
1

Pipelining

2

Outline

Pipelining basics
The Basic Pipeline for DLX & MIPS
Pipeline hazards

Structural Hazards
Data Hazards
Control Hazards

Handling exceptions
Multi-cycle operations

3

Pipelining basics

Basic idea: exploit concurrency of independent
operations

Split one operation into independent sub-operations

A

100s

20s

A3 A5A4A1 A2

One computation is
launched every 100 s

One computation is
launched every 20 s

4

Pipelining: example

Laundry Example
A, B, C, D each have one
load of clothes to wash,
dry, and fold
Washer takes 30 minutes

Dryer takes 40 minutes

“Folder” takes 20 minutes

1 operation = wash+dry+fold = 90 min.

A B C D

5

Pipelining: example (2)

Sequential laundry takes 6 hours for 4 loads

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

6

Pipelining: example (3)

Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

7

Pipelining Lessons

Pipelining doesn’t help latency of single task
It helps throughput of entire workload =>
CPI is decreased !

Pipeline rate limited by slowest pipeline stage
Multiple tasks operating simultaneously
Potential speedup = Number of pipe stages

Unbalanced lengths of pipe stages reduces speedup

Time to “fill” pipeline and time to “drain” it
reduces speedup

8

Applying pipelining to hardware

Implementation of pipelining requires a way to
store intermediate results

In hardware, the output of each stage must be stored
using latches (flip-flops)

A3 A5A4A1 A2

A3 A5A4A1 A2

Pipeline latches

9

Applying pipelining to hardware (2)

What prevents us from just doing too many pipe
stages?

Some computations just won’t divide into any shorter
logical implementations
Ultimately, it comes down to circuit design issues

• Latches have delays!!!
• Time for a signal to be stable before clock edge
• Time for a signal to be stable after clock edge

In practice:
Modern pipelines: 10-20 stages (e.g. Pentium4, Xeon)
More than 20 not beneficial!

10

Pipeline performance

Tmono = clock period of non-pipelined computation
τmono = exec time of overall (non-pipelined) computation
τp = exec time of overall (pipelined) computation
τi = exec time of i-th pipeline stage
τl = latency of latches
k = # of pipeline stages
Tp = clock period of pipelined computation

Tp = maxi=1,…,k {τi} + τl τp = k Tp

µ = execution rate (# of instructions for time unit)
µmono = 1/Tmono µp = 1/Tp

Tmono , Tp = average instruction execution times

11

Pipeline performance (2)

Average execution rate:
To complete n instructions starting from an empty pipe
[k+(n-1)] clock cycles are needed

Efficiency (utilization): % of time in which the
CPU is busy

= ratio of average rate and ideal rate

For n → ∞, µp → 1/Tp

For n → ∞, η → 1

12

Pipeline performance (3)

Speedup:
Ration between the speed of pipelined and non-
pipelined

Example:
5 stages (50ns, 50ns, 60ns, 50ns, 50ns)
Latch delay = 5ns

Tmono = τmono = 50+50+60+50+50 = 260ns
Tp = 60 + 5 = 65ns τp = 5*65ns = 325 ns > τmono

µmono = 1/Tmono µp = 1/Tp

α = 260/65 = 4.0 speedup

α = µp / µmono = Tmono / Tp

13

Two views of pipelining

W.r.t. single-cycle implementation
Reduces Tcycle

• ~ 1/k

Improves average instruction execution time

W.r.t. multi-cycle implementation
Reduces CPI

• ~ 1/k

Improves average instruction execution time

14

The MIPS pipeline

15

MIPS pipeline stages

Pipelining execution = split execution into stages
What and how many stages?

Stage 1: Instruction Fetch (IF)
Stage 2: Instruction Decode (ID)
Stage 3: Execute (EX)
Stage 4: Memory Access (ME)
Stage 5: Write Back (to register file) (WB)

16

MIPS ISA summary

32 registers
$0,…,$31

230 flat memory addressing
3 instruction formats

Fixed size = 32 bit

Will see FP instructions later

0-5 6-10 11-15 16-20 20-24 25-31

16-31

6-31

17

MIPS without pipelining

Control logic not shown!

18

The Basic Pipeline For MIPS

Latch names use boundary unit names
IF/ID
ID/EX
EX/MEM
MEM/WB

19

Pipeline features

Execution is based on separate data and
instruction memory

Typically implemented as separate I- and D- caches

Register file is used in ID and in WB
What if a read and write are to the same register?

PC assignment done in IF
But branches may modify it later…

20

Pipeline analysis (2)

Control overhead
Need extra logic to control execution
Limited to the proper assignment of the various
multiplexers and control signals

regR/W

ALUsrc1,2ALUop
R/W

MemToReg

21

MIPS pipeline functions (1)

Instruction Fetch (IF):
Send out the PC and fetch the instruction from memory into the
instruction register (IR)
Increment the PC by 4 to address the next sequential instruction.

IR holds the instruction that will be used in the next stage.
NPC holds the value of the next PC.

Passed To Next Stage

IR <- Mem[PC]
NPC <- PC + 4

22

MIPS pipeline functions (2)

Instruction Decode/Register Fetch Cycle (ID):
Decode instruction and access the register file to read the registers.
The outputs of the general purpose registers are read into two
temporary registers (A & B) for use in later clock cycles.
We extend the sign of the lower 16 bits of the Instruction Register

Passed To Next Stage
A <- Regs[IR6…10];
B <- Regs[IR11…15];
Imm <-((IR16)## IR16-31)

23

MIPS pipeline functions (3)

Execute Address Calculation (EX):
Perform an operation (for an ALU) or
an address calculation (if a load or a Branch).

• If an ALU, actually do the operation
• If an address calculation, figure out how to obtain the address and

stash away the location of that address for the next cycle

Passed To Next Stage
Memory reference

•ALUOutput <= A + Imm
ALU op (reg-reg)

•ALUOutput <= A op B
ALU op (reg-imm)

•ALUOutput <= A op Imm
Branch

•ALUOutput <= PC +Imm
•Cond <= A op 0

24

MIPS pipeline functions (4)

Memory access (MEM):
If this is an ALU op, do nothing.
If a load or store, then access memory.

Passed To Next Stage
Memory reference

LMD<= Mem(ALUOutput)
or
Mem(ALUOutput)<= B

Branch
if (cond)
PC <= ALUOutput

else
PC <= NPC

25

MIPS pipeline functions (5)

Write back (WB):
Update the registers from either the
ALU or from the data loaded.

Passed To Next Stage
ALU op (reg-reg)

Regs(IR16…20) <=
ALUOutput

ALU op (reg-imm)
Regs(IR11…15) <=
ALUOutput

Load
Regs(IR11…15) <=
ALUOutput

26

The Basic Pipeline For MIPS (2)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

I
n
s
t
r.

O
r
d
e
r

I1

I2

I3

I4

…

27

Pipeline stages and functions
Summary:

28

MIPS pipeline: Example (1)

Operation sequence:
lw $10, 20($1) // mem[$1+20] -> $10
sub $11, $2, $3

29

MIPS pipeline: Example (2)

30

MIPS pipeline: Example (3)

31

MIPS pipeline: Example (4)

32

MIPS pipeline: Example (5)

33

MIPS pipeline: Example (6)

34

MIPS pipeline: Example (7)

35

Pipeline hazards

36

Pipeline Hazards

Hazards: conditions that lead to incorrect behavior
if not fixed
Hazards are due to dependencies:

Dependencies are a property of a program:
• Data dependencies

• Instruction j uses the result of instruction i
• Control dependencies

• The execution of instruction j depends on the result of instruction i

Hazards = how dependencies manifest in the pipeline

37

Types of hazards

Structural hazards
Two different instructions use same resource in the same cycle

Data hazards
Two different instructions use same storage
Must appear as if the instructions execute in correct order

Control hazards
One instruction affects which instruction is next

Solution:
Specific pipeline interlock logic detects hazards and fixes them

• Simple solution: stall the pipeline
• increases CPI, decreases performance

• More complex solutions available

38

Structural hazards

39

Structural Hazards: example

When two or more
different instructions
want to use same
hardware resource
in same cycle

e.g., MEM uses the
same memory port
as IF as shown in
this slide.

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

40

Tackling structural hazards (1)

Stall
low cost, simple

• Block PC increment on hazard & fill pipe registers with 0’s
Increases CPI

• Used for rare cases since stalling has performance effect

Pipeline hardware resource
useful for multi-cycle resources
good performance

• sometimes complex e.g., RAM

Replicate resource
good performance
increases cost (+ maybe interconnect delay)

• useful for cheap or divisible resources

41

Tackling structural hazards (2)

Structural hazards are reduced with these rules:
Each instruction uses a resource at most once
Always use the resource in the same pipeline stage
Use the resource for one cycle only
Many RISC ISAs are designed with this in mind

• Sometimes very complex to do this

Some common structural hazards:
Memory instructions (load/stores)
Floating point instructions

• Since many floating point instructions require many cycles,
it’s easy for them to interfere with each other.

42

Tackling structural hazards (3)

Load/Store hazards can be removed by:
Using separate instruction and data memories

• Usually in the form of I- and D-caches
• Do not solve the issue completely!

Using dual- (or multi-) port memories
• Two or more simultaneous read/writes are possible!

43

Pipeline stalls (1)

Stalling the pipeline is the simplest possible
solution

Stalling is implemented by inserting one or more
“bubbles” in the pipeline

Clearly, the amount of stalling impacts the
performance speedup

Approximate analysis:
• α = Tp / Torig

• Assuming β = % of stall cycles

α’ = Tp / (Torig * (1+ β))
Example:

• α = 5, β = 15% => α‘ = 5/1.15 = 4.34

44

Pipeline stalls (2)

I
n
s
t
r.

O
r
d
e
r

Load

Instr 1

Instr 2

Stall

Instr 3

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

45

Pipeline stalls (3)

Another view of stalling

46

Structural hazard: comments

Removing a structural hazard depends on its
“importance”

Example:
• Hazards due to memory have a significant impact

• Memory accesses are “popular”
• Hazards due to FP operations don’t

• FP operations are not very frequent

Example 2:
• FP multiplication not pipelined in MIPS (5 cycles)
• Impact on CPI depends on:

• Frequency of FP multiplication (%)
• Distribution of FP multiplication (clustered or not)

• Average case:
• With uniform distribution of FP mult., we can tolerate 1 FP mult

each 5 instructions (20%) with negligible penalty

47

Data hazards

48

Data Hazards

Data hazards occur when there are instructions
that need to access the same data (memory or
register) locations.
Typical situation:

instruction A precedes instruction B
and B manipulates (reads or writes) data
before A does.
Violation of the instruction order
• The architecture implies that A completes entirely before B!

49

Data hazards: example

Instruction sequence:
ADD R1, R2, R3
SUB R4, R5, R1
AND R6, R1, R7
OR R8, R1, R9
XOR R10, R1, R11

All instructions use the result of the ADD (R1)
Problem:

• SUB will read the wrong value of R1!!!
• 2nd AND as well

50

Data hazards: example (2)

Visualization:

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

IF ID EX MEM WB

51

Data hazards classification (1)

Read After Write (RAW)
Instr j tries to read operand before Instr i writes it

I: add r1,r2,r3
J: sub r4,r1,r3

52

Data hazards classification (2)

Write After Read (WAR)
Instr j tries to write operand before Instr i reads it

Cannot happen in our pipeline
• All instructions take 5 stages
• Reads are always in stage 2
• Writes are always in stage 5
• Only for pipelines with “late” read

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

53

Data hazards classification (2)

Write After Write (WAW)
Instr j tries to write operand before Instr i writes it

Leaves wrong result (instr i)
Cannot happen in our pipeline

• All instruction take 5 stages
• Writes are always in stage 5
• Only for pipelines with variable length pipelines

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

54

Data hazards removal

Simple Solution to RAW
Hardware detects RAW and stalls

+ low cost to implement, simple
- reduces IPC

Not enough: Should try to minimize stalls

Minimizing RAW stalls
Forward (bypass, short-circuit)
Instruction scheduling

55

Forwarding

Forwarding is the concept of making data available
to the input of the ALU for subsequent instructions

Even if the generating instruction has not arrived
yet to WB

Concept can be extended:
Forward = passing a result to the functional
unit that requires it

Implementation:
Specific forwarding logic required (detection logic)
Impact on control unit

56

Forwarding unit

Regular
path

57

Forwarding

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

58

Forwarding & stalls

There are some instances where hazards occur,
even with forwarding.

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

The data is not loaded
until after the MEM stage.

59

Forwarding & stalls (2)

Actual execution:

or r8,r1,r9

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

60

Compiler scheduling for
data hazards

Many stalls are frequent:
Example: Code for A=B+C causes a stall for load of B
LW r1,B
LW r2,C
ADD r3,r1,r2
SW A,r3

Rather than just stall, the compiler can schedule
instructions so as to avoid the hazard

Pipeline scheduling (or instruction scheduling)
• Static scheme

WBMEMEXIDStallIF

WBMEMEXStallIDIF

WBMEMEXIDIF

WBMEMEXIDIF

61

Compiler scheduling for
data hazards (2)

Example:
a = b + c
d = e – f

Slow code:
LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW a,Ra
LW Re,e
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Fast code:
LW Rb,b
LW Rc,c
LW Re,e
ADD Ra,Rb,Rc
LW Rf,f
SW a,Ra
SUB Rd,Re,Rf
SW d,Rd

62

Data Hazards

With pipeline scheduling

% loads stalling pipeline

0% 20% 40% 60% 80%

tex

spice

gcc

25%

14%

31%

65%

42%

54%

scheduled unscheduled

63

Control hazards

64

Control Hazards

Control hazards occur when executing branch
(or jump) instructions

Cannot fetch any new instructions until we know the
branch destination (i.e., end of MEM stage)

Example:
40 sub $10, $4, $8
44 add $1, $10, $11
48 beq $1, $3, 20 // jumps to 48+4+20 = 72 if cond.
52 add $1, $2, $3
…
72 lw $4, 0($1)

New PC is known only after
the result of the comparison
$1=$3 is known:
a) PC = PC+4
b) PC = 72

65

Branch Stall Impact

Branches are critical: each branch causes 3 stall cycles

Branch inst.
Branch successor
Branch successor+1
…

Example:
If CPI = 1, 30% branch, Stall 3 cycles => new CPI = 1.9 !!!

Solution must deal with:
Determination of branch taken or not earlier

AND
Computation of taken branch address earlier

EXIDIF

MEMEXIDIF

WBMEMEXIDIFStallStallIF

WBMEMEXIDIF

66

Handling branches

MIPS pipeline:
Result of branch tests is explicitly tested
(normally in MEM stage)

First solution:
Move test to ID stage

• Must be fast
• compares with 0 are simple
• >=, <=, >, < must OR all bits
• more general tests need ALU

Add an adder to calculate new PC in ID stage
• Both taken and not-taken PC are calculated

(Always) 1 clock cycle penalty for branch (instead of 3)

67

Handling branches (2)

Anticipating branch target calculation

Taken PC
T/NT

68

Branch analysis

Classification
Conditional branches

• Forward branches
• Backward branches

Unconditional
• Jumps

Taken/not taken
distribution:
67% of all
conditional
branches
are taken

0

2

4

6

8

10

12

14

FW conditional BW conditional Unconditional

Integer benchmarks

FP benchmarks

SPEC95 distribution

0

10

20

30

40

50

60

70

80

90

co
m

pr
es

s

eq
nt

ot
t

es
pr

es
so gc

c li

do
du

c

ea
r

hy
dr

o2
d

m
dl

jd
p

su
2c

or

fw taken
bw taken

% of all conditional branches

% of executed instructions

69

Branch prediction techniques

Stalls branch hazards can be almost completely
eliminated
Solutions:

Static predictions on the result of a conditional branch
(taken/not taken)
• Compiler-driven
1. Predict Branch Not Taken
2. Predict Branch Taken
3. Delayed Branch

Dynamic predictions
• Hardware-driven

70

Predict Branch Not Taken (1)

Execute successor instructions in sequence
(as if branch were not executed)

In ID actual condition is evaluated:
• If not taken, OK (no penalty!)
• If taken, we must:

• Replace current instruction with a NOP
• One stall cycle in pipeline if branch actually taken

Care must be taken not to change the machine state
until the branch outcome is definitely known.
Problem: only 33% of branches are untaken…

71

Predict Branch Not Taken (2)

Example

72

Predict Branch Taken

Predict Branch Taken
67% branches taken on average
Execute instruction corresponding to branch target
address
No advantage (but the higher probability):
• branch target address in MIPS is known no earlier

than branch result (regardless of anticipation)
• Still one cycle branch penalty

• On other machines: branch target may be known before outcome

73

Delayed branch (1)

Generic structure:
branch instruction
sequential successor1
sequential successor2
........
sequential successorn
branch target if taken

Branch delay slot (BDS) = the number of cycles
required to resolve branch

• In MIPS, BDS = 1

In practice, execute the instruction(s) in the BDS
regardless of the branch result

Fall-through: instructions that could
be executed while determining the
result of the branch test

74

Delayed Branch (2)

What instructions are used to fill BDS?
Three options:

• From before the branch
• From the target address
• From fall through

Who fills BDS?
Typically done by the compiler!
Could be the programmer

75

Delayed Branch (3)

a) From before:
Best solution, used when possible
Branch must not depend on the
rescheduled instructions

b) From target:
Sub-optimal
Usually the target instruction will
need to be copied because it can
be reached by another path
Effective for highly-taken branches

c) From fall through
Effective for highly-not-taken
branches

To make this optimization legal for
(b) and (c), it must be OK to
execute the SUB instruction when
the branch goes in the unexpected
direction.

That is, work might be wasted
but the program will still execute
correctly.

76

Canceling branch

To improve the ability of the compiler to fill branch
delay slots, most machines with conditional
branches have a cancelling branch:

If the branch behaves as predicted, the instruction in
the branch delay slot is executed as in a delayed branch
If the branch is incorrectly predicted, the instruction in
the delay slot is turned into a NOP

Result:
Requirements on the instruction placed in the delay slot
are removed

• Solutions b) and c) are now usable

77

Canceling branch (2)

Example:

Predicted-taken canceling branch

Executed anyway,
but made a NOP

78

Evaluating Branch Alternatives

CPIpipelined = CPIideal + # of stall cycles per instruction =
= 1+ # of stall cycles per instruction

Scheduling Branch CPI speedup v. Speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.42 3.5 1.0
Predict taken 1 (0.33) 1.14 4.4 1.26
Predict not taken 1 (0.67) 1.09 4.5 1.29
Delayed branch 0.5 1.07 4.6 1.31

Conditional & unconditional branches= 14%, 65% change PC
NOTE: (ex.: 1.42 = 1 + 3*0.14)

Pipeline speedup = Pipeline depth
1 +Branch frequency ×Branch penalty

79

Filling branch delay slots

Compiler effectiveness for single branch delay slot:
Fills about 60% of branch delay slots
About 80% of instructions executed in branch delay
slots useful in computation
About 50% (60% x 80%) of slots usefully filled

Not very used anymore
Availability of HW resources allows dynamic (HW)
branch prediction

80

Compiler-driven branch prediction

Branch prediction could be done during
compilation

Still a static prediction
Can help compiler to decide how to fill BDSs

Two strategies:
Static analysis of program behavior

• Backward branch predict taken, forward branch not taken
• Based on statistics

Using profile (i.e., run time) information
• Record branch behavior, predict branch based on prior run

81

Compiler-driven branch
prediction (2)

Prediction from static analysis

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

n

0%

10%

20%

30%

40%

50%

60%

70%

al
vi

nn

co
m

pr
es

s

do
du

c

es
pr

es
so gc

c

hy
dr

o2
d

m
dl

js
p2 or

a

sw
m

25
6

to
m

ca
tv

M
is

pr
ed

ic
tio

n
Ra

te
0%

2%

4%

6%

8%

10%

12%

14%

al
vi

nn

co
m

pr
es

s

do
du

c

es
pr

es
so gc

c

hy
dr

o2
d

m
dl

js
p2 or

a

sw
m

25
6

to
m

ca
tv

Always taken Taken backwards
Not Taken Forwards

82

Compiler-driven branch
prediction (3)

Misprediction rate ignores frequency of branch
How “critical” are these branches?

Better metric:
“Instructions between mispredicted branches”

In
st

ru
ct

io
ns

 p
er

 m
is

pr
ed

ic
te

d
br

an
ch

1

10

100

1000

10000

100000

al
vi

nn

co
m

pr
es

s

do
du

c

es
pr

es
so gc

c

hy
dr

o2
d

m
dl

js
p2 or

a

sw
m

25
6

to
m

ca
tv

Profile-based Direction-based

83

Dynamic branch prediction

84

Dynamic branch prediction

Dynamic = decision changes over time based
on past history
Done by hardware
Conceptually: F(x1 , x2 , ..., xn)

F : function expressing the result of a branch prediction
x1, x2, ..., xn: parameters that affect F

• related to prediction history
If F > 0.5 branch taken, otherwise not taken

Example:
F(X) = X (X = result of last branch)

• Poor, all predictions treated the same way, regardless of their
individual probabilities

85

Branch History Table (BHT)

Simplest solution:
Use a table that stores branch history
During IF, access BHT to predict branch outcome
During ID, check if this is a branch

Implemented as a (fully associative) cache:
LRU replacement

To save space, only some (5÷6) LS bits of PC are stored
History = n bits

statsBranch PC

0110x00ff3d0f

……

86

Branch History Table : example

1-bit history:
sub r1,r1,r1 ;r1:= 0

add r1,r1,10 ;r1:= 10
loop:

subi r1,r1,1 ;r1--
bnez r1,loop

First 9 times, branch is taken (history bit =1)
10th time: branch not taken (history bit =0)
Next time, branch will be not taken (error)

Branch actually taken 90%
Prediction only 80%

87

Branch History Table

Typical solution uses a 2-bit prediction
Change only if mispredicted twice
Updated as 2-bit saturating up-down counter

Experimental data (SPEC95)
• P(NN) = 0.11
• P(NT) = 0.54
• P(TN) = 0.61
• P(TT) = 0.97

T

T

T

NT

NT

NT

NT

Predict Taken

Predict Not Taken

Predict Taken

Predict Not Taken

11 10

01 00
T

Success probability

88

Branch target buffer (BTB)

With BHT we only save time for the computation
of the branch condition
Can we predict the branch target address?

Include in BHT branch targets!
Branch Target Buffer

Branch target address statsBranch PC

89

Branch target buffer (2)

Operations:

Hit?

Branch?

Correct
prediction?

PC to memory and BTB

Normal
execution

Insert in
BTB

Predicted PC
in memory

Cancel instruction;
compute alternative PC
Fetch other destination

Update stats;
continue without stalls

IF

ID

EX

N

N

N

Y

Y

Y

It is a branch

Use some
predefined
prediction

Note: assumes no
anticipation and BTA
calculation in EX stage

90

BTB performance

Cases 1 & 3:
BTB hit and correct
prediction: 0 penalty

Case 2:
BTB hit and wrong
prediction
1 cycle only (get PC+4)

Case 4:
BTB hit and wrong
prediction
2 cycles (must wait for computation of correct address)
(Assuming target address calculation in EX)

Case 5 & 6:
BTB miss
NT default prediction => 2 cycle for T result

0NT(NT)N6

2T(NT)N5

2TNTY4

0NTNTY3

1NTTY2

0TTY1

Penalty
cycles

ResultPredictionBTB
hit

Case

(NT prediction for BTB miss)

91

Two-level predictors

To improve prediction accuracy use a two-level
mechanism

First level: use the history of last k branches
Second level: branch result for last s times it was
preceded by that history

Example: k=8, s=6
Last k branches yielded 11100110 (1=T, 0=NT)
Last s times this pattern appeared result was 101010
Decision is 1 (=T)

92

Two-level predictors:
implementation

Two tables:
Branch History Register (BHR)

• K-bit shift register (contains history of last k branches)
• Used as index in Pattern History Table

Pattern History Table (PHT)
• 2k entries
• Each entry contains s bits

Control:
FSM:

PHT

11…..10
11…..10 001…10

BHR

State
transition

Sc Sc+1

Prediction

s

00…..00
00…..01
00…..10

93

Branch prediction accuracy

From Microprocessor Report

94

Impact of hazards: summary

Results for some SPEC benchmarks:
% of stalled instructions
Average:

• 6% branch stalls
• 5% load stalls

Resulting CPI = 1.11
Assuming:

• Perfect memory system
• No clock overhead 0

2

4

6

8

10

12

14

16

compress eqntott espresso gcc li

branch stalls
load stalls

95

Summary

Pipelining helps instruction bandwidth, not latency
Hazards limit performance

Structural: need more HW resources
Data: need forwarding, compiler scheduling
Control: early evaluation & PC, delayed branch, prediction

Increasing length of pipe increases impact of hazards
Interrupts, Instruction Set, FP makes pipelining harder
Compilers reduce cost of data and control hazards

Load delay slots
Branch delay slots
Branch prediction

Hardware can improve that

