. The detected event is clearly visible in the

latter plot at time step 25 frames.

B. Node Localization

In the second application example, we describe how our

development platform can be applied to a node localization

problem. The setup of the wireless image sensor networks is as

follows. A central node with attached image sensor looks at its

environment to detect the relative location of a neighboring

node. The central node consists of a CC2420DB wireless mote

and an ADCM-1670 camera module; each of them connected

to a computer’s serial port. The node neighbor operates as a

stand-alone CC2420DB mote, i.e. it has no connection to a

computer. To signal its location, it can toggle a red light-

Fig. 5. Screenshot of node localization example: (a) raw image, (b) difference

image, (c) received signal strength, and (d) relative node location.

(d) Relative Node Location (b) Difference Image

(a) Raw Image (c) Received Signal Strength

Horizontal Axis (unit length)

Time Step (frames)

V
e
rt
ic
a
l
A
x
is
 (
u
n
it
 l
e
n
g
th
)

S
ig
n
a
l
S
tr
e
n
g
th
 (
d
B
m
)

Fig. 4. Screenshot of event detection example: (a) image before event, (b)

image after event, and (c) event detection metric with detection threshold.

(a) Image before Event (b) Image after Event

(c) Event Detection Metric

Time Step (frames)

N
u
m
b
e
r
o
f
D
if
fe
ri
n
g
 P
ix
e
ls

Detection Threshold

emitting diode (LED) upon remote request from the central

node. Assuming the adjacent node is within communication

range and field of view of the central node, this network

configuration enables the central WiSNAP node to determine

distance and direction of the node neighbor. The central node

knows the fixed transmit power and can calculate the receive

power from the received signal strength indicator (RSSI)

embedded in received MAC packets. Hence its distance to the

neighboring node can be approximated from the free-space loss

model. Note that this represents an idealized, but convenient

assumption; in fact, inferring distance from RSSI

measurements is highly involved in indoor and even outdoor

network deployments. To determine the direction of the

neighboring node, the central node extracts the relative angle

of the continuously blinking LED from its captured images

according to the pinhole camera model. The position of this

LED within the camera’s image array can be easily determined

through frame differencing of consecutive frames. Lastly, the

central node estimates the neighboring node’s two-dimensional

location relative to its own as the intersection of the circle

specified by the distance and the secant defined by the relative

angle of the neighboring node.

Fig. 5 gives a screenshot of this node localization example.

Subplots (a) and (b) respectively display the raw and the

difference image, which clearly indicate the image coordinates

of the neighboring node’s LED position. Furthermore, subplot

(c) shows the received signal strength over time. Finally, the

estimated topology is visualized in subplot (d) with the central

node in the center and the neighboring node at the intersection

of the aforementioned circle and secant.

Obviously, it is straightforward to extend this example

application towards a network deployment of more than just

two nodes, in which the nodes discover their neighbors within

radio and visual range and possibly even work out the global

network topology map. Such topology information can assist

network deployment and even operation to determine its

coverage area for instance. As another example, geographic

routing requires knowledge of node positions, which could be

obtained following the approach described here.

VI. CONCLUSION

In this paper, we have introduced WiSNAP, a novel,

Matlab-based application platform for wireless image sensor

networks. Its standardized application program interface layer

and underlying device libraries facilitate high-level algorithm

and application development on real image sensor and wireless

mote hardware devices. Furthermore, WiSNAP’s open system

architecture can readily accommodate virtually any type of

sensor or mote device. The two application examples

presented, event detection and node localization, demonstrate

the easy deployment of WiSNAP for efficient application

development and emulation of wireless image sensor networks.

Future work on WiSNAP will focus on implementing

applications in larger deployments of wireless sensor networks

and on extending the device libraries to additional image

sensors and wireless motes.

APPENDIX

A. Source Code of Event Detection

% open communications session
shandle = image_sensor_api(SENSOR,'open',SPORT);
% initialize image sensor
status = image_sensor_api(SENSOR,'init',shandle);
% initialize frame counter
frame = 1;
% initialize memory ping-pong
pong = 0;

% repeat until break
while(1)
 % capture current frame
 imager = image_sensor_api(SENSOR,'frame',shandle);
 % store grayscale image in correlation memory
 cmem(:,:,pong+1) = sum(imager,3);

 % perform event detection task
 if (frame > 1)
 % compute difference image
 cmem_dif = abs(cmem(:,:,not(pong)+1) ...
 - cmem(:,:,pong+1));
 % determine number of pixels above threshold
 N_E(frame) = sum(sum(cmem_dif > Th));
 end

 % increment frame counter
 frame = frame + 1;
 % ping-pong correlation memories
 pong = not(pong);
end

% close communications session
status = image_sensor_api(SENSOR,'close',shandle);

B. Source Code of Node Localization

% open communications sessions
mhandle = wireless_mote_api(MOTE,'open',MPORT);
shandle = image_sensor_api(SENSOR,'open',SPORT);
% initialize wirless mote
status = ...
 wireless_mote_api(MOTE,'init',mhandle,PhyInfo);
% initialize image sensor
status = image_sensor_api(SENSOR,'init',shandle);
% initialize frame counter
frame = 1;
% initialize memory ping-pong
pong = 0;

% repeat until break
while(1)
 % capture current frame
 imager = image_sensor_api(SENSOR,'frame',shandle);
 % remotely toggle neighboring node's location LED
 TxMacPckt.pPayload = sprintf('t\n');
 TxMacPckt.length = length(TxMacPckt.pPayload);
 % send transmit packet
 status = ...
 wireless_mote_api(MOTE,'send',mhandle,TxMacPckt)
 % check for received packet
 RxMacPckt = ...
 wireless_mote_api(MOTE,'recv',mhandle);
 % determine received signal strength indicator

 rssi(frame) = RxMacPckt.rssi;
 % calculate neighboring node's distance
 distance(frame) = sqrt(1/10^(rssi(frame)/10+4.5));
 % store green image array in correlation memory
 cmem(:,:,pong+1) = flipud(imagerimager(:,:,2));

 % perform node localization task
 if (frame > 1)
 % compute difference image
 cmem_dif = abs(cmem(:,:,not(pong)+1) ...
 - cmem(:,:,pong+1));
 % determine neighboring node's LED position
 threshold = max(mean(mean(cmem_dif)) ...
 + (std(std(cmem_dif))), ...
 0.5*max(max(cmem_dif)));
 [x,y] = find(cmem_dif > threshold);
 d_i(frame) = mean(y) + j*mean(x);
 % compute neighboring node's angular orientation
 D = size(imager,1);
 phi_i(frame) = -atan(2*(real(d_i(frame)) ...
 - D/2)/D*tan(psi/2));
 end

 % increment frame counter
 frame = frame + 1;
 % ping-pong correlation memories
 pong = not(pong);
end

% close communications sessions
status = image_sensor_api(SENSOR,'close',shandle);
status = wireless_mote_api(MOTE,'close',mhandle);

ACKNOWLEDGMENT

The authors wish to thank the students of the Wireless

Sensor Networks Laboratory (WSNL) at Stanford University

for testing and debugging WiSNAP. The authors also would

like to credit Agilent Technologies—in particular Bob Black,

Pete Mahowald, and Jack Wenstrand—and Chipcon AS for

providing hardware samples and technical support.

REFERENCES

[1] I. F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci, “A

survey on sensor networks,” IEEE Communications Magazine, vol. 40,

no. 8, pp. 102–114, August 2002.

[2] D. Culler, D. Estrin, and M. Srivastava, “Guest editors' introduction:

Overview of sensor networks,” IEEE Computer Magazine, vol. 37, no.

8, pp. 41–49, August 2004.

[3] P. V. Pahalawatta, T. N. Pappas, and A. K. Katsaggelos, “Optimal

sensor selection for video-based target tracking in a wireless sensor

network,” in Proc. International Conference on Image Processing (ICIP

’04) , October 2004, vol. 5, pp. 3073–3076.

[4] J. Elson, L. Girod, and D. Estrin, “EmStar: Development with high

system visibility,” IEEE Wireless Communications Magazine, vol. 11,

no. 6, pp. 41–49, December 2004.

[5] G. Werner-Allen, P. Swieskowski, and M. Welsh, “MoteLab: A wireless

sensor network testbed,” in Proc. 4th International Conference on

Information Processing in Sensor Networks (IPSN '05), April 2005, pp.

483–488.

[6] E. Welsh, W. Fish, and J. P. Frantz, “GNOMES: A testbed for low

power heterogeneous wireless sensor networks,” in Proc. International

Symposium on Circuits and Systems, May 2003, vol. 4, pp. IV-836–VI-

839.

[7] The MathWorks, “MATLAB® 7 - The Language of Technical

Computing,” Product Information. Available:

https://tagteamdbserver.mathworks.com/ttserverroot/Download/18842_

ML_91199v00.pdf

[8] Agilent Technologies, “Agilent VEE Pro 7.5,” Product Information,

2005. Available: http://www.agilent.com/find/vee

[9] National Instruments, “LabVIEWTM 8,” Product Information, 2005.

Available: http://www.ni.com/labview/

[10] Wireless Sensor Networks Laboratory, Stanford University, “WiSNAP

— Wireless Image Sensor Network Application Platform,” Web Site.

Available: http://wsnl.stanford.edu/projects.php

[11] Agilent Technologies, “Agilent ADCM-1670 CIF CMOS Camera

Module,” Technical Specification, Preliminary Draft 0.10, August 2002.

[12] Agilent Technologies, “Agilent ADNS-3060 High-Performance Optical

Mouse Sensor,” Data Sheet, October 2004. Available:

http://cp.literature.agilent.com/litweb/pdf/5989-3421EN.pdf

[13] Chipcon AS, “SmartRF® CC2420DBK Demonstration Board Kit,” User

Manual, Revision 1.3, November 2004. Available:

http://www.chipcon.com/files/CC2420DBK_User_Manual_1_3.pdf

[14] Logitech, “Logitech® MXTM310 Optical Mouse,” Product Information,

2005. Available:

http://www.logitech.com/index.cfm/products/details/US/EN,CRID=2142

,CONTENTID=6952

[15] Atmel Corporation, “ATmega128(L) 8-bit AVR® Microcontroller,” Data

Sheet, Revision 2467M-AVR-11/04, November 2004. Available:

http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

[16] Chipcon AS, “SmartRF® CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-

ready RF Transceiver,” Preliminary Data Sheet, Revision 1.2, June

2004. Available:

http://www.chipcon.com/files/CC2420_Data_Sheet_1_2.pdf

