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Channel Capacity

Channel Capacity
The communication between A and B is a consequence of a physical act
performed by A to induce the desired state in B.  This transfer of information is
subject to noise. 

The communication is successful if the transmitter A and the receiver B agree on 
what was sent. 

In this part we define the channel capacity as the logarithm of the number of 
distinguishable signals that can be sent through the channel.

Source symbols from some finite alphabet are mapped into some sequence of 
channel symbols, which then produces the output sequence of the channel. The 
output sequence is random but has a distribution that depends on the input 
sequence. 



2

Channel Capacity
Each of the possible input sequences induces a probability distribution on the 
output sequences.

We show that we can choose a “nonconfusable” subset of input sequences so 
that with high probability there is only one highly likely input that could have
caused the particular output.

We can transmit a message with very low probability of error and reconstruct the 
source message at the output. The maximum rate at which this can be done is
called the capacity of the channel.

Discrete Channel
Definition We define a discrete channel to be a system consisting of an input 
alphabet X and output alphabet Y and a probability transition matrix p(y|x) that
expresses the probability of observing the output symbol y given that we send the 
symbol x.

The channel is said to be memoryless if the probability distribution of the output 
depends only on the input at that time and is conditionally independent of 
previous channel inputs or outputs.



3

Information Channel Capacity
Definition We define the “information” channel capacity of a discrete memoryless
channel as

where the maximum is taken over all possible input distributions p(x).

This means: the capacity is the maximum entropy of Y, reduced by the 
contribution of information given by Y. 

We shall soon give an operational definition of channel capacity as the highest
rate in bits per channel use at which information can be sent with arbitrarily low
probability of error.

Shannon’s second theorem establishes that the information channel capacity is
equal to the operational channel capacity.
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Data Compression and Transmission

There is a duality between the problems of data compression and data
transmission. 

During compression, we remove all the redundancy in the data to form the most
compressed version possible.

During data transmission, we add redundancy in a controlled fashion to combat 
errors in the channel.
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Examples of Channel Capacity
Noiseless binary channel. Suppose that we have a channel whose the binary
input is reproduced exactly at the output.

In this case, any transmitted bit is received without error. Hence, one
error-free bit can be transmitted per use of the channel, and the capacity is 1 bit. 

We can also calculate the information capacity C = max I (X; Y) = 1 bit, which is
achieved by using p(x) = ( 1/2, 1/2).

Examples of Channel Capacity
Noisy Channel with Nonoverlapping Outputs. This channel has two possible
outputs corresponding to each of the two inputs.

Even though the output of the channel is a random consequence of the
input, the input can be determined from the output, and hence every transmitted
bit can be recovered without error. 

The capacity of this channel is also 1 bit per transmission.
We can also calculate the information capacity
C = max I (X; Y) = 1 bit, 
which is achieved by using
p(x) = ( 1/2, 1/2).
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Example: Noisy Typewriter
Noisy typewriter. In this case the channel input is either received unchanged at 
the output with probability 1/2 or is transformed into the next letter with
probability 1/2

If the input has 26 symbols and we use every alternate input symbol, we can 
transmit one of 13 symbols without error with each transmission. Hence, the 
capacity of this channel is log 13 bits per transmission. 

We can also calculate the information capacity:

C = max I (X; Y) = max (H(Y ) − H(Y|X)) 
= maxH(Y) − 1 = log 26 − 1 = log 13, 

achieved by using p(x) distributed uniformly over all the inputs. 1 bit is the 
uncertainty we have when we read Y, because it could be one character or the 
next one

Noisy Typewriter
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Example: Binary Symmetric Channel
Binary symmetric channel. This is a binary channel in which the input symbols
are complemented with probability p. This is the simplest model of a channel
with errors, yet it captures most of the complexity of the general problem.

We bound the mutual information by:

where the last inequality follows because Y is a binary random variable. Equality
is achieved when the input distribution is uniform. 
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Binary Symmetric Channel
Hence, the information capacity of a binary symmetric channel with parameter p 
is
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Example: Binary Erasure Channel
The analog of the binary symmetric channel in which some bits are lost (rather
than corrupted) is the binary erasure channel. In this channel, a fraction α of the bits
are erased. The receiver knows which bits have been erased. The binary erasure
channel has two inputs and three outputs

We calculate the capacity of the binary erasure channel as follows:

The first guess for the maximum of H(Y) would be log 3, but we cannot achieve
this by any choice of input distribution p(x). Letting E be the event {Y = e}, 
using the expansion:
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Binary Erasure Channel
Expansion: H(Y)=H(Y,E)=H(E)+H(Y|E)

And letting Pr(X=1)=π we have:
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Comments
Since a proportion α of the bits are lost in the channel, we can recover (at most) 
a proportion 1 − α of the bits. 

Hence the capacity is at most 1 − α. It is not immediately obvious that it is
possible to achieve this rate. This will follow from Shannon’s second theorem.

In many practical channels, the sender receives some feedback from the receiver. 
If feedback is available for the binary erasure channel, it is very clear what to do: 
If a bit is lost, retransmit it until it gets through.

Since the bits get through with probability 1 − α, the effective rate of 
transmission is 1 − α. In this way we are easily able to achieve a capacity of 1 − α
with feedback.

Symmetric Channels
The capacity of the binary symmetric channel is C = 1 − H(p) bits per 
transmission, and the capacity of the binary erasure channel is C = 1 − α bits per 
transmission. Now consider the channel with transition matrix:

Here the entry in the xth row and the yth column denotes the conditional
probability p(y|x) that y is received when x is sent. 

In this channel, all the rows of the probability transition matrix are permutations
of each other and so are the columns. Such a channel is said to be symmetric. 
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Symmetric Channels
Another example of a symmetric channel is one of the form: Y = X + Z (mod c). 

Here Z has some distribution on the integers {0, 1, 2, . . . , c − 1}, X has the same
alphabet as Z, and Z is independent of X. 

In both these cases, we can easily find an explicit expression for the capacity of 
the channel. Letting r be a row of the transition matrix, we have

with equality if the output distribution is uniform. But p(x) = 1/|X| achieves a 
uniform distribution on Y, because
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Symmetric Channels
where c is the sum of the entries in one column of the probability transition
matrix. Thus, the channel in has the capacity

and C is achieved by a uniform distribution on the input. 

The transition matrix of the symmetric channel defined above is doubly
stochastic. In the computation of the capacity, we used the facts that the rows
were permutations of one another and that all the column sums were equal.
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A Condition for Simmetry
Definition A channel is said to be symmetric if the rows of the channel transition
matrix p(y|x) are permutations of each other and the columns are permutations
of each other. A channel is said to be weakly symmetric if every row of the 
transition matrix p(·|x) is a permutation of every other row and all the column
sums x p(y|x) are equal.

For example, the channel with transition matrix is weakly symmetric but not
symmetric.

The above derivation for symmetric channels carries over to weakly symmetric
channels as well. We have the following theorem for weakly symmetric channels.
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Weakly Symmetric Channel
Theorem For a weakly symmetric channel, 

C = log |Y| − H(row of transition matrix), 

and this is achieved by a uniform distribution on the input alphabet.
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Properties of Channel Capacity
1. C ≥ 0 since I (X; Y) ≥ 0.
2. C ≤ log |X| since C = max I (X; Y) ≤ maxH(X) = log |X|.
3. C ≤ log |Y| for the same reason.
4. I (X; Y) is a continuous function of p(x).
5. I (X; Y) is a concave function of p(x)

Why C is the Capacity?
If we consider an input sequence of n symbols that we want to transmit over the 
channel, there are approximately 2 nH(Y |X) possible Y sequences for each typical
n-sequence, all of them equally likely.

We wish to ensure that no two X sequences produce the same Y output 
sequence. Otherwise, we will not be able to decide which X sequence was sent.
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Why C is the Capacity?
The total number of possible (typical) Y sequences is ≈ 2nH(Y ). 

This set has to be divided into sets of size 2 nH(Y |X) corresponding to the different
input X sequences that are the producers. 

The total number of disjoint sets is less than or equal to

2 n(H(Y )−H(Y|X)) = 2 nI (X;Y)

Hence, we can send at most ≈ 2 nI (X;Y) distinguishable sequences of length n. 

In fact, the maximum number of disjoint sets is the maximum number of 
“independent” output sets.

Communication System
A communication system can be represented as in Figure. 

A message W, drawn from the index set {1, 2, . . . , M}, results in the signal
Xn(W), which is received by the receiver as a random sequence Yn ∼ p(yn|xn). 

The receiver then guesses the index W by an appropriate decoding rule ˆW=g(Yn). 

The receiver makes an error if ˆW is not the same as the index W that was
transmitted.
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Some Definitions
Definition A discrete channel, denoted by (χ, p(y|x), γ), consists of two finite sets χ
and γ and a collection of probability mass functions p(y|x), one for each x ∈ X, 
such that for every x and y, p(y|x) ≥ 0, and for every x,    y p(y|x) = 1, with the 
interpretation that X is the input and Y is the output of the channel.

Definition The nth extension of the discrete memoryless channel (DMC) is the 
channel (χn, p(yn|xn),γn), 

where p(yk|xk, yk−1) = p(yk|xk), k = 1, 2, . . . , n.

∑

Definitions
If the channel is used without feedback [i.e., if the input symbols do not depend on 
the past output symbols, namely, p(xk|x k−1, y k−1) = p(xk|x k−1)], the channel
transition function for the nth extension of the discrete memoryless channel
reduces to
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Definitions
An (M, n) code for the channel (χ, p(y|x), γ) consists of the following:

1. An index set {1, 2, . . . , M}.
2. An encoding function Xn : {1, 2, . . .,M} → χn, yielding codewords xn(1), xn(2), 
. . ., xn(M). The set of codewords is called the codebook.
3. A decoding function g : γn → {1, 2, . . . , M}, 
which is a deterministic rule that assigns a guess to each possible received vector.

Definitions
Definition (Conditional probability of error) Let

be the conditional probability of error given that index i was sent, where I (·) is the 
indicator function.

Definition The maximal probability of error λ(n) for an (M, n) code is defined as
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Definitions
Definition The (arithmetic) average probability of error Pe

(n) for an (M, n) code is
defined as

Note that if the index W is chosen according to a uniform distribution over the 
set {1, 2, . . . , M}, and Xn = xn(W), then by definition

Also Pe
(n) ≤ λ (n)
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Definitions
Definition The rate R of an (M, n) code is

bits per transmission.

Definition A rate R is said to be achievable if there exists a sequence of ( 2nR , n) 
codes such that the maximal probability of error λ(n) tends to 0 as n→∞.
We write (2nR, n) codes to mean (2nR, n) codes. 

Definition The capacity of a channel is the supremum of all achievable rates.

Thus, rates less than capacity yield arbitrarily small probability of error for
sufficiently large block lengths.
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Jointly Typical Sequence
Roughly speaking, we decode a channel output Y n as the ith index if the 
codeword Xn(i) is “jointly typical” with the received signal Yn.

Definition The set A∈
(n) of jointly typical sequences {(xn, yn)} with respect to the 

distribution p(x, y) is the set of n-sequences with empirical entropies -close to the 
true entropies:
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Jointly Typical Sequence
Theorem (Joint AEP) Let (Xn, Yn) be sequences of length n drawn i.i.d.
according to

1. Pr((Xn, Yn) ∈ A∈
(n) ) → 1 as n→∞.

2. |A∈
(n)| ≤ 2 n(H(X,Y )+∈).

3. If ( ˜ Xn, ˜ Yn) ∼ p(xn)p(yn) [i.e., ˜ Xn and ˜ Yn are independent with the same
marginals as p(xn, yn)], then

Also, for sufficiently large n:
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Jointly Typical Set
The jointly typical set is illustrated in Figure. There are about 2 nH(X) typical X 
sequences and about 2 nH(Y ) typical Y sequences. However, since there are only
2nH(X,Y ) jointly typical sequences, not all pairs of typical Xn and typical Yn are also
jointly typical.

The probability that any randomly chosen pair is jointly typical is about 2−nI(X;Y) . . 
This suggests that there are about 2 nI (X;Y) distinguishable signals Xn.

Jointly Typical Set
Another way to look at this is in terms of the set of jointly typical sequences for a 
fixed output sequence Yn, presumably the output sequence resulting from the 
true input signal Xn. 

For this sequence Yn, there are about 2 nH(X|Y) conditionally typical input signals. 
The probability that some randomly chosen (other) input signal Xn is jointly
typical with Yn is about 2 nH(X|Y) /2 nH(X) = 2−nI (X;Y) .

This again suggests that we can choose about 2 nI (X;Y) codewords X n(W) before
one of these codewords will get confused with the codeword that caused the 
output Yn.
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Channel Coding Theorem
Theorem (Channel coding theorem) For a discrete memoryless channel, all rates
below capacity C are achievable. Specifically, for every rate R < C, there exists a 
sequence of (2 nR, n) codes with maximum probability of error λ(n) → 0.

Conversely, any sequence of (2nR, n) codes with λ(n) → 0 must have R ≤ C.

Channel Coding Theorem
The proof makes use of the properties of typical sequences. It is based on the 
following decoding rule: we decode by joint typicality; 

we look for a codeword that is jointly typical with the received sequence. 

If we find a unique codeword satisfying this property, we declare that word to be
the transmitted codeword. 
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Channel Coding Theorem
By the properties of joint typicality, with high probability the transmitted
codeword and the received sequence are jointly typical, since they are
probabilistically related. 

Also, the probability that any other codeword looks jointly typical with the 
received sequence is 2−nI . Hence, if we have fewer then 2 nI codewords, then
with high probability there will be no other codewords that can be confused with
the transmitted codeword, and the probability of error is small.


