

Progettazione di Sistemi Embedded embbedded systems design

Franco Fummi University of Verona

Department of Computer Science

Italy

Laurea Magistrale in Ingegneria e Scienze Informatiche Embedded Systems Design Course

Goals


- Techniques for the automatic design of embedded systems:
 - starting from their specification throughout:
 - validation / verification
 - automatic synthesis
 - testing
- This lecture is focused on:
 - most important design languages
 - most evolved tools for their manipulation

Embedded Systems: Where?

2 October '15

ES: Historical perspective

- From computer ('60-'80):
 - General purpose systems for solution of general problems
- To digital control systems ('80-'90):
 - Systems dedicated to control and automation
- To distributed systems ('90-'00):
 - General purpose systems and/or dedicated systems cooperating through the network
- To embedded systems ('00-):
 - Distributed systems integrated in nor video-Control computing objects and in the environment
- To cyber-physical systems ('10-):
 - embedded systems integrated with physical processes

Status LEDs

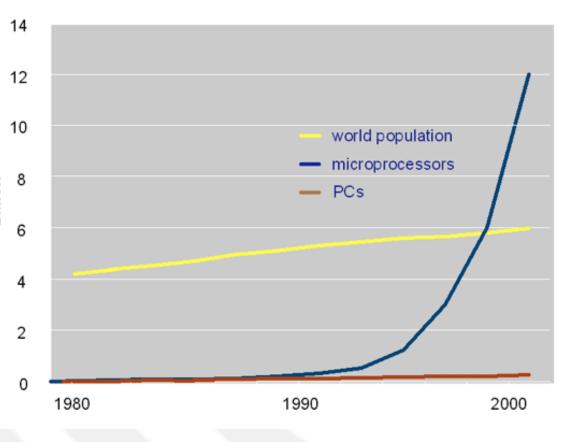
System IR Sens

lew Gear

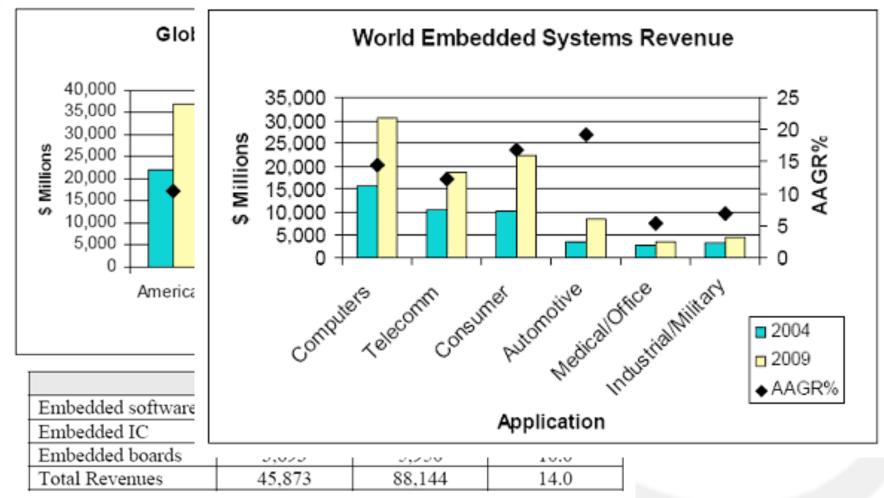
Encoders

Start / Stop Buttor

Charging Connector


On/Off Switch

ES: History

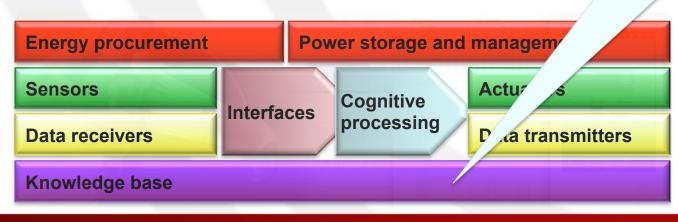

- First comp Systems:
 - not show to the pa compute
- The Apollc the world's
 - small siz devoted
- Mass prod

 1961 witl
- No stop...

ES Market

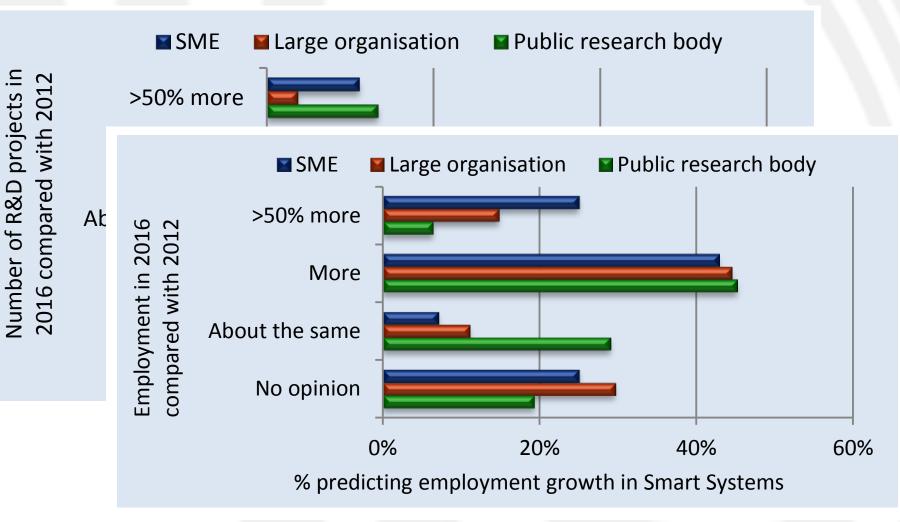
2 October '15

PSE

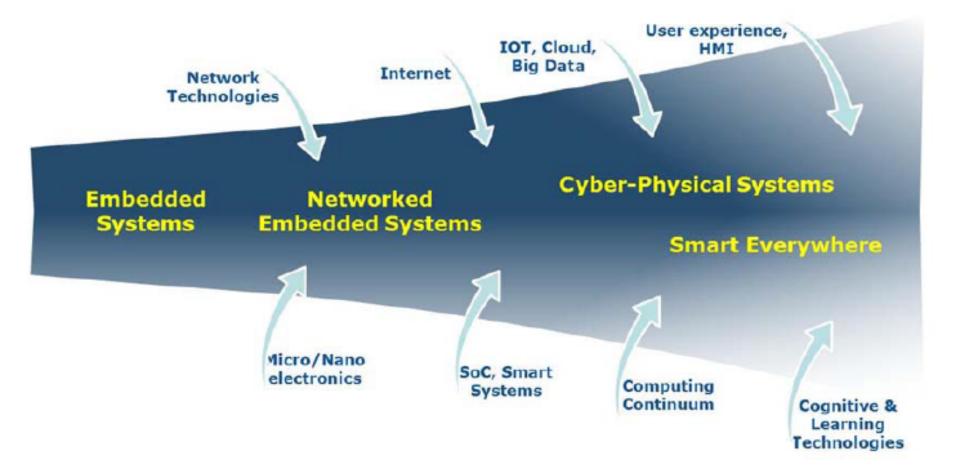


From ES to Smart Systems

- Miniaturized self-sufficient device that
 - Incorporates functions of sensing, actuation, and control
 - To describe and analyze a situation, and decisions based on the available data
 - In a predictive or adaptive manner (sm


Knowledge base separates smart systems from systems which, although they may be automated, remain purely reactive

Energy-autonomous and ubiquitously



Grow in smart system R&D

FDL'15

18 Dicembre 2014

How Relevenat (I)

PSE

10

How Relevant (II)

- & progetti europei completati e attivi:
 Angel, Vertigo, Coconut, C4C, Complex, SMAC, Contrex
 - Angel, Verligo, Coconul, C4C, Complex, SiMAC,
- 2 progetti europei in FP6
 - ANGEL (mobile gateway for sensors network)
 - VERTIGO (HW formal verification)
- 5 progetti europei in FP7
 - COCONUT (embedded systems design and verification)
 - best evaluation of the overall embedded systems track
 - C4C (control for coordination of distributed systems)
 - COMPLEX (platform-based design space exploration)

PSE

- SMAC (smart systems design)
- CONTREX (mixed-criticality systems)

CON4COORD

CONUT

VERTIGO

ES: How to design?

- We cannot design embedded systems like general purpose systems
 - Different design constraints, different goals
 - Embedded design is about the system, not about the computer
- E.g.
 - In general purpose computing, design often focuses on building the fastest CPU
 - In embedded systems the CPU simply exists as a way to implement control algorithms communicating with sensors and actuators

ES: Design constraints

Size and weight

- Hand-held electronics
- Weight costs money in transportation
- Human body cannot eat desktops
- Power
 - Buttery power instead of AC
- Harsh environment
 - Power fluctuation, RF interferences, heat, vibration, water, …
- Safety critical and real time operations
- Low costs

ES: Designer knowledge

- HW architecture alternatives
 - for a correct HW/SW trade-off
- SW design skills
 - lots of languages continuously extending
- HW/SW interaction mechanisms
 O.S., MW, HdS for efficient SW development
- Network infrastructure
 - all ES are now networked embedded systems
- Computation effort estimation

- theory is important when used in practice

Join 3C: computation, control & communication

Course Structure

- 34 lectures:
 - 32 theory hours
 - 22 lectures
 - 24 practical hours
 - 12 lectures
- People:
 - Franco Fummi (theory)
 - Michele Lora (laboratory class)
 - … for practical elaborations

credits

Modalità di Esame (I)

Teoria + lab. + opzioni:

- teoria
 - scritto con votazione /30
- relazione laboratorio
 - +3 punti max
- on demand
 - elaborato 0 +∞
 - (orale) +3 -∞
- Regole generali:
 - elaborato dura 1 anno accademico
 - consegna in date stabilite

Modalità di Esame (II)

- Alternative:
 - Elaborato personale
 - stage aziendale
 - tesi
 - Teoria
 - no way :-)
- Design&Reuse:
 - tesi
 - stage pre-tesi

COMPUTER Science Park

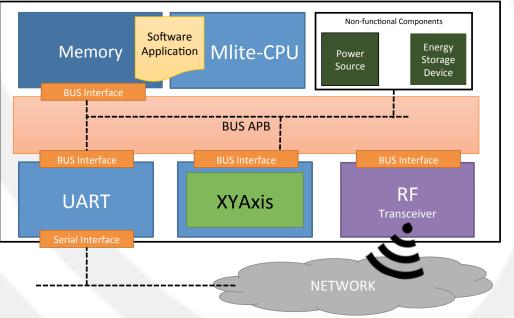
Pre/post Condizioni

Precedenze Indispensabili:

- Architettura degli Elaboratori
- Programmazione
- Linguaggi …
- Sistemi (Metodi di specifica)

Fondamentale per

- Curriculum sistemi embedded (magistrale in Ingegneria)
 - Sistemi operativi avanzati, Architetture avanzate, Software per Sistemi Embedded, Sistemi Embedded Multimediali, Sistemi Embedded di Rete…


A Challenging Benchmark

Smart devices:

The Open Source Test

Case (SMAC project)

- Laboratorio Ciberfisico:
 - Secondo piano CV2

Detailed Program

week	data	day	lecture	lab.	topic
1	2-Oct	Fri.	3		Course introduction; Embedded systems modeling
2	7-Oct	Wed.	2		Embedded systems modeling II; SystemC-based design
2	9-Oct	Fri.	3		SystemC-based design II; SystemC-based design III
3	14-Oct	Wed.		2	SystemC modeling at RTL
3	16-Oct	Fri.	3		Platform-based design; Transactional-based design; TLM 2.0 standard
4	21-Oct	Wed.		2	SystemC compilation/execution/debugging
4	23-Oct	Fri.	3		TLM 2.0 standard II; SystemC/AMS support
5	28-Oct	Wed.		2	SystemC timing evolution
5	30-Oct	Fri.			An embedded architecture for cars managing
6	4-Nov	Wed.		2	SystemC modeling at TLM
6	6-Nov	Fri.	3		High-level synthesis (HLS): scheduling; High-level synthesis: allocation
7	11-Nov	Wed.		2	SystemC/AMS
7	13-Nov	Fri.	3		Software embedded synthesis; Model-based design (MBD) of embedded software; HMI design
8	18-Nov	Wed.		2	SystemC/AMS and IP-Xact
8	20-Nov	Fri.			intermediate exam
9	25-Nov	Wed.		2	Mixed RTL/TLM/AMS SystemC
9	27-Nov	Fri.			Cyber-physical systems: models of computations
10	2-Dec	Wed.		2	Platform, testbench and device driver (OSTC)
1 0	4-Dec	Fri.	3		VHDL introduction; VHDL syntax
11	9-Dec	Wed.		2	Embedded software design
11	11-Dec	Fri.	3		VHDL modeling; VHDL timing simulation
12	16-Dec	Wed.		2	VHDL modeling at RTL
1 2	18-Dec	Fri.	2		VHDL timing simulation II; VHDL synthesis
13	8-Jan	Fri.			GPGPU: design problems and opportunities
14	13-Jan	Wed.		2	VHDL timing simulation
1 4	15-Jan	Fri.	2		Networked embedded systems (NES); Middleware for embedded systems
15	20-Jan	Wed.		2	Automatic synthesis from RTL and TLM
1 5	22-Jan	Fri.	2		Introduction to embedded systems verification; Introduction to embedded systems testing
16	27-Jan	Wed.			NO
16	29-Jan	Fri.			final exam
	hours	56	32	24	
	credits	6,0	4,0	2,0	

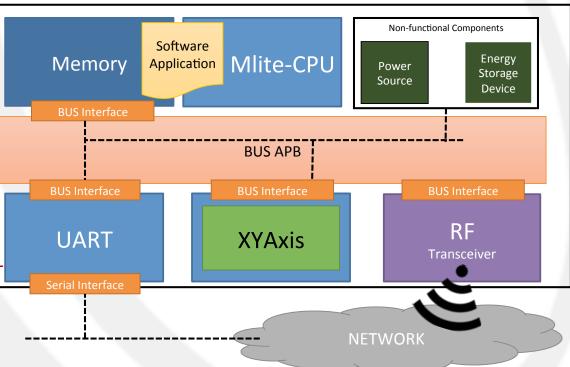
Topics (theory)

Specification:

S D Electronic Systems Design

- Embedded systems modeling
- SystemC-based design
- TLM design introduction
- TLM 2.0 standard
- VHDL modeling
- VHDL syntax
- Networked ES (NES)
- Smart systems
- HW synthesis:
 - Introduction to TLM design
 - High-level synthesis
 - Automatic VHDL synthesis

- SW synthesis:
 - Embedded software generation
 - Automatic device driver generation
 - Middleware for embedded systems
 - Model-based design
 - HMI deisgn
- Verification & testing:
 - Introduction to verification
 - Introduction to testing
 - VHDL timing simulation
 - RTL-TLM mixed simulation
 - Embedded software verification


2 October '15

Topics (lab.)

- Specification:
 - Compiling / executing /debugging SystemC
 - Modeling SystemC TLM
 - Modeling SystemC RTL
 - Timing evolution in SystemC
 - Analog modeling in SystemC/AMS
 - Platforms and IP-Xact
 - Mixed modeling RTL/TLM/AMS
 - Timing modeling in VHDL
- Hardware synthesis:
 - Automatic synthesis from TLM
 - VHDL modeling at RT
 - Automatic synthesis from RTL VHDL
- Software synthesis:
 - Testbench and device driver
 - Model based design: radCASE
 - Embedded software design

Teaching supports (I)

- Course web page
 - Detailed program
 - Complete program
- E-learning web page
 - Slides
 - Laboratory instructions
 - Questions/answers
- Seminars
 - Indications during the course

Teaching supports (II)

- Theory slides:
 - 0.CourseIntroduction
 - 1.EmbeddedSystemsModeling
 - 2.SystemCBasedDesignFlow
 - 3.PlatformBasedDesign
 - 4.TLMBasedDesign
 - 5. SystemC/AMS
 - 6.HighLevelSynthesis
 - 7.EmbeddedSoftware
 - 8.ModelBasedDesign

- Theory slides:
 - 9.VHDLDesignIntroduction
 - 10.VHDLSyntax
 - 11.VHDLSpecification
 - 12.VHDLSimulation
 - 13.VHDLSynthesis
 - 14.NESDesign
 - 15.SmartSystems
 - 16.VerificationAndTesting

More information

http://www.di.univr.it/~fummi

University	of Verona	Depar	TMENT	5	search WHERE TO FIND US	TELEPHONE E-MAIL CONTAC				
GENERAL INFORMATION RESEARCH		DEPARTMENT OF Computer Scie		GENERAL ANOUNCEMENTS NEWS LIBR	UNIVER	SITY HOME DEPARTMENT HOME				
Education > Masters programmes > Master Degree Computer Science and Engineering > Courses Master Degree Computer Science and Engineering										
EDUCATION Bachelor programmes Masters programmes	S Embedded systems design (2015/2016)									
Master Degree Computer Science and Engineering Enrollment Policy Courses Schedule Lecture timetable Degree Programme	NUMBER OF I DISCIPLINAR LANGUAGE O	E 4S02911 CTURER Franco Fummi ECTS CREDITS ALLOCATED RY SECTOR ING-INF/05 - IN FINSTRUCTION Italian emestre dal Oct 1, 2015 al J		urse news						
Exam calendar Course news Thesis and internship proposals	Lesson timetable									
→ Collegial bodies	DAY	TIME	TYPE	PLACE		NOTE				
→ Faculty staff		1:30 PM - 3:30 PM		Laboratory Laboratorio Ciberfis	ico	NOTE				
Master's Degree in Mathematics	Wednesday Friday	8:30 AM - 11:30 AM	laboratorio lesson	Lecture Hall I						

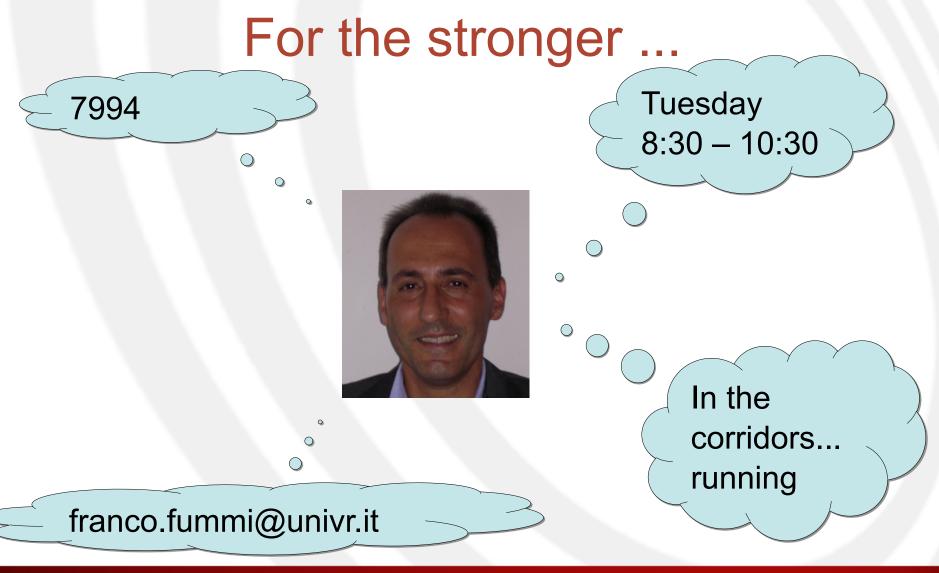
Learning outcomes

The aim of this course is the presentation of some design automation techniques for embedded systems covering the entire design flow through

2 October '15

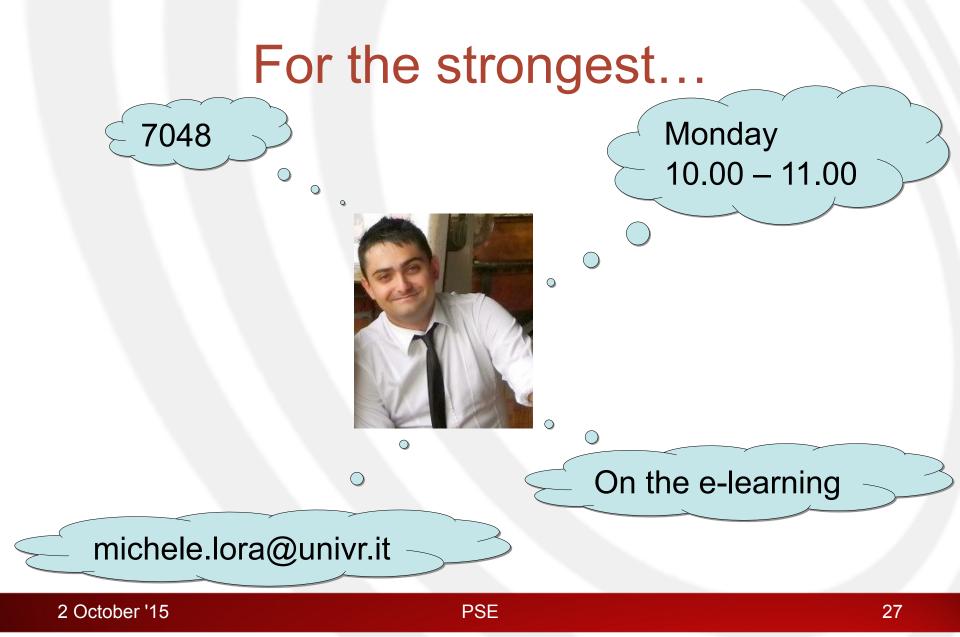
Old Masters programmes PhD programmes

Short Masters programm


Teacher qualification courses

(PAS)

(TFA)



2 October 15

