
DESIGNING LOW-POWER WIRELESS SENSOR NETWORKS

Joseph Wenninger and Javier Moreno and Jan Haase and Christoph Grimm

Institute of Computer Technology
Vienna University of Technology

Vienna, Austria
Email: {wenninger|moreno|haase|grimm}@ict.tuwien.ac.at

ABSTRACT

In the ever growing area of wireless sensor networks it is very
important to estimate the energy usage of sensor nodes, espe-
cially if they should be powered by a battery. Often the ac-
cumulated energy consumption of a message delivery across
the whole network is of interest too, in order to estimate bat-
tery life times, since message forwarding needs energy too.
For rapid development cycles, fast but accurate simulations
are needed. The approach presented in this paper uses trans-
action level modeling (TLM) to speedup simulation of wire-
less communication systems. The fundamental idea is that
air communication can be modeled similarly to a multi mas-
ter bus. Nodes are simulated by employing a multi-threaded
instruction set simulator (ISS) and models of the peripheral
components. The energy usage for sensing, receiving and
transmitting can be estimated in the simulation and this infor-
mation can then be attached to TLM messages for accumu-
lation related to messages. The example use case throughout
this paper is a tyre pressure monitoring system. The modeling
and simulation is done in SystemC. 1

1. INTRODUCTION

Wireless networks become more and more important these
days. On the one hand, they start replacing cable bound net-
work infrastructures within buildings, because the effort of
laying cables is reduced. There for wireless networks are
cheaper in a sense of reduced man hours and less collateral
damage in existing (old) buildings, while setting up the net-
work. On the other hand wireless networks, especially wire-
less sensor networks (WSNs) conquer additional areas of our
every day lives. Areas where cable bound communication
would not be feasible at all can be connected now. Applica-
tions for cargo container tracking, measurement of arbitrary
environmental data (eg. CO2 density, N density, tempera-
ture, pressure, moistness and so on) come to mind. Cargo

1This work is conducted as part of the Sensor Network Optimization by
Power Simulation (SNOPS) project which is funded by the Austrian govern-
ment via FIT-IT (grant number 815069/13511) within the European ITEA2
project GEODES (grant number 07013).

tracking has to cope with the huge distances the tracked items
are moved. Environmental data could have the advantage of
being collected distributed in public space areas. Another
kind of application for WSNs is ”realtime” data acquisition
from sensors, being attached to fast revolving surfaces. The
example shown throughout this work to explain the various
design decisions and the results is an in-care WSN a so called
tyre pressure monitoring system (TPMS). Thereby the sensor
could be attached either to the valve or to the rim or could
even be embedded into the tyre rubber itself. The most chal-
lenging factors hereby are that the sensor should work as long
as the tyre is mechanically functional. This means the sen-
sor and especially its battery has to cope with big tempera-
ture and pressure changes, which influence the lifetime of the
battery and thus of the whole sensor system. To enhance ro-
bustness and because of technological feasibility the battery is
permanently attached to the sensor and molded into the same
casing, therefore it cannot be exchanged during the lifetime
of the tyre/sensor set. The battery also empties by the value
of the current and the time the current has to be provided.
Many other things have to be considered too. For evaluation
and design purposes concerning life-time, feasibility, relia-
bility, security and robustness simulation is a key factor for
time-to-market reduction and system/module cost efficiency.
The scenario is shortly explained in Sect. 1.1. The general
structure of the simulation model is shown in Sect. 1.2. The
detailed explanations of the models and the approach taken to
simulate a single node is shown in Sect. 3, whereas Sect. 4
explains the overall network simulation strategies. The paper
ends with a conclusion and outlook (Sect. 5).

The described methods and the developed libraries and
tools will be a major part of the SYCYPHOS framework,
which is currently under development. The SYCYPHOS
framework will provide a holistic way to design cyber physi-
cal systems (CPS). SYCYPHOS is planned to allow a system
level design and then refinements down to circuit level within
one framework with support for multi level simulations. In
addition to power profiling the framework will also contain
components for signal processing and estimations of other
quantities, like costs, areas, volumes, etc. . Accuracy and

functional model

refinement
accuracy, robustness

refinement
reliability

refinement
power management

Refined
functional model

estinmation, analysis of
accuracy and robustness

estimation and analysis
of power consumption

architecture model
(HW+SW)

profiling through simulation

HW/SW co-design

CP
S

Le
ve

l
Em

be
dd

ed
 S

ys
te

m

Le
ve

l

Fig. 1. In this figure the SYCYPHOS design flow of a cyber
physical system (CPS) is shown

reliability are another important topic of SYCYPHOS, which
will be covered by range based arithmetic to estimate the
impact of parameter variations to all types for system perfor-
mance. The power tracking (power profiling), as described
in this paper, attaches to the system level design. Therefore,
at least rough, results can be obtained already in first design
phase of a top-down design approach. The results will be
more and more accurate the more the models are being de-
fined on the way to the final circuit level models, which are
used for synthesis in the end. In Fig. 1 the design flow, if the
SYCYPHOS framework is used, is shown.

1.1. TPMS scenario

As already shortly stated within the introduction, the example
network being used throughout this paper is an in car wire-
less sensor network. For the ease of explanation a single hop
network is being considered only. Each car has four sensor
nodes and one central unit or sink node. The simulated envi-
ronment contains three cars, which perform a take over ma-
neuver. Each sensor node can be woken up by the central unit
which queries information about the pressure, after the node
has done the measurement and has sent the date back it goes
back to sleep mode. The central unit can request retransmits
in case of failed data delivery. The node itself measures the
pressure also from time to time and if a severe loss is detected
it starts transmitting by itself. In the emergency case it sends
the message three times to increase the probability to be rec-
ognized by the central node. The example scenario is shown
in Fig. 2. As can be seen by the circles depicted the pass-
ing cars can influence each other mutually, so the simulated

C
U C
U

C
U

C2 C1

C3

Bus-connection RF-connection
CU .. control unit

Fig. 2. Simulation scenario, consisting of two cars (C1 and
C2) driving in a goose line and a third car C3 doing a take over
maneuver. Communications from sensor nodes of nearby ve-
hicles might overlap and thereby conflict, as shown here (see
the dashed circles): Car C2’s CU receives not only messages
from its own tyres but also from C3 and C1.

scenario also contains noise from external sources.

1.2. Simulation model

The main simulation consists of two levels of complexity. The
simple level is the central unit, which is only implemented at
a functional level, without any power profiling, since it is con-
sidered to be connected by cable to the car battery and there-
fore being irrelevant regarding energy estimations. The sen-
sor nodes itself are modeled at a higher degree of complexity.
One sensor node consists of a capacity based pressure sensor,
an micro controller and a transmitter. The micro controller is
simulated by usage of an instruction set simulator (ISS) and
contains power profiling information. The transceiver simu-
lation is divided into two parts reflecting also the real world
implementation. The one part is the low frequency receiver
responsible for detecting query calls. This one is simulated
in an abstract way, functional, without real influence to power
and the high frequency (HF) transmitter part, which is respon-
sible for sending the payload. The HF part is modeled with
full power profiling. The pressure sensor is also modeled as
a power consuming device. For in-detail information on how
the components are connected and their interaction see Sect. 3

The model of the transmission channel is on an abstract
level, done with transaction level modeling (TLM), which
means the modulation itself is not considered, only general
factors like distance vectors, attenuation, noise, signal to
noise ratios (SNR) and bit errors, which highly improves
simulation speed but still allows the exploration of various
scenarios. For in-detail modeling information see Sect. 4.

2. RELATED WORK

Works tightly related to the topics considered within this pa-
per are SystemC, which can be found at [1] and the trans-

action level modeling (TLM) approach based on this core
framework, the OSCI TLM2.0 specification, which are ex-
plained in [2–4]. Another work needed to understand the
foundation of TLM based simulation is found within an appli-
cation node for creating a loosely timed system on chip (SoC)
model with TLM 2.0, which can be found in [5].

Related to the network level simulation, another approach
of doing a WSN simulation is taken in [6], which is not based
on TLM, but on the analog/mixed signal extension for Sys-
temC. Other relevant frameworks that might not be left out if
it is about simulation of networks, although they are not Sys-
temC based, are NS-2, OMNet++ and PAWiS. NS-2 [7] is a
complete network simulator on its own, that can be scripted
via TCL (tool command language). Another network simu-
lator is OMNeT++ [8], which has been used in the PAWiS
[9, 10] project. Related to the concepts used in the this paper,
PAWiS is the ancestor. Informations about the OMNeT++
based air object/communication can be found in [9, 10].

[11] uses a finite automaton to do power aware simula-
tion of a sensor node. Another work, spanning the gap from
network to node level simulation is [12].

Works related to instruction set simulation are shown in
[13–17]. [13] simulates an ARM7 and a SPARC micropro-
cessor. Some parts are statically compiled, others are dynam-
ically handled.

3. IN-NODE SIMULATION AND POWER TRACKING

The core of the in node simulation is the instruction set simu-
lator (ISS). Three versions have been developed during the
project time, two have been developed by students as part
of their master theses together with one of the project part-
ners. Those two simulators are for the intelligent state ma-
chine (iSM) by Infineon, one is precompiling, the other one
is an interpreting simulator. Based on that work a precom-
piling ISS for the ATtiny88 microcontroller from Atmel has
been created [18]. The Atmel controller has the advantage,
that it is publicly available and is used within automotive de-
signs. The ISS is implemented in plain C++ and is wrapped
with sensor node specific bindings for the used proprietary -
SystemC based - simulation framework, or for connectivity
with plain SystemC. The second approach has the advantage
that only two time lines have to be synchronized, instead of
three (ISS,framework,SystemC). Additionally to the synchro-
nization of time lines, the bindings help to determine the state
of the node (receiving, sensing, generally running, building
packets, transmitting and sleeping, or additionally retransmis-
sion and critical pressure status transmissions). The power
consumption of the application code execution is accumu-
lated by counting the instruction cycles and logging the av-
erage current needed while execution of each cycle. This
way a value set of current over time is generated, showing
the difference between sleeping and working time. During
sleeping periods of the controller a little bit of variants of the
standby current is considered. The ISS of each node runs in

SLEEP SENSE RUN TX...

KEEP ALIVE

PULL ENV

PACKET

POWER PR

SYNC NODE

ROUTING

A/D CONV

READOUT

SYNC NET

TRANSMIT

...

...

...

...
node states

events relevant
to sync

frequency
of syncs

Fig. 3. Adaptive time and energy usage synchronization
based on the node state

an own thread, to allow decoupling from the main simulation,
this way a speed up of the simulation is achieved, since it
can run in parallel until a synchronization point is reached.
Synchronization points are created every hundred (or even
more) clock cycles during sleep periods of the node or at each
basic block boundary during running times. The instruction
count between synchronizations is arbitrarily chosen, in that
way, that during sleeping periods the standby current does not
vary much, so the whole energy during sleeping can be esti-
mated by a simple product. The window must not be too large
though, because the larger the interval during sleeps the larger
are the delays of incoming external interrupts. It is not a big
problem to slightly delay the interrupts during sleeping peri-
ods, but it increases simulation performance a lot, since nodes
are sleeping most of the time anyway. The larger synchro-
nization window during sleeping periods reduces the number
of thread synchronizations, which speeds up the overall sim-
ulation. The trade-off between simulation performance and
accuracy is valid, since for long simulation runs the slight de-
lays can be neglected. Figure 3 shows the simulation behav-
ior. While sensing the tyre pressure additional to the micro
controller an increased energy consumption within the sensor
part adds to the node’s power consumption. After the trans-
mission package has been created the transmitter adds to the
energy usage. This energy consumption is tracked together
with the location of the node. This is especially needed for
visualizing the scenario and is needed for the overall network
simulation, too, see Sect. 4. All components building together
a node, are shown in Fig. 4. The graphical user interface for
the visualization is explained in [19].

The multi threaded approach, in addition to the precompi-
lation, allowed a simulation of up to 140 nodes (i7 Quad-Core
860 at 2.80GHz), before reaching real time simulation speed.
This means, that the simulation for the chosen scenario al-
ways runs much faster than real time, since this scenario
contains only a few nodes. For instance three simulated cars
have a count of 15 nodes (12 sensor nodes and 3 control

ROM

Timing
devices

Micro-
controller

Power
supply

System
bus

SensorsRAM Wireless
interface

Interrupt-
controller

Fig. 4. This figure shows all (simulated) components of a
node. In the described simulation the energy consumption of
the RAM and ROM are accounted to the instruction execution
within the ISS. Aging of the battery is only considered in a
limited way. As the maximum of the energy it can provide the
value is taken, that represents the specified maximum energy
after ten years of shelf time. The nodes accumulated power
consumption may not reach that limit earlier.

unit (sink) nodes) The simulation time increases somewhat
exponentially with the number of nodes, since many nodes
mean much more synchronization effort and much more disk
thrashing due to writing of the log data. Precompiling ISS
means, that the machine code for the AVR controller (which
has been compiled with the AVR studio) is taken, analyzed
and parsed. After parsing of the machine code the machine
instructions are translated into C++ macros and function
calls, with addition of synchronization primitives at basic
block boundaries for the simulation. The steps performed can
be seen in Fig. 5. This C++ code is natively compiled for
the machine running the simulation, in this case for x86 or
x86 64 architectures. This re- or precompilation is done to
allow the evaluation of the real system firmware code on the
one hand and to allow fast simulation runs on the oder hand,
since code native to machine which runs the simulation is
executed much faster than interpreted foreign machine code.
This native code is then linked either dynamically or stati-
cally to the executable specification. This increases the speed
of the simulation immensely. If jumps to addresses occur,
which can not be determined during analyzing, a switch to
the interpreting simulator is done. If the interpreter reaches
an address again during execution, which is well known, a
switch back to the precompiled version is done, to get the
higher speed gain again.

4. NETWORK SIMULATION AND POWER
TRACKING

The base for the chosen approach is the fundamental idea in
the similarity of communication channels. A bus system con-

File Analysis

ReaderComponent
Binary

ReaderComponent
VHDL

ReaderComponent
???

ReaderComponent
???

Additional
ReaderComponents

Procedural
Analysis

Disassembly

Basic Block
Analysis

Control Flow
Analysis

Symbol
Table

EntryPoints
Heuristic

Program Analysis for Retranslation into C/C++

Fig. 5. This image shows the steps performed while prepar-
ing the machine code of the simulated target architecture for
recompilation to native simulator code.

nects various address and data lines of different modules over
a shared medium, the bus. For WSN nodes the abstract air,
which is given by the environment as a communication chan-
nel, connects the various transceivers to each other. The com-
munication over the air can be abstracted, with some limita-
tions, into the communication pattern of a serial bus. This
analogy is shown in Fig. 6. Things that have to be considered
over a ”normal” bus, are that a message from a source A to a
sink Z does not have to be a one-hop direct communication.
Depending on the geometry of the system, a message might
have to be relayed by intermediate nodes. With multi-hop
routing each node receiving the message, because it is within
reach, may forward the message, therefor a message duplica-
tion could occur. The destination node or intermediate nodes
might receive the initial message either directly or from one or
more intermediate nodes. The other thing to consider is, that a
given node might be able to receive a given message, because
the transmission’s energy level is high enough, but noise, gen-
erated by other concurrent messages within the environment
or other unrelated transmitters might inhibit successful recep-
tion.

4.1. Communication and tracing model

The problem of multi-hop or duplicated messages (one mes-
sage that takes more than one path in parallel) is solved by in-
troducing split transactions. The power consumption of all the
split parts are accumulated, since every transaction ”branch”
adds to the overall power consumption within the system for
the transmission from A to Z.

The fact that some nodes might not receive messages due
to noise (in the real world), is modeled by adding bit error
rates at the position nodes, based on the power of the signal
to be received and the powers of other messages being con-

SoC WSN

Environment

SN1

SN3 SN4

SN2Master1

Slave1 Slave2

Master2

Bus

SN1

SN3 SN4

SN2Initiator1

Target1 Target2

Initiator2

TLM-Interconnect Environment model

pin wiggling,

signals

modulated

waves,

signals

transactions,

method calls

data packets,

method calls

Abstraction

Fig. 6. Similarity between TLM based memory mapped sys-
tem buses and air communication within wireless sensor net-
works.

Fig. 7. Concept how energy and routing information is at-
tached via TLM generic payload extensions to the simulated
transmission payload

currently transmitted through the air. It is some high level
signal to noise ratio (SNR), since no signal wave forms are
considered but just the average power levels based on pack-
ets. The transmission is modeled as packet based information
exchange.

The accumulated power consumption and the information
about transaction splitting and the transmission / noise power
levels are attached to the simulated payload via TLM frame-
work generic payload extensions. Figure 7 shows the con-
cept of the information attachment. As a conclusion of this
part, the overall message, until it reaches the end point or gets
lost within the air model/interconnect is accounted within one

transaction. The amount of power, which is accumulated at
each step, is retrieved from the energy consumption collec-
tion of the single nodes. Some nodes might by modeled at
an abstract level, for instance always using a fixed amount of
energy, while most of the nodes are being simulated at full de-
tail level as described in Sect. 3. More and different aspects
on this topic are explained in [20, 21]. In [19, 22] it is shown
how to integrate the developed abstraction with proprietary
simulation environments.

5. CONCLUSION AND OUTLOOK

The approach taken has proven to be very efficient concern-
ing simulation time and ease of use. It is planned to use the
SystemC only framework within future projects and there are
already research projects which are using the intermediate re-
sults of the framework creation. Features which would be
interesting to implement in the future would be the integra-
tion with SystemC AMS to easily track power consumption
of analog and mixed signal parts. Production technologies
could have a large impact on those analog parts, therefor tech-
nology data has to be incorporated to lead to meaningful re-
sults. Adding this while keeping high level simulation and
high simulation speed are still a big challenge to solve. The
biggest challenge will be to provide a common, easy to use
API for adding power profiling and estimation features to all
design levels and integration with range based arithmetic to
be able to estimate how parameter tolerances have an impact
on the power consumption. Finally, SYCYPHOS will provide
all of that.

6. REFERENCES

[1] Open SystemC Initiative, SystemCTM,
http://www.systemc.org.

[2] Open SystemC Initiative, OSCI TLM2.0,
http://www.systemc.org.

[3] John Aynsley, “OSCI TLM2 User Manual,” Tech. Rep.,
Open SystemC Initiative, 2008.

[4] John Aynsley, “OSCI TLM-2.0 Language Reference
Manual,” Tech. Rep., Open SystemC Initiative, 2009.

[5] J. Bennett, “Building a Loosely Timed SoC Model with
OSCI TLM 2.0,” june 2008, Embecosm Application
Note 1, Issue 1.

[6] Michel Vasilevski, Francois Pecheux, Nicolas Beilleau,
Hassan Aboushady, and Karsten Einwich, “Modeling
and refining heterogeneous systems with systemc-ams:
Application to WSN,” Design, Automation and Test in
Europe Conference and Exhibition, vol. 0, pp. 134–139,
2008.

[7] S. McCanne and S. Floyd, “NS Network Simulator -
version 2,” Website, 1996, http://www.isi.edu/nsnam/ns.

[8] Andras Varga, OMNeT++ Discrete Event Simulation
Sytem User Manual, 29. Mar. 2005.

[9] D. Weber, J. Glaser, and S. Mahlknecht, “Discrete event
simulation framework for power aware wireless sensor
networks,” June 2007, vol. 1, pp. 335–340.

[10] PAWiS, “PAWiS Simulation Framework,” 2009,
http://pawis.sourceforge.net/.

[11] Animesh R. Tayal, N. V. Choudhary, and Madhuri A.
Tayal, “Simulation of sensor nodes for energy con-
ception in wireless sensor networks using finite au-
tomata,” in ICAC3 ’09: Proceedings of the International
Conference on Advances in Computing, Communication
and Control, New York, NY, USA, 2009, pp. 685–688,
ACM.

[12] Johann Glaser, Daniel Weber, Sajjad A. Madani,
and Stefan Mahlknecht, “Power aware simulation
framework for wireless sensor networks and nodes,”
EURASIP Journal Embedded Syst., vol. 2008, pp. 1–16,
2008.

[13] Mehrdad Reshadi, Prabhat Mishra, and Nikil Dutt,
“Hybrid-compiled simulation: An efficient technique
for instruction-set architecture simulation,” ACM Trans.
Embed. Comput. Syst., vol. 8, no. 3, pp. 1–27, 2009.

[14] Todd Austin, Eric Larson, and Dan Ernst, “Sim-
plescalar: An infrastructure for computer system mod-
eling,” Computer, vol. 35, no. 2, pp. 59–67, 2002.

[15] Emmett Witchel and Mendel Rosenblum, “Embra: fast
and flexible machine simulation,” in SIGMETRICS
’96: Proceedings of the 1996 ACM SIGMETRICS in-
ternational conference on Measurement and modeling
of computer systems, New York, NY, USA, 1996, pp.
68–79, ACM.

[16] Bob Cmelik and David Keppel, “Shade: a fast
instruction-set simulator for execution profiling,” in
SIGMETRICS ’94: Proceedings of the 1994 ACM SIG-
METRICS conference on Measurement and modeling of
computer systems, New York, NY, USA, 1994, pp. 128–
137, ACM.

[17] Stefan Pees, Andreas Hoffmann, and Heinrich Meyr,
“Retargeting of compiled simulators for digital signal
processors using a machine description language,” in
DATE ’00: Proceedings of the conference on Design,
automation and test in Europe, New York, NY, USA,
2000, pp. 669–673, ACM.

[18] Jan Haase, Mario Lang, and Christoph Grimm, “Mixed-
Level Simulation of Wireless Sensor Networks,” in Pro-
ceedings of Forum of Design Languages (FDL) 2010,
2010.

[19] Joseph Wenninger, Javier Moreno, and Jan Haase,
“Power optimization of wireless sensor networks at de-
sign time,” in proceedings of IEEE AFRICON 2011,
Zambia, Livingstone, to be published, 2011.

[20] Javier Moreno, Jan Haase, and Christoph Grimm, “En-
ergy Consumption Estimation and Profiling in Wireless
Sensor Networks,” in ARCS’10 Workshop Proceedings,
2010, pp. 259 – 264.

[21] J. Haase, M. Damm, J. Glaser, J. Moreno, and
C. Grimm, “Systemc-based power simulation of wire-
less sensor networks,” in Proceedings of the Forum of
Design Languages (FDL), 2009.

[22] Joseph Wenninger, Markus Damm, Javier Moreno, Jan
Haase, and Christoph Grimm, “Multilevel Sensor
Node Simulation within a TLM-like Network Simula-
tion Framework,” in ARCS’10 Workshop Proceedings,
2010, pp. 211 – 216.

