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The issue with nonlinearity

Reachable sets cannot be represented in an effective and
efficient way

Most set operations on accurate representations are
undecidable.

Coarse approximations are ultimately needed to recover
decidability.

Set representations play a particularly important role, as a
tradeoff between effectiveness and efficiency.
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Representing regions of space

Subsets of Rn are approximated by finite unions of basic sets:
intervals, simplices, cuboids, parallelotopes, zonotopes,
polytopes, spheres and ellipsoids, Taylor sets.

Finite unions of basic sets of a given type are called denotable
sets.
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Approximating regions

Approximating Re with A

1 Inner approximation: Re strictlay contains A.

2 Outer approximation: Re is strictly contained in A.

3 ε-lower approximation: every point of A is at distance less
than ε from a point of Re.

Inner approximation is used for specification of system’s
properties (System ⊆ Propertyinner ⊆ Property), but it is not
computable in general.

Outer and ε-lower approximations can be used to verify
property satisfaction.
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Property satisfaction in terms of sets
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Re is the (exact) reachable set.

O is the outer approximation.

Lε is the ε-lower approximation.

S1, S2 are sets within which a property is satisfied.
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Hybrid regions and Hybrid grid sets

Definition (Hybrid sets)

Hybrid sets are subsets of the space V × Rn.

We start from hybrid basic sets that pair a location of the
automaton with a single basic set:

hybrid intervals, hybrid simplices, hybrid cuboids, hybrid
parallelotopes, hybrid zonotopes, hybrid polytopes, hybrid
spheres and hybrid ellipsoids, hybrid Taylor sets.

Finite unions of hybrid basic sets are called hybrid denotable
sets.

Hybrid sets are approximated by hybrid denotable sets.
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Hybrid regions and Hybrid grid sets

Definition (Hybrid grids)

A grid for every location of the automaton. Hybrid sets are
approximated by marking the cells on the grids.

Hybrid grid sets are practical but coarse:

Union, intersection, difference and inclusion can be performed
efficiently.

They introduce large over-approximations.

They do not scale well when more precision is required.
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Introduction to Ariadne

Developed by a joint team including the University of Verona,
CWI/University of Maastricht, the University of Udine and the
company PARADES/ALES (Rome).

Based on a rigorous mathematical semantics for the numerical
analysis of continuous and hybrid systems.

Exploits reachability analysis to prove properties of nonlinear
systems, especially for safety verification.

Released as an open source distribution.
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Approximate Reachability Analysis

Given a hybrid automaton H, an initial set I , Ariadne can
compute:

an outer approximation of the states reached by H starting
from I .

for a given ε > 0, an ε-lower approximation of the states
reached by H starting from I .
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The reachability algorithm of Ariadne for O

1 Start from the initial Taylor set and compute the continuous
evolution of the automaton within the bounding set, until no
new states are reached. Mark the cells of the projection of the
reach set on the grid, until no more cells can be marked.

2 When no more cells can be marked, compute a single discrete
evolution step from the reached Taylor set. Mark the new
cells of the grid that are reached by the discrete step.

3 If new cells are reached, go to (1). Otherwise, stop.

The grid and the bounding set are essential for termination!
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Computing the continuous evolution (1)

1 Convert the cells to basic sets (Taylor sets + error term).
2 Integrate the continuous dynamics with integration step h for

a user-given number of steps.
3 If a set becomes too large, split it.
4 Project back to the grid.
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Computing the continuous evolution (2)

5 Check if new grid cells have been reached.
6 If so, go back to (1).
7 The snapshot is discretised and added to the set of cells.

When a new snapshot does not provide additional
contribution, the current set of cells is returned as the
reachability result.
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Computing the discrete evolution

Computing the discrete evolution is simpler:

1 For every control switch e ∈ E , determine the set of cells that
intersect with Act(e).

2 If such set is not empty, apply the reset function Reset(e) to
obtain the set of cells reached by the transition.

Upper Semantics:

When there are multiple enabled transitions, or when the system
exhibits grazing (tangential contact between a reached region and
an activation set), all possible transitions are taken.
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Computing ε-lower evolution

The computation of the ε-lower approximation uses a different
algorithm:

1 Start from the initial set and compute the continuous
evolution for a time-step t. Do not discretize the result.

2 Compute a single discrete evolution step.

3 If the width of the flow tube is smaller than a given ε, go to
(1). Otherwise, discretize the computed set and stop.
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The watertank example

Chapter 2

Verification of satisfaction and

dominance relations: a case

study

Let us consider a simple control problem consisting of controlling the water level in a

cylindric tank equippedwith an inlet pipe at the top and an outlet pipe at the bottom (see

Figure 2.1). The outlet flow depends on the water level while the inlet flow is controlled

by a valve whose position is regulated by a controller receiving the measurement of the

water level by an appropriate sensor.

Figure 2.1: Water tank system.

In this chapter, two different systems equipped with the same cylindric tank will be

presented: the first system is characterized by a hysteresis controller and by a on–off

valve described by a 4-locations hybrid model (see Section 2.1). The second system

is characterized by a proportional controller with gain scheduling and by a first order

linear dynamic valve (see Section 2.2). Both the implementations will be described by

9

Outlet flow Fout depends on
the water level
(Fout(t) = λ

√
x(t)).

Inlet flow Fin is controlled by
the valve position
(Fin(t) = u(t)).

The controller senses the
water level and sends the
appropriate commands to the
valve.

June 2, 2016 Verona, Italy 19 / 1



The watertank control loop

Controller Actuator:
valve

Plant:
tank

Sensor

command u(t)

x(t)xs(t)

p(t)

δ
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Modeling the water tank

Tank automaton Sensor automaton

x = H ∧ u ≤ λ
√

H

q1 q2

ẋ(t) = −λ
�

x(t) + u(t)

0 ≤ x ≤ H

ẋ(t) = 0

x(t) = H

u(t) ≥ λ
√

H

x = H ∧ u ≥ λ
√

H

r1

xs(t) = x(t) + δ(t)

Controller automaton Valve automaton

xs(t) ≥ lxs(t) ≤ h

xs ≥ h

close

c2 c3

c1

l ≤ xs(t) ≤ h

xs ≤ l

open

xs ≤ l

open

xs ≥ h

close

v1 v2

v3v4

α = 0 0 ≤ α ≤ 1

α = 1

open

close

α = 0 α = 1

close

open

α̇(t) = 0

u(t) = 0

α̇(t) = 1/T

u(t) = α(t)f(p(t))

α̇(t) = −1/T

u(t) = α(t)f(p(t))

α̇(t) = 0

u(t) = f(p(t))

0 ≤ α ≤ 1
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The water tank automaton

x = H ∧ u ≤ λ
√

H

q1 q2

ẋ(t) = −λ
�

x(t) + u(t)

0 ≤ x ≤ H

ẋ(t) = 0

x(t) = H

u(t) ≥ λ
√

H

x = H ∧ u ≥ λ
√

H

x(t) it the water level, u(t) is the inlet flow.

q1 represents the situation when there is no water overflow.

q2 represents the situation when there is water overflow.
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The water tank automaton

λ
√
H is the largest outflow λ

√
x when x = H.

x = H ∧ u > λ
√
H is the case when the water is at the top

level H and the inflow u is larger than the largest outflow
λ
√
H.

when in q2, if (by the action of the controller) the valve angle
decreases, then u decreases to the point that the invariant
x = H ∧ u > λ

√
H is not true anymore, and so the transition

to q1 is taken under the guard x = H ∧ u ≤ λ
√
H.
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The sensor automaton

r1

xs(t) = x(t) + δ(t)

The input is the real water level x(t) provided by the tank.

The output is the measured water level xs(t) = x(t) + δ for
the controller (where δ is an interval (−δ1, δ1)).
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A simple hysteresis controller

xs(t) ≥ lxs(t) ≤ h

xs ≥ h

close

c2 c3

c1

l ≤ xs(t) ≤ h

xs ≤ l

open

xs ≤ l

open

xs ≥ h

close

The input is the measured
water level xs(t) provided
by the sensor.

The output is the
command signal open or
close for the valve.

The controller produces the open command when xs(t) ≤ l ,
and it produces the close command when xs(t) ≥ h.

l and h are lower and upper water levels.
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The valve automaton

v1 v2

v3v4

α = 0 0 ≤ α ≤ 1

α = 1

open

close

α = 0 α = 1

close

open

α̇(t) = 0

u(t) = 0

α̇(t) = 1/T

u(t) = α(t)f(p(t))

α̇(t) = −1/T

u(t) = α(t)f(p(t))

α̇(t) = 0

u(t) = f(p(t))

0 ≤ α ≤ 1

In response to a command, the valve aperture changes linearly
in time with rate 1/T .
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The valve automaton

The pressure p(t) is assumed to be any constant value in an
interval [p1, p2], where p1 and p2 are respectively the minimum
and the maximum of p(t) over a time interval of interest.

One may assume f (p(t)) = k
√
p, where p is a constant value

from an interval (see above) and so it can be used also in a
linear model.
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The complete watertank automaton

ẋ(t) = −λ
�

x(t)
α̇(t) = 0

l − δ(t) ≤ x(t) ≤ H
α(t) = 0

ẋ(t) = −λ
�

x(t) + α(t)f(p(t))
α̇(t) = −1/T

l − δ(t) ≤ x(t) ≤ H
0 ≤ α(t) ≤ 1

ẋ(t) = 0
α̇(t) = −1/T

x(t) = H

u ≥ λ
√

H
0 ≤ α(t) ≤ 1

ẋ(t) = −λ
�

x(t) + α(t)f(p(t))
α̇(t) = 1/T

0 ≤ x(t) ≤ h − δ(t)
0 ≤ α(t) ≤ 1

ẋ(t) = −λ
�

x(t) + f(p(t))
α̇(t) = 0

0 ≤ x(t) ≤ h − δ(t)
α(t) = 1

l2 l3 l4

l0 l1

α = 0

x = H∧
u ≥ λ

√
H

x = H∧
u ≤ λ

√
H

x ≥ h − δ(t)

x ≤ l − δ(t)

x ≥ h − δ(t)x ≤ l − δ(t)

α = 1

x = H∧
u ≥ λ

√
H
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The complete watertank automaton

The automaton is obtained by the composition and reduction
of all the automata of the system.

The locations l0 and l3 model respectively when the valve is
opening and when the valve is closing.

The locations l1 and l2 model respectively when the valve is
open and when the valve is closed.

The location l4 models when there is overflow; the transitions
between l4 and l3 handle the passage between overflow and
decrease of water below the top level.
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Evolution of the watertank

Horizontal axis: time t; vertical axis: water level x(t).

The water level in the tank oscillates widely periodically
between the lower level l and the upper level h.
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Assume-guarantee system specification

The system is specified as a set of components.

Every component is annotated with a pair (Ai ,Gi ) of
assumptions and guarantees.

The requirements (A,G ) of the whole system are decomposed
into a set of simpler requirements (Ai ,Gi ) that, if satisfied,
guarantee that the overall requirements (A,G ) are satisfied.
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Safety checking

Let C be a component of the system, annotated with assumptions
A and guarantees G . With Ariadne we can verify whether the
component C respects the safety guarantees G or not given the
assumptions A.

Represent the component C by a hybrid automaton H with
inputs and outputs.

Assumptions A are represented by a hybrid automaton HA

that specifies the possible inputs U for H.

Guarantees G specify the possible outputs Y of automaton H.

This is a reachability analysis problem:

Reach(H‖HA) ⊆ Sat(G ).
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Safety checking by grid refinement

1 Compute an outer-approximation O of Reach(H‖HA) using a
grid of a given size.

2 If O ⊆ Sat(G ), the system is verified to be safe. Exit with
success.

3 Otherwise, compute an ε-lower approximation Lε of
Reach(H‖HA). The value of ε depends on the size of the grid
(typically, ε is a small multiple of the size of a grid cell).

4 If there exists at least a point in Lε that is outside Sat(G ) by
more than ε, the system is verified to be unsafe. Exit with
failure.

5 Otherwise, set the grid to a finer size and restart from point 1.
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Verifying the water tank

Safety property: the water level between 5.25 and 8.25 meters.
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First iteration:
grid 1/8× 1/80
(x-axis: x(t), y -axis:
α(t)).

Outer reach is not safe, try
lower reach.

Green: safe set Orange: ε-tolerance Red: computed set
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First iteration:
grid 1/8× 1/80
(x-axis: x(t), y -axis:
α(t)).

Lower reach is not unsafe,
refine grid.

Green: safe set Orange: ε-tolerance Red: computed set
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Second iteration:
grid 1/16× 1/160
(x-axis: x(t), y -axis:
α(t)).

Outer reach is not safe, try
lower reach.

Green: safe set Orange: ε-tolerance Red: computed set

June 2, 2016 Verona, Italy 35 / 1



Verifying the water tank

Safety property: the water level between 5.25 and 8.25 meters.

����

�

���

���

���

���

�

���

� ��� � ��� � ��� � ���

Second iteration:
grid 1/16× 1/160
(x-axis: x(t), y -axis:
α(t)).

Lower reach is not unsafe,
refine grid.

Green: safe set Orange: ε-tolerance Red: computed set
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Verifying the water tank

Safety property: the water level between 5.25 and 8.25 meters.
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Third iteration:
grid 1/32× 1/320
(x-axis: x(t), y -axis:
α(t)).

Outer reach is safe, system
is proved safe.

Green: safe set Orange: ε-tolerance Red: computed set
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Verifying the water tank

1 In this example, we could prove safety by outer reach.

2 Variations of the parameters could yield systems where lower
reach would prove unsafety or where no conclusions could be
drawn (smallest precision of the parameters reached without
proving safety or unsafety).
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Dominance checking

Definition

Given two components C1 and C2, with assumptions and
guarantees (A1,G1) and (A2,G2), we say that C1 dominates C2 if
and only if under weaker assumptions (A2 ⊆ A1), stronger
promises are guaranteed (G1 ⊆ G2).

If this is the case, the component C2 can be replaced with C1 in
the system without affecting the whole system behaviour.

Intuitively, the component C1 dominates C2 if it issues sharper
outputs (G1 ⊆ G2) with looser inputs (A2 ⊆ A1), e.g., a
dominating controller can issue a subset of the control commands
to cope with an environment which is allowed more freedom.
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Dominance checking by reachability analysis

1 Represent the two components by two hybrid automata H1

and H2 with inputs and outputs.

2 Assumptions A1 and A2 are represented by hybrid automata
HA1 and HA2 that specify the possible inputs U1,U2 for the
components.

3 Guarantees G1 and G2 specify the possible outputs Y1,Y2 of
the automata H1 and H2.

4 H1 dominates H2 if and only if G1 ⊆ G2 and A2 ⊆ A1.

This is a reachability analysis problem:

Reach(HA1‖H1)|Y1 ⊆ Reach(HA2‖H2)|Y2 .
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Dominance checking in Ariadne

The approximate reachability routines of Ariadne can be used to
test dominance of components:

1 Compute an ε-lower approximation Lε2 of Reach(HA2‖H2)|Y2 .

2 Remove a border of size ε from Lε2.

3 Compute an outer approximation O1 of Reach(HA1‖H1)|Y1 .

4 If O1 ⊆ Lε2 − ε then Reach(HA1‖H1)|Y1 ⊆ Reach(HA2‖H2)|Y2

and thus H1 dominates H2.

5 If not, we cannot say anything about H1 and H2, and we retry
with a finer approximation.
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Dominance checking in Ariadne

The proof of correctness of the procedure relies on the following
steps:

1 Reach(HA1‖H1)|Y1 ⊆ O1 by definition.

2 O1 ⊆ Lε2 − ε to be verified.

3 Lε2 − ε ⊆ Inner2 under suitable hypotheses.

4 Inner2 ⊆ Reach(HA2‖H2)|Y2 by definition.

Therefore Reach(HA1‖H1)|Y1 ⊆ Reach(HA2‖H2)|Y2 and thus H1

dominates H2.

A sufficient hypothesis to guarantee that Lε2 − ε ⊆ Inner2 is that
Reach(HA2‖H2)|Y2 is a ε-regular set, i.e., there are no holes
“smaller than ε” in the set.
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The water tank again

We want to replace the controller and the valve.

Controller Actuator:
valve

Plant:
tank

w(t) u(t)

xs(t)

p(t)

Sensor
x(t)

δ

The valve is slower than the previous one

The controller is smarter and can fix the valve aperture to any
value w(t) ∈ [0, 1]

Does the system still operate correctly?
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The water tank again

Application of dominance relation in this example:

1 The automaton H1 represents the whole system with new
components (proportional controller, slower valve, sensor,
plant).

2 The automaton H2 represents the whole system with old
components (hysteresis controller, original faster valve, sensor,
plant).

3 A1 and A2 specify the same external input U1 = U2 = p(t),
i.e. the pressure on the valve, so it is A2 = A1.

4 G1 and G2 specify the same output Y1 = Y2 = x(t), i.e., the
water level of the tank, for which it is requested G1 ⊆ G2.

June 2, 2016 Verona, Italy 42 / 1



A proportional controller

w(t) = 1

c0 c1

w(t) = 0

c2
xs(t) ≥ R − 1

KP
xs(t) ≤ Rw(t) = KP (R − xs(t))

xs(t) ≤ R − 1

KP
R − 1

KP
≤ xs(t) ≤ R

xs(t) ≤ R − 1

KP

xs(t) ≥ R xs(t) ≥ R

The input is the measured water level xs(t) provided by the
sensor.

The output is a command signal w(t) ∈ [0, 1] for the valve
position regulation.

The controller computes the output w(t) from the measured
level xs(t) and the water level reference R.

In response to a command w(t) the valve aperture a(t) varies
with the first-order linear dynamics ȧ(t) = 1

τ (w(t)− a(t)).
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A proportional controller

1 Location c0 models when the controller saturates the opening
valve command to w(t) = 1.

2 Location c1 models when the controller tracks the water
reference level R.

3 Location c2 models when the controller saturates the closing
valve command to w(t) = 0.
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Results

ε-lower approximation of the reachable set of the hysteresis
controller:

Assumptions:

Inlet pressure p
between 50 and 60
KPa (KiloPascal)

Sensor’s error between
−0.05 and 0.05 m

The proportional controller dominates the hysteresis controller.
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Results

Outer approximation of the reachable set of the proportional
controller:

Assumptions:

Inlet pressure p
between 50 and 60
KPa (KiloPascal)

Sensor’s error between
−0.05 and 0.05 m

The proportional controller dominates the hysteresis controller.
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Parametric verification

A system can be partially specified

environmental parameters outside the control of the designer
and for which there may be imperfect knowledge

design parameters that can be fixed by the designer, but
whose admissible values are not necessarily known a priori

Ariadne allows parametric verification

exhaustively check all possible values of the parameters

determine the value for the design parameters for which the
component respects the guarantees, for all possible values of
the environmental parameters
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Parametric dominance results

Obtained for different values of two parameters: the gain KP and
the reference height R of the proportional controller.

Green: proportional
dominates hysteretic for
all points;

Red: proportional does
not dominate hysteretic in
at least one point;

Yellow: insufficient
accuracy to obtain a
result.
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