
2D Fourier Transform



Overview

• Signals as functions (1D, 2D)
– Tools

• 1D Fourier Transform
– Summary of definition and properties in the different cases

• CTFT, CTFS, DTFS, DTFT
• DFT

• 2D Fourier Transforms
– Generalities and intuition
– Examples
– A bit of theory

• Discrete Fourier Transform (DFT)

• Discrete Cosine Transform (DCT)



Signals as functions

• Continuous functions of real independent variables
– 1D: f=f(x)
– 2D: f=f(x,y) x,y
– Real world signals (audio, ECG, images)

• Real valued functions of discrete variables
– 1D: f=f[k]
– 2D: f=f[i,j]
– Sampled signals

• Discrete functions of discrete variables
– 1D: fd=fd[k]
– 2D: fd=fd[i,j]
– Sampled and quantized signals



Images as functions

• Gray scale images: 2D functions
– Domain of the functions: set of (x,y) values for which f(x,y) is defined : 

2D lattice [i,j] defining the pixel locations
– Set of values taken by the function : gray levels

• Digital images can be seen as functions defined over a discrete 
domain {i,j: 0<i<I, 0<j<J}

– I,J: number of rows (columns) of the matrix corresponding to the image
– f=f[i,j]: gray level in position [i,j]



Example 1: δ function
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Example 2: Gaussian
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Example 3: Natural image



Example 3: Natural image



Convolution
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filter impulse response 
rotated by 180 deg

2D Convolution

• Associativity

• Commutativity

• Distributivity



g(k,l)

img(k,l) g(a-k,b-l)

1. fold about origin
2. displace by ‘a’ and ‘b’

img(k,l)

k

l

g(a-k,b-l)

a

b

Tricky part: borders
• (zero padding, mirror...)

3. compute integral
of the box

2D Convolution



Convolution
Filtering with filter h(x,y)

sampling property of the delta function



Fourier Transform

• Different formulations for the different classes of signals
– Summary table: Fourier transforms with various combinations of 

continuous/discrete time and frequency variables.
– Notations:

• CT: continuous time
• DT: Discrete Time
• FT: Fourier Transform (integral synthesis)
• FS: Fourier Series (summation synthesis)
• P: periodical signals
• T: sampling period
• ωs: sampling frequency (ωs=2π/T)
• For DTFT: T=1 → ωs=2π



1D FT: basics



Fourier Transform: Concept
■ A signal can be 
represented as a weighted 
sum of sinusoids. 

■ Fourier Transform is a 
change of basis, where the 
basis functions consist of 
sines and cosines 
(complex exponentials).



Fourier Transform

• Cosine/sine signals are easy to define and interpret. 

• However, it turns out that the analysis and manipulation of 
sinusoidal signals is greatly simplified by dealing with related signals 
called complex exponential signals. 

• A complex number has real and imaginary parts: z  =  x  +  j*y

• A complex exponential signal: r*exp(j*a) =r*cos(a) + j*r*sin(a)



Overview
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Dualities

FOURIER DOMAINSIGNAL DOMAIN

Sampling Periodicity

SamplingPeriodicity

DTFT

CTFS

Sampling+Periodicity Sampling +PeriodicityDTFS/DFT



Discrete time signals
• Sequences of samples

• f[k]: sample values

• Assumes a unitary spacing among 
samples (Ts=1)

• Normalized frequency Ω

• Transform
– DTFT for NON periodic 

sequences
– CTFS for periodic sequences
– DFT for periodized sequences

• All transforms are 2π periodic

• Sampled signals

• f(kTs): sample values

• The sampling interval (or period) 
is Ts

• Non normalized frequency ω

• Transform
– DTFT
– CSTF
– DFT
– BUT accounting for the fact that 

the sequence values have been 
generated by sampling a real 
signal → fk=f(kTs)

• All transforms are periodic with 
period ωs

sTωΩ =



CTFT

• Continuous Time Fourier Transform

• Continuous time a-periodic signal

• Both time (space) and frequency are continuous variables
– NON normalized frequency ω is used

• Fourier integral can be regarded as a Fourier series with 
fundamental frequency approaching zero

• Fourier spectra are continuous
– A signal is represented as a sum of sinusoids (or exponentials) of all 

frequencies over a continuous frequency interval
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CTFT: change of notations

■ Fourier Transform of a 1D continuous signal
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Then CTFT becomes

■ Fourier Transform of a 1D continuous signal
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CTFS

• Continuous Time Fourier Series

• Continuous time periodic signals
– The signal is periodic with period T0

– The transform is “sampled” (it is a series)
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CTFS

• Representation of a continuous time signal as a sum of orthogonal 
components in a complete orthogonal signal space
– The exponentials are the basis functions

• Fourier series are periodic with period equal to the fundamental in 
the set (2π/T0)

• Properties
– even symmetry → only cosinusoidal components
– odd symmetry → only sinusoidal components



CTFS: example 1



CTFS: example 2



From sequences to discrete time signals

• Looking at the sequence as to a set of samples obtained by 
sampling a real signal with frequency ωs we can still use the 
formulas for calculating the transforms as derived for the sequences 
by 
– Stratching the time axis (and thus squeezing the frequency axis if Ts>1)

– Enclosing the sampling interval Ts in the value of the sequence samples 
(DFT)
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DTFT

• Discrete Time Fourier Transform

• Discrete time a-periodic signal 

• The transform is periodic and continuous with period
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Discrete Time Fourier Transform (DTFT)

• F(Ω) can be obtained from Fc(ω) by replacing ω with Ω/Ts. Thus 
F(Ω) is identical to Fc(ω) frequency scaled by a factor 1/Ts
– Ts is the sampling interval in time domain

• Notations
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DTFT: unitary frequency
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NOTE: when Ts=1, Ω=ω and the spectrum is 
2π-periodic. The unitary frequency u=2π/ Ω
corresponds to the signal frequency f=2π/ω. 
This could give a better intuition of the 
transform properties.



Connection DTFT-CTFT
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Differences DTFT-CTFT

• The DTFT is periodic with period Ωs=2π (or ωs=2π/Ts)

• The discrete-time exponential ejΩk has a unique waveform only for 
values of Ω in a continuous interval of 2π

• Numerical computations can be conveniently performed with the 
Discrete Fourier Transform (DFT)



DTFS

• Discrete Time Fourier Series

• Discrete time periodic sequences of period N0

– Fundamental frequency 
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Discrete Fourier Transform (DFT)

• The DFT transforms N0 samples of a discrete-time  signal to the same 
number of discrete frequency samples

• The DFT and IDFT are a self-contained, one-to-one transform pair for a 
length-N0 discrete-time signal (that is, the DFT is not merely an 
approximation to the DTFT as discussed next)

• However, the DFT is very often used as a practical approximation to the 
DTFT
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Discrete Cosine Transform (DCT)

• Operate on finite discrete sequences (as DFT)

• A discrete cosine transform (DCT) expresses a sequence of 
finitely many data points in terms of a sum of cosine functions
oscillating at different frequencies

• DCT is a Fourier-related transform similar to the DFT but using only 
real numbers

• DCT is equivalent to DFT of roughly twice the length, operating on 
real data with even symmetry (since the Fourier transform of a real 
and even function is real and even), where in some variants the 
input and/or output data are shifted by half a sample 

• There are eight standard DCT variants, of which four are common

• Strong connection with the Karunen-Loeven transform
– VERY important for signal compression 



DCT

• DCT implies different boundary conditions than the DFT or other 
related transforms 

• A DCT, like a cosine transform, implies an even periodic extension 
of the original function 

• Tricky part
– First, one has to specify whether the function is even or odd at both the 

left and right boundaries of the domain 
– Second, one has to specify around what point the function is even or 

odd
• In particular, consider a sequence abcd of four equally spaced data points, 

and say that we specify an even left boundary. There are two sensible 
possibilities: either the data is even about the sample a, in which case the 
even extension is dcbabcd, or the data is even about the point halfway
between a and the previous point, in which case the even extension is 
dcbaabcd (a is repeated). 



Symmetries



DCT
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• Warning: the normalization factor in front of these transform definitions is 
merely a convention and differs between treatments.

– Some authors multiply the transforms by (2/N0)1/2 so that the inverse does not 
require any additional multiplicative factor.

• Combined with appropriate factors of √2 (see above), this can be used to make the 
transform matrix orthogonal. 



Sinusoids

• Frequency domain characterization of signals

Frequency domain

Signal domain
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Images vs Signals

1D

• Signals

• Frequency
– Temporal
– Spatial

• Time (space) frequency 
characterization of signals

• Reference space for
– Filtering
– Changing the sampling rate
– Signal analysis
– ….

2D

• Images 

• Frequency
– Spatial

• Space/frequency characterization 
of 2D signals

• Reference space for
– Filtering
– Up/Down sampling
– Image analysis
– Feature extraction
– Compression
– ….



2D spatial frequencies

• 2D spatial frequencies characterize the image spatial changes in the 
horizontal (x) and vertical (y) directions
– Smooth variations -> low frequencies
– Sharp variations -> high frequencies
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2D Frequency domain

ωx

ωy

Large vertical 
frequencies correspond 
to horizontal lines

Large horizontal 
frequencies correspond 
to vertical lines

Small horizontal and 
vertical frequencies 
correspond smooth 
grayscale changes in 
both directions

Large horizontal and 
vertical frequencies 
correspond sharp 
grayscale changes in 
both directions



Vertical grating

ωx

ωy

0



Double grating

ωx

ωy

0



Smooth rings



2D box
2D sinc



Margherita Hack



Einstein

log amplite of the spectrum



What we are going to analyze

• 2D Fourier Transform of continuous signals (2D-CTFT)

• 2D Fourier Transform of discrete signals (2D-DTFT)

• 2D Discrete Fourier Transform (2D-DFT)
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2D Continuous Fourier Transform

• Continuous case (x and y are real) – 2D-CTFT (notation 1)
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2D Continuous Fourier Transform

• Continuous case (x and y are real) – 2D-CTFT
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2D Continuous Fourier Transform

• 2D Continuous Fourier Transform (notation 2)
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2D Discrete Fourier Transform
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Delta

• Sampling property of the 2D-delta function (Dirac’s delta)

• Transform of the delta function

0 0 0 0( , ) ( , ) ( , )x x y y f x y dxdy f x yδ
∞

−∞

− − =∫

( ) 2 ( )( , ) ( , ) 1j ux vyF x y x y e dxdyπδ δ
∞ ∞

− +

−∞ −∞

= =∫ ∫

( ) 0 02 ( )2 ( )
0 0 0 0( , ) ( , ) j ux vyj ux vyF x x y y x x y y e dxdy e ππδ δ

∞ ∞
− +− +

−∞ −∞

− − = − − =∫ ∫
shifting 
property



Constant functions

■ Fourier Transform of the constant (=1 for all x and y)
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Trigonometric functions

• Cosinusoidal function oscillating along the x axis
– Constant along the y axis

{ } 2 ( )

2 ( ) 2 ( )
2 ( )

( , ) cos(2 )

cos(2 ) cos(2 )

2

j ux vy

j fx j fx
j ux vy

s x y fx

F fx fx e dxdy

e e e dxdy

π

π π
π

π

π π
∞ ∞

− +

−∞ −∞

∞ ∞ −
− +

−∞ −∞

=

= =

⎡ ⎤+
= ⎢ ⎥

⎣ ⎦

∫ ∫

∫ ∫

( ) ( )2 ( ) 2 ( )1 1 ( ) ( )
2 2

j u f x j u f xe e dxdy u f u fπ π δ δ
∞ ∞

− − − +

−∞ −∞

⎡ ⎤= + = − + +⎡ ⎤⎣ ⎦⎣ ⎦∫ ∫



Vertical grating

ωx

ωy

0



Ex. 1



Ex. 2



Ex. 3

Magnitudes



Examples



Properties

■ Linearity

■ Shifting

■ Modulation

■ Convolution

■ Multiplication

■ Separability
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Separability
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2D Fourier Transform can be implemented as a sequence 
of 1D Fourier Transform operations performed 
independently along the two axis 



• Fourier Transform of a 2D a-periodic signal defined over a 2D 
discrete grid
– The grid can be thought of as a 2D brush used for sampling the 

continuous signal with a given spatial resolution (Tx,Ty)

2D Fourier Transform of a Discrete function 
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Unitary frequency notations
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• The integration interval for the inverse transform has width=1 instead of 2π
– It is quite common to choose

1 1,
2 2

u v−
≤ <



Properties

• Periodicity: 2D Fourier Transform of a discrete a-periodic signal is 
periodic with period
– The period is 1 for the unitary frequency notations and 2π for 

normalized frequency notations. Referring to the firsts:
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Arbitrary 
integers



Properties

• Linearity

• shifting

• modulation

• convolution

• multiplication

• separability

• energy conservation properties also exist for the 2D Fourier 
Transform of discrete signals.

• NOTE: in what follows, (k1,k2) is replaced by (m,n)



Fourier Transform: Properties

■ Linearity

■ Shifting

■ Modulation

■ Convolution

■ Multiplication

■ Separable functions

■ Energy conservation
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Impulse Train

■ Define a comb function (impulse train) as follows
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where M and N are integers
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2D-DTFT: delta

■ Define Kronecker delta function

■ Fourier Transform of the Kronecker delta function
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Fourier Transform: (piecewise) constant

■ Fourier Transform of 1

To prove: Take the inverse Fourier Transform of the Dirac 
delta function and use the fact that the Fourier Transform has 
to be periodic with period 1. 
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Impulse Train
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• Fourier Transform of an impulse train is also an impulse train:



Impulse Train
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Impulse Train
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• In the case of continuous signals:



Impulse Train
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Sampling revisitation
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Sampling revisitation
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Sampling and aliasing
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If there is no aliasing, the original signal 
can be recovered from its samples by 
low-pass filtering.

1
2M



Sampling and aliasing
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Sampling and aliasing
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Sampling and aliasing
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■ Without anti-aliasing filter: 

■ With anti-aliasing filter: 



Aliasing in images

• Without the anti-aliasing filter the recovered image 
(subsampling+upsampling) is different from the original. 

• With anti-aliasing filter (low-pass), the smoothed version of the 
original image can be recovered by interpolation



Anti-Aliasing

a=imread(‘barbara.tif’);



Anti-Aliasing

a=imread(‘barbara.tif’);
b=imresize(a,0.25);
c=imresize(b,4);



Anti-Aliasing

a=imread(‘barbara.tif’);
b=imresize(a,0.25);
c=imresize(b,4);

H=zeros(512,512);
H(256-64:256+64, 256-64:256+64)=1;

Da=fft2(a);
Da=fftshift(Da);
Dd=Da.*H;
Dd=fftshift(Dd);
d=real(ifft2(Dd));



Sampling
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Sampling
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Interpolation
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Ideal reconstruction  
filter:



Ideal Reconstruction Filter
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