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• Networked Embedded Systems (NES) are an 
important class of devices

– Network functionalities are at the core of design 

objectives

– Network requirements come together with 

Introduction

– Network requirements come together with 

traditional requirements

• Distributed Embedded Systems  are group of 
NES which are connected together using network 
interfaces,  standardized protocols and channels

– Example: Temperature control of a building
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Introduction

Temperature control of a building

• Scenario:

– Hundreds of concurrent tasks.

– Heterogeneous tasks.

– Devices with different capabilities.

A C S

Activation 
of a set of

independent
coolers

Temperature 
sensing
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– Devices with different capabilities.

– Wireless and wired channels.

– Many communication protocols.

– Nodes position affects system performance.

• Questions:

– How many nodes?

– How to assign tasks to nodes?

– Which network protocols?

– Which intermediate systems?

A C S

A C S

Communication
infrastructure



Application requirements: functional & non-functional

Model-driven design

Traditional design flow for embedded systems:

Introduction
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Platform  description:

IP blocks (CPU, memory, ASIC)

Design-space 

Exploration 

(DSE) 
HW/SW partitioning

Final result



a = b AND c

HW/SW partitioning:

Introduction
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High level function model

a

b f

modelingF(a,b,c)= a AND (not b) AND c

Introduction
Hardware design:
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Software development 

• Functionality is described with different 
languages and an automatic process is used  
to generate assembly code for different target 
CPU’s

Application space
Java, C, Perl, Python
(functions, classes , 

template)

Introduction

CPU’s

• Modeling of the functionality: High level 
languages

• Automatic synthesis: Compilers  

Architectural 
space

Instruction sets 
(Intel, ARM)
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Introduction
• Distributed embedded system as a single system to be 

designed

Zone IZone IZone IZone I Zone VZone VZone VZone V Zone VIZone VIZone VIZone VI
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Zone IIZone IIZone IIZone II Zone IIIZone IIIZone IIIZone III



Application requirementsSteps of state-of-the-art system design flow

Additional steps for network design

Formal network 
model

Computational 
and 

communication 
requirements

Introduction
New design flow for NES
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Platform 
description

Design-space 
exploration 

of nodes

NW DSE
& Network
Synthesis

Network-aware
description

of the application

Channel & protocol 
description



Introduction
• Start from an abstract Model-Based System Specification

• Modeling and Analysis of Real-Time and Embedded 

Systems (MARTE) profile for the unified modeling 

language (UML)

• Refinement steps and simulations
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• Refinement steps and simulations

• Standard representation of requirement and solutions



Background
• Design of the network infrastructure starting from a 

library of nodes and channels (Network synthesis)

– Communication Aware Specification and Synthesis 

Environment (CASSE), [FDL 2010]
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– COmmunication Synthesis Infrastructure framework 

(COSI), [IEEE TASE '12]

• Open issue : Both approaches do not rely on a standard 

representation of requirements (from the initial user 

specification) and solutions



Key idea
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Proposed methodology

Application 
requirements

SystemC /TLM

Description of 
actual nodes 
& channels

Environment
description

Tasks & Data 
flows

Distributed
architecture

SystemC Network
Simulation

Library (SCNSL)

Modeling

requirements

14

Task implementation

CASSE/ 
manipulation

Throughput & 
Latency

requirements

Communication & computation
requirements Environment constraints 
Description of actual nodes and 
channels

Nodes & 
channels
allocation

Network statistics:
packet loss rate, 

delay

System 

View 

Simulation
Network 

synthesis

Network 

View 

Simulation
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Task implementation

CASSE/ 
manipulation

Throughput & 
Latency

requirements

Communication & computation
requirements Environment constraints 
Description of actual nodes and 
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Nodes & 
channels
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Network statistics:
packet loss rate, 
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Modeling requirements

• The main aspects to be represented in UML/MARTE are:

– Tasks, data flows, nodes, channels and the external environment

16

Task Task

Node

Channel

Data flow

Environment

Node



Modeling requirements

• Generic Quantitative Analysis Modeling (GQAM) sub-profile of 
MARTE profile are used to specify the semantics of some classes 
and their attributes

• This is the first time that GQAM is used to model the network
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Modeling requirements

• Modeling of constraint:

– Application constraints are specified by using cardinality on the 

relationships between classes

• Example of constraint: “maximum one instance of t3 can be 
assigned to a single node”assigned to a single node”
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Application 
requirements

SystemC /TLM

Description of 
actual nodes 
& channels

Environment
description

Tasks & Data 
flows

Distributed
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SystemC Network
Simulation

Library (SCNSL)
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System view simulation

• UML/MARTE class diagram is extracted 
and used to  generate SystemC/TLM model 

– Transformations are straight forward also 

(Villar,2009 and Vanderperren,2008)

• Execution of the SystemC model• Execution of the SystemC model

– Validate of functional behavior of the 

application

– Fine-tune implementation details such as the 

content of exchanged messages and their 

sending rates

• Back annotation of throughput, latency and 
max error rate inside UML/MARTE model
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Network synthesis

• All the information about user constraints, communication 
requirements and actual channels and nodes are extracted from the 
UML/MARTE model and translated into Network synthesis 
mathematical representation 

• CASSE provides a mathematical notation to specify the network • CASSE provides a mathematical notation to specify the network 
dimension of a distributed embedded system, preparing the way for 
network synthesis

Dataflow(f4) = [t3, t4, [3, 1, 0.3]].
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Network synthesis cont’d

Set of tasks & data flows

UML deployment diagram:
Assignment of tasks inside nodes

and data flows inside channels

NW 
Synthesis
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The building geometry

Technological library

(network nodes and channels)
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The building geometry

Technological library

(network nodes and channels)



Manipulation

• This step aims at obtaining several NW 
alternatives which are equivalent from the 
network perspectivenetwork perspective

• Mathematical-based rules

– Divide

– Split

– Merge

– Aggregate
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Network view simulation

• SCNSL is an extension of SystemC to allow modeling packet-based 
networks 

– It allows the easy and complete modeling of distributed applications of networked 

embedded systems such as wireless sensor networks, routers, and distributed 

plant controllersplant controllers
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SCNSL

Task 
t3

Task 
t4

Task 
t5

Node 

n9 Node 

n9

Channel
a2UML deployment diagram



Network view simulation

• Correspondence between UML/MARTE and SCNSL elements

UML/MARTE SCNSL

33E. Ebeid, F. Fummi, D. Quaglia, F. Stefanni

UML/MARTE SCNSL

Node (n1) n1 = scnsl->createNode();

Channel (ch)

bound to node (n1)

CoreChannelSetup t ccs;

ch = scnsl->createChannel(ccs);

BindSetup base t bsb1;

scnsl->bind(n1,ch,bsb1);

Data flow between task (t1) 

and task (t2)

CoreCommunicatorSetup t ccoms;

mac1 = scnsl ->createCommunicator(ccoms);

scnsl->bind(& t1,& t2,ch,bsb1,mac1);



Case study

• one instance of 
actuator should 
be placed in 
each zone

• max……

+
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User 
requirement

System 
View

modeling

NW synthesis tool



Case study cont’d

NW view 
modeling
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Network simulator (SCNSL)



Case study cont’d

NW 
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NW 
simulation 
statistics



Case study cont’d

NW 
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NW 
simulation 
statistics

NW manipulation



Summary

• User requirements and constraints has been modeled by using 
UML/MARTE profile and simulated by SystemC/TLM at system view 
level

• Simulation results has been used to refine the user model

• Network synthesis tools have been used to solve the application 
problem

• Network solutions have been modeled and simulated by using 
SCNSL

• Network statistics have been used for the final refinement of 
application model 

• Manipulation and Automatic design-space exploration
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Conclusions

• Some UML/MARTE diagrams and stereotypes have been used as a 
first time to represent the building blocks of a distributed embedded 
application

– Elements from the MARTE specification have been applied to the context of 

distributed embedded applicationsdistributed embedded applications

• Some gaps in MARTE standard have been identified concerning the 
representation of constraints and attributes related to error rate 
information

• SystemC code has been generated for both functional and network-
aware simulation
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A UML-centric design flow for networked embedded systems 
has been created


