
Davide Quaglia

Assistant Professor @ CS depart

University of Verona, Italy

Davide.Quaglia@univr.it

Emad Ebeid

Ph.D. @ CS depart

University of Verona, Italy

Emad.Ebeid@univr.it

2

• Networked Embedded Systems (NES) are an
important class of devices

– Network functionalities are at the core of design

objectives

– Network requirements come together with

Introduction

– Network requirements come together with

traditional requirements

• Distributed Embedded Systems are group of
NES which are connected together using network
interfaces, standardized protocols and channels

– Example: Temperature control of a building

3

Introduction

Temperature control of a building

• Scenario:

– Hundreds of concurrent tasks.

– Heterogeneous tasks.

– Devices with different capabilities.

A C S

Activation
of a set of

independent
coolers

Temperature
sensing

4

– Devices with different capabilities.

– Wireless and wired channels.

– Many communication protocols.

– Nodes position affects system performance.

• Questions:

– How many nodes?

– How to assign tasks to nodes?

– Which network protocols?

– Which intermediate systems?

A C S

A C S

Communication
infrastructure

Application requirements: functional & non-functional

Model-driven design

Traditional design flow for embedded systems:

Introduction

5

Platform description:

IP blocks (CPU, memory, ASIC)

Design-space

Exploration

(DSE)
HW/SW partitioning

Final result

a = b AND c

HW/SW partitioning:

Introduction

6

b

c
a

{

a = b && c;

}

High level function model

a

b f

modelingF(a,b,c)= a AND (not b) AND c

Introduction
Hardware design:

b

c

Mapping

a

b

c

f

f

A
u
to

m
a
ti
c
 S

y
n
th

e
s
is

7

Software development

• Functionality is described with different
languages and an automatic process is used
to generate assembly code for different target
CPU’s

Application space
Java, C, Perl, Python
(functions, classes ,

template)

Introduction

CPU’s

• Modeling of the functionality: High level
languages

• Automatic synthesis: Compilers

Architectural
space

Instruction sets
(Intel, ARM)

8

Introduction
• Distributed embedded system as a single system to be

designed

Zone IZone IZone IZone I Zone VZone VZone VZone V Zone VIZone VIZone VIZone VI

9

Zone IIZone IIZone IIZone II Zone IIIZone IIIZone IIIZone III

Application requirementsSteps of state-of-the-art system design flow

Additional steps for network design

Formal network
model

Computational
and

communication
requirements

Introduction
New design flow for NES

10

Platform
description

Design-space
exploration

of nodes

NW DSE
& Network
Synthesis

Network-aware
description

of the application

Channel & protocol
description

Introduction
• Start from an abstract Model-Based System Specification

• Modeling and Analysis of Real-Time and Embedded

Systems (MARTE) profile for the unified modeling

language (UML)

• Refinement steps and simulations

11

• Refinement steps and simulations

• Standard representation of requirement and solutions

Background
• Design of the network infrastructure starting from a

library of nodes and channels (Network synthesis)

– Communication Aware Specification and Synthesis

Environment (CASSE), [FDL 2010]

12

– COmmunication Synthesis Infrastructure framework

(COSI), [IEEE TASE '12]

• Open issue : Both approaches do not rely on a standard

representation of requirements (from the initial user

specification) and solutions

Key idea

13

Proposed methodology

Application
requirements

SystemC /TLM

Description of
actual nodes
& channels

Environment
description

Tasks & Data
flows

Distributed
architecture

SystemC Network
Simulation

Library (SCNSL)

Modeling

requirements

14

Task implementation

CASSE/
manipulation

Throughput &
Latency

requirements

Communication & computation
requirements Environment constraints
Description of actual nodes and
channels

Nodes &
channels
allocation

Network statistics:
packet loss rate,

delay

System

View

Simulation
Network

synthesis

Network

View

Simulation

Application
requirements

SystemC /TLM

Description of
actual nodes
& channels

Environment
description

Tasks & Data
flows

Distributed
architecture

SystemC Network
Simulation

Library (SCNSL)

Modeling

requirements

15

Task implementation

CASSE/
manipulation

Throughput &
Latency

requirements

Communication & computation
requirements Environment constraints
Description of actual nodes and
channels

Nodes &
channels
allocation

Network statistics:
packet loss rate,

delay

Modeling requirements

• The main aspects to be represented in UML/MARTE are:

– Tasks, data flows, nodes, channels and the external environment

16

Task Task

Node

Channel

Data flow

Environment

Node

Modeling requirements

• Generic Quantitative Analysis Modeling (GQAM) sub-profile of
MARTE profile are used to specify the semantics of some classes
and their attributes

• This is the first time that GQAM is used to model the network

17

Modeling requirements

• Generic Quantitative Analysis Modeling (GQAM) sub-profile of
MARTE profile are used to specify the semantics of some classes
and their attributes

• This is the first time that GQAM is used to model the network

18

Modeling requirements

• Generic Quantitative Analysis Modeling (GQAM) sub-profile of
MARTE profile are used to specify the semantics of some classes
and their attributes

• This is the first time that GQAM is used to model the network

19

Modeling requirements

• Generic Quantitative Analysis Modeling (GQAM) sub-profile of
MARTE profile are used to specify the semantics of some classes
and their attributes

• This is the first time that GQAM is used to model the network

20

Modeling requirements

• Generic Quantitative Analysis Modeling (GQAM) sub-profile of
MARTE profile are used to specify the semantics of some classes
and their attributes

• This is the first time that GQAM is used to model the network

21

Modeling requirements

• Generic Quantitative Analysis Modeling (GQAM) sub-profile of
MARTE profile are used to specify the semantics of some classes
and their attributes

• This is the first time that GQAM is used to model the network

22

Modeling requirements

• Modeling of constraint:

– Application constraints are specified by using cardinality on the

relationships between classes

• Example of constraint: “maximum one instance of t3 can be
assigned to a single node”assigned to a single node”

23

Application
requirements

SystemC /TLM

Description of
actual nodes
& channels

Environment
description

Tasks & Data
flows

Distributed
architecture

SystemC Network
Simulation

Library (SCNSL)

24

Task implementation

CASSE/
manipulation

Throughput &
Latency

requirements

Communication & computation
requirements Environment constraints
Description of actual nodes and
channels

Nodes &
channels
allocation

Network statistics:
packet loss rate,

delay

System

View

Simulation

System view simulation

• UML/MARTE class diagram is extracted
and used to generate SystemC/TLM model

– Transformations are straight forward also

(Villar,2009 and Vanderperren,2008)

• Execution of the SystemC model• Execution of the SystemC model

– Validate of functional behavior of the

application

– Fine-tune implementation details such as the

content of exchanged messages and their

sending rates

• Back annotation of throughput, latency and
max error rate inside UML/MARTE model

25

Application
requirements

SystemC /TLM

Description of
actual nodes
& channels

Environment
description

Tasks & Data
flows

Distributed
architecture

SystemC Network
Simulation

Library (SCNSL)

26

Task implementation

CASSE/
manipulation

Throughput &
Latency

requirements

Communication & computation
requirements Environment constraints
Description of actual nodes and
channels

Nodes &
channels
allocation

Network statistics:
packet loss rate,

delay

Network

synthesis

Network synthesis

• All the information about user constraints, communication
requirements and actual channels and nodes are extracted from the
UML/MARTE model and translated into Network synthesis
mathematical representation

• CASSE provides a mathematical notation to specify the network • CASSE provides a mathematical notation to specify the network
dimension of a distributed embedded system, preparing the way for
network synthesis

Dataflow(f4) = [t3, t4, [3, 1, 0.3]].

27

Network synthesis cont’d

Set of tasks & data flows

UML deployment diagram:
Assignment of tasks inside nodes

and data flows inside channels

NW
Synthesis

28

The building geometry

Technological library

(network nodes and channels)

Network synthesis cont’d

Set of tasks & data flows

UML deployment diagram:
Assignment of tasks inside nodes

and data flows inside channels

NW
Synthesis

29

The building geometry

Technological library

(network nodes and channels)

Manipulation

• This step aims at obtaining several NW
alternatives which are equivalent from the
network perspectivenetwork perspective

• Mathematical-based rules

– Divide

– Split

– Merge

– Aggregate

30

Application
requirements

SystemC /TLM

Description of
actual nodes
& channels

Environment
description

Tasks & Data
flows

Distributed
architecture

SystemC Network
Simulation

Library (SCNSL)

31

Task implementation

CASSE/
manipulation

Throughput &
Latency

requirements

Communication & computation
requirements Environment constraints
Description of actual nodes and
channels

Nodes &
channels
allocation

Network statistics:
packet loss rate,

delay

Network

View

Simulation

Network view simulation

• SCNSL is an extension of SystemC to allow modeling packet-based
networks

– It allows the easy and complete modeling of distributed applications of networked

embedded systems such as wireless sensor networks, routers, and distributed

plant controllersplant controllers

32

SCNSL

Task
t3

Task
t4

Task
t5

Node

n9 Node

n9

Channel
a2UML deployment diagram

Network view simulation

• Correspondence between UML/MARTE and SCNSL elements

UML/MARTE SCNSL

33E. Ebeid, F. Fummi, D. Quaglia, F. Stefanni

UML/MARTE SCNSL

Node (n1) n1 = scnsl->createNode();

Channel (ch)

bound to node (n1)

CoreChannelSetup t ccs;

ch = scnsl->createChannel(ccs);

BindSetup base t bsb1;

scnsl->bind(n1,ch,bsb1);

Data flow between task (t1)

and task (t2)

CoreCommunicatorSetup t ccoms;

mac1 = scnsl ->createCommunicator(ccoms);

scnsl->bind(& t1,& t2,ch,bsb1,mac1);

Case study

• one instance of
actuator should
be placed in
each zone

• max……

+

34

User
requirement

System
View

modeling

NW synthesis tool

Case study cont’d

NW view
modeling

35

Network simulator (SCNSL)

Case study cont’d

NW

36

NW
simulation
statistics

Case study cont’d

NW

37

NW
simulation
statistics

NW manipulation

Summary

• User requirements and constraints has been modeled by using
UML/MARTE profile and simulated by SystemC/TLM at system view
level

• Simulation results has been used to refine the user model

• Network synthesis tools have been used to solve the application
problem

• Network solutions have been modeled and simulated by using
SCNSL

• Network statistics have been used for the final refinement of
application model

• Manipulation and Automatic design-space exploration

38

Conclusions

• Some UML/MARTE diagrams and stereotypes have been used as a
first time to represent the building blocks of a distributed embedded
application

– Elements from the MARTE specification have been applied to the context of

distributed embedded applicationsdistributed embedded applications

• Some gaps in MARTE standard have been identified concerning the
representation of constraints and attributes related to error rate
information

• SystemC code has been generated for both functional and network-
aware simulation

39

A UML-centric design flow for networked embedded systems
has been created

