Pipelining

Outline

¢ Pipelining basics
¢ The Basic Pipeline for DLX & MIPS

¢ Pipeline hazards
+ Structural Hazards
¢ Data Hazards
¢ Control Hazards

¢ Handling exceptions
& Multi-cycle operations

Pipelining basics

¢ Basic idea: exploit concurrency of independent
operations

+ Split one operation into independent sub-operations

One computation is
launched every 100 s

5 j j> One computation is
Al A []A A
j) J A {PsHAHAL Jaunched every 20 s

I
>

Pipelining: example

¢ Laundry Example
¢ A, B, C, D each have one

load of clothes to wash, @5&555)

dry, and fold
¢ Washer takes 30 minutes

+ Dryer takes 40 minutes

¢ “Folder” takes 20 minutes QI-F

1 operation = wash-+dry-+fold = 90 min.

Pipelining: example (2)

¢ Sequential laundry takes 6 hours for 4 loads

6PM 7 8 9 10 11 Midnight

|
| Time

30 40 20 30 40 20 30 40 20 30 40 20

@ﬁo :

x n o -

~-oa-=0
e% 01 @3
0

Pipelining: example (3)

¢ Pipelined laundry takes 3.5 hours for 4 loads

x n o9 —

ﬁ(DQﬂO

7 8 9

10

11

Midnight

@5‘%‘#
% (cth

©

D

Time

40 40 40 40 20

— 1 [
@

ek
SPa7

Pipelining Lessons

¢ Pipelining doesn’t help latency of single task
¢ It helps throughput of entire workload =>
CPI1 is decreased !

¢ Pipeline rate limited by slowest pipeline stage
¢ Multiple tasks operating simultaneously

¢ Potential speedup = Number of pipe stages
¢ Unbalanced lengths of pipe stages reduces speedup

¢ Time to “fill” pipeline and time to “drain” it
reduces speedup

Applyving pipelining to hardware

¢ Implementation of pipelining requires a way to
store intermediate results

+ In hardware, the output of each stage must be stored
using latches (flip-flops)

jAleszgjm A5:>
O3 e e

P
T
A

Pipeline latches

Q

Applying pipelining to hardware (2)

¢ \What prevents us from just doing too many pipe
stages?
& Some computations just won't divide into any shorter
logical implementations

+ Ultimately, it comes down to circuit design issues

- Latches have delays!!! _J
- Time for a signal to be stable before clock edge
- Time for a signal to be stable after clock edge

¢ In practice:
& Modern pipelines: 10-20 stages (e.g. Pentium4, Xeon)
¢ More than 20 not beneficial!

® & & 6 6 0 o

Pipeline performance

T ono = Clock period of non-pipelined computation
Tmono — €Xec time of overall (non-pipelined) computation
1, = exec time of overall (pipelined) computation
T; = exec time of i-th pipeline stage
1, = latency of latches
kK = # of pipeline stages
T, = clock period of pipelined computation
T,=max,—;, . {t}+ 1 T, = kT,
u = execution rate (# of instructions for time unit)

Hmono — 1/Tmono Hp — 1/Tp

T

mono 7:0 = average Instruction execution times

10

Pipeline performance (2)

¢ Average execution rate:

¢ To complete n instructions starting from an empty pipe
[k+(n-1)] clock cycles are needed
n

- kKT, + (n — 1)1,

Hp

Forn — oo, p, — 1/T,

¢ Efficiency (utilization): % of time in which the
CPU is busy

& = ratio of average rate and ideal rate

. E _ kTer(z—qu _ 1)
Hp Tip k+(n—1)

Forn > o, n—>1
11

Pipeline performance (3)

¢ Speedup:
+ Ration between the speed of pipelined and non-
pipelined
&= Hy / Mmono = Timono/ T
¢ Example:

+ 5 stages (50ns, 50ns, 60ns, 50ns, 50ns)

o Latch delay = 5ns
* Trono = Tmono = D0+50+60+50+50 = 260ns
= T,=60 +5=65ns 1, =>5%65ns =325 ns >1
= UT u,= /T,

n
Hmono mono

= oo = 260/65 = 4.0 speedup

mono

12

Two views of pipelining

¢ W.r.t. single-cycle implementation

¢ Reduces T
- ~1/k

& Improves average instruction execution time
¢ W.r.t. multi-cycle implementation

¢ Reduces CPI
- ~ 1/K

& Improves average instruction execution time

cycle

13

The MIPS pipeline

14

MIPS pipeline stages

& Pipelining execution = split execution into stages

¢ \What and how many stages?
¢ Stage 1: Instruction Fetch (IF)
¢ Stage 2: Instruction Decode (ID)
¢ Stage 3: Execute (EX)
¢ Stage 4: Memory Access (ME)
¢ Stage 5: Write Back (to register file) (WB)

15

MIPS ISA summary

& 32 registers
¢ 30,...,$31

& 230 flat memory addressing

¢ 3 Instruction formats
¢ Fixed size = 32 bit

Name Fieks
Figdd&ize Gbis |S5his |5bts |5bts |5 bls

6 Hts

Commrents

Al MIPS instructions 32 bits

R-format | op rs r rd | shmt
0-5 | 6-10 | 11-15| 16-20] 20-24

furct
25-31

Arithmetic instruction format

16-31

I-format a rs r address immedate

Transfer (load/store), branc
immediate format

J-fomat | ap targ%laddras

Jump instruction format

¢ Will see FP instructions later

MIPS without pipelining

. . ; Execute/ : : ,
Instruction fetch Instruqtmn decode ardress Memary wWrite
register fetch ; calculation ; ACCEss i back
M
]
W
MPC
: : Branc
4 : i Fero? Cond
i r taken
P-.E: i
Instruction - R 5 Ranisters
MEmory :
Data = LMD M
— MENG i u
; ¥
16 [gign | 32
mxiend = Imm

Control logic not shown!

The Basic Pipeline For MIPS

¢ Latch names use boundary unit names

¢ IF/ID
¢ ID/EX
¢ EX/MEM
+ MEM/WB

— EX/MEM MEM/WB
Branch
?
6..10

L] M
IRy4.15 T
o 3 X
'MEIVI/WB.IR Registers
M Data
™ u memory | — M
—= x u
X
16 Sian 32
] Sig
extend

IR

18

Pipeline features

& Execution Is based on separate data and
Instruction memory

+ Typically implemented as separate |- and D- caches

¢ Reqister file is used in ID and in WB
¢ What if a read and write are to the same register?

¢ PC assignment done in IF
+ But branches may modify it later...

19

Pipeline analysis (2)

¢ Control overhead
¢ Need extra logic to control execution

¢ Limited to the proper assignment of the various
multiplexers and control signals

. ; Execute/ : | .
Instruction decode : address - Memary P Write

Instruction tetch register fetch calculation access bhack
ol
u
| o
Add NPG [:
: ranch| i
0] R
4 : ia- fero? e Cond i
- > j ﬁ}-\
i : u :
Instruction : - —-|"" e : |
Ay e IR —.—u Registers 5 . AL| [ALD | 5
5 = | ™ output | i
- u : Data | ol 1D ——aefM
mamory i u
regR/W : "‘x
ALUsrcl,2 i
ALUop -
R/W
MemToReg

20

MIPS pipeline functions (1)

PYTPITPTPPTPITE - 21FD IDIEX - —
alE e Passed To Next Stage
E x E _l Zero? faken |
Re..10 L
| , Ri1.15 I.\JA IR <- Mem [PC]
I:“S‘;r:‘:’trljn ‘ Tt MEMwB.R |Fegisters ™ X NPC <- PC + 4
E] I\‘jl rngra;c?ry - M
r'* :
= ‘16 @32 J
= ~ lextend

¢ Instruction Fetch (IF):

& Send out the PC and fetch the instruction from memory into the
Instruction register (IR)

+ Increment the PC by 4 to address the next sequential instruction.
¢ IR holds the instruction that will be used in the next stage.
¢ NPC holds the value of the next PC.

MIPS pipeline functions (2)

IRy1.15

Registers

! MEM/WB.IR

Passed To Next Stage

A <- Regsl[IR; ;015
B <- Regs[IR; 51;
Imm <-C(IR;x## IR ;5_3,)

¢ Instruction Decode/Register Fetch Cycle (ID):
¢ Decode instruction and access the register file to read the registers.
& The outputs of the general purpose registers are read into two

temporary registers (A & B) for use in later clock cycles.

& We extend the sign of the lower 16 bits of the Instruction Register

22

MIPS pipeline functions (3)

MEM/WB

Passed To Next Stage
+Memory reference

Rs. 10

Ry 1 -ALUOutput <= A + Imm
ey = wevwoin [Feoser +ALU op (reg-reg)
: : mermory | -ALUOutput <= A op B
: ; ~ ||®ALU op (reg-imm
'16’@32 J -AELEOugtput)<: A op Imm
- M | | I77 |[Branch
: -ALUOutput <= PC +Imm

-Cond <= Aop O

¢ Execute Address Calculation (EX):
¢ Perform an operation (for an ALU) or
an address calculation (if a load or a Branch).
- If an ALU, actually do the operation

- If an address calculation, figure out how to obtain the address and
stash away the location of that address for the next cycle

23

MIPS pipeline functions (4)

Instruction
memory

IR

6..10

IR

11..15

! MEM

/WBIR |Registers

Zero?

extend

. M
. u
: X
|}

|

¢ Memory access (MEM):
o If this is an ALU op, do nothing.
+ If a load or store, then access memory.

Passed To Next Stage

+Memory reference
LMD<= Mem(ALUOutput)
or
Mem(ALUOutput)<= B

¢Branch

1T (cond)

PC <= ALUOutput
else

PC <= NPC

24

MIPS pipeline functions (5)

IDEX EXﬂEM Mﬂ"gfé
. v J i | Passed To Next Stage
L . | ®ALU op (reg-reg)
b e Hegisters_.- EA ; E RegS(IR1620) <=
= . i ALUOutput
~ Jr'x | #ALU op (reg-imm)
~ocens : Regs(IRy; ;5) <=
L L || ; ALUOutput
¢l oad
¢ Write back (WB): Regs(IRy; 15) <=
: : ALUQutput
& Update the registers from either the
ALU or from the data loaded.

NN I N

N O QSN0

The Basic Pipeline For MIPS (2)

11

12

13

14

Ifetch

Reg

l=k

Cycle 1: Cycle 2: Cycle 3 Cycle 4 Cycle 5 : Cycle 6: Cycle 7

KoL LN :

DMem

Ifetch

I Reg

Ifetch

I Reg

Ifetch

-

DMem Reg

DMem Reg

Reg

Illl’ '

26

Pipeline stages and functions

¢ Summary:

Reg-Reg Reg-immed Load Store Branch Jump
ALU ALU
IF IR =IMem[PC:]:
PC =PC=PC-+4;
1D Ap=Regs[IR[rs]]; Be=Regs[IRy[]];
IRe=IR 0 PCr=PCp;
IM==IR; [15] "HHR,, [14..0];
EX ALUm: ALU|L.|= ALUU =A- + M= ALUM ALUM =
A wQp Be. Ap op 1M e IRw=IREy; =PCr+ Mgy | PCotIMyy
IR, =IRg:; IR, =Ry PC=PCgy; COy,= IRy=IREgx;
PC=PCry; PCin=PCg:; MDvwi=Bes Apcop 0, | PCy=PCy
IRu=IRg;
PC,=PCg:;
MEM IR\e=1Ry; IRw=1Ry; WByg = DiMem[ALUy] IRve=IRy: |Rve=IRyy:
PC..c=PCy; PC,.c=PCu; DMem[ﬁ\LUu] = MDy; PCva=PCy; PCne=PCy;
: if (COy) PC-=ALUy;
PGir=ALUy,
WB | Regs[IRg[rd | Regs[IRg[rt]] | Regs[IRyg[r]]
1] = WBg: = WBwg: = WBug;

27

MIPS pipeline: Example (1)

4 Operation sequence.
Iw $10, 20(%1) // mem[$1+20] -> $10
sub $11, $2, $3

28

MIPS pipeline: Example (2)

Iw $10, 20($1)

Instruction fetch

4]
M
u
x

1

Dad

LA

i belchenn

Inat ruction
me mory

Iontyiction

Clock 1

hd

Bead
reginter 1 Eead
Fead data 1
reginter £
~ Regigterm g0

Wiite data &
regintel
Wiite
data

18 :

» Zign

% lextend

Addvean Bead

data
Data
memory

MIPS pipeline: Example (3)

T sub$11, $2, 83

Iw $10, 20(31)

Instrnction fetch

Instruction decode

A —f

_EI

Addvean

Ingtruction
me mory

Clock 2

Shift
left 2

= Read
§ l‘t'gj.ﬂttl' 1 Fead
g Read data 1
reginter 2
~ Regigter@ paag
o Wiite data 2
Tegint el
ol Wiite
data
14
LY Sign
* Leacend

F
I-"“:;C:I

Bead
Addean Jata
Data
memory
Wite
data

30

MIPS pipeline: Example (4)

sub $11, $2, $3

Iw $10, 20($1)

Instruction decode

Execnution

4
M Addenn
Ingtruction
me mory

Zhift
left 2

Iontvictian

Clock 3

Eead

-

Snce,

E

7\

veginter 1 Fead
Fiead data 1
reginter 2
~ Registerm g9
Wiite data £
reginter
o] Wiite

data

16

LY Sign

* lecre nd

A

b

b

Ten

Fead

data

MIPS pipeline: Example (5)

n | sub $11,$2,$3 | Iw$10,20($1)
I
" : Execution I Memory
; | | | |
L i i ' I
| ' I I
1
| !
i i - =
1
>P-d . - \| :
1
. Dhdd, A% |
1
Shift :
laft 2 1
1
g Read :
Addvenn g 1!5]’. ter L EBEead r !
§ Read data 1 :
Be—) Zera H!
. reginter £
Ingt uetion - Regigter@ fepd . >-"L|-U ALT :
memo ry o] Wite data = a ven Ul | [ficicheom - L
reginter FS / 1 N data |
1 a u
| Wiite =l
Wit ; : memory UI
' Wiite
| data
e | \m :
3 Sion Ly 1
% lextend] * I
:
1
1
1
Clock4 L T T wul
] 1 L
| | ' '
\ r
1

32

MIPS pipeline: Example (6)

oD

_H

reall

Zera

>ALIJ AT

veallt

-

| sub$1l,$2, $3 Iw $10,20($1) |
! Memory Write back |
|
|
E:l[.ﬂ:.'uIEM MEJLWE
I H
¥ Ackiem Fiead E 1
Data - i E
me mory i X
Wiite ' :
data 1

FmD DEX
— —
ik
o m—
Ehift
left 2
a Eead
& Acddienn g veginter 1 Eead
i data 1
. reginter £
Ingtruction Regigters 5,1
e ory Wiite data 2 H
veginter M
u
Wiite .
data L
3 Sign Ly E—
‘ w \
Clock b

33

MIPS pipeline: Example (7)

PG

Bead

data

sub $11, $2, $3 |

MEMWE
-

4]
M | | |
u | | |
: | | |
1 | | '
| | |
I I I
| | |
| | |
E| D:JI 1
4 Mﬁ *
Shift
left 2
K Eiead
Addrean ﬂ veginter 1 red|l h \
; data 1
Bead
g r - Zera o T
: veginter 2
e "~ Registera p,a| . DAL]
¥ Wiite data 2 4 reatlt Acdrem
vegintel W
Wi . / Data
dl::’-‘ f me mory
Wiite
data
s § ez
3 Sign -
¥ Nextend
Clock 6

Write back

S uecx

34

Pipeline hazards

35

Pipeline Hazards

¢ Hazards: conditions that lead to incorrect behavior
If not fixed

¢ Hazards are due to dependencies:

¢ Dependencies are a property of a program:

- Data dependencies
- Instruction s uses the result of instruction /

- Control dependencies
- The execution of instruction s depends on the result of instruction /

¢ Hazards = how dependencies manifest in the pipeline

36

Tvpes of hazards

¢ Structural hazards
& Two different instructions use same resource in the same cycle

¢ Data hazards
& Two different instructions use same storage
& Must appear as if the instructions execute in correct order

¢ Control hazards
¢ One instruction affects which instruction is next

¢ Solution:

+ Specific pipeline interlock logic detects hazards and fixes them

- Simple solution: stall the pipeline
- increases CPI, decreases performance

- More complex solutions available

37

Structural hazards

38

I3 N

S0 QYQ

Structural Hazards: example

Time (clock cycles)

»

Load Ifetch:I: Reg

Instr 1 ; [ree

Instr 2§

Instr 3§

Cycle 1§Cycle 2§Cycle 3 Cycle 4§Cycle 5 Cycle 6§Cycle 7

Instr 4 & t

>

When two or more
different instructions
want to use same
hardware resource
in same cycle

Reg
e.g., MEM uses the
same memory port
as IF as shown in
DMem Reg this slide.
.2 DMem Reg
DMem Reg

39

Tackling structural hazards (1)

¢ Stall

+ low cost, simple
- Block PC increment on hazard & fill pipe registers with O’s

¢ Increases CPI
- Used for rare cases since stalling has performance effect

¢ Pipeline hardware resource
+ useful for multi-cycle resources
+ good performance
- sometimes complex e.g., RAM
¢ Replicate resource
& good performance

& increases cost (+ maybe interconnect delay)
- useful for cheap or divisible resources

40

Tackling structural hazards (2)

¢ Structural hazards are reduced with these rules:

& Each instruction uses a resource at most once
& Always use the resource in the same pipeline stage
& Use the resource for one cycle only
¢ Many RISC ISAs are designed with this in mind
- Sometimes very complex to do this
¢ Some common structural hazards:
¢ Memory instructions (load/stores)

+ Floating point instructions

- Since many floating point instructions require many cycles,
it's easy for them to interfere with each other.

41

Tackling structural hazards (3)

& Load/Store hazards can be removed by:

& Using separate instruction and data memories
- Usually in the form of I- and D-caches
- Do not solve the issue completely!

¢ Using dual- (or multi-) port memories
- Two or more simultaneous read/writes are possible!

42

Pipeline stalls (1)

¢ Stalling the pipeline is the simplest possible
solution

+ Stalling is implemented by inserting one or more
“bubbles” in the pipeline
¢ Clearly, the amount of stalling impacts the
performance speedup

& Approximate analysis:
- a=T, / Torig
- Assuming B = % of stall cycles
o = Tp / (Torig * (1+ B))
& Example:
- a=5p=15% =>a‘=5/1.15 = 4.34

43

I w033 N

Pipeline stalls (2)

Time (clock cycles)

LO ad Ifetch

Instr 1

Instr 2

Stall

S0 QYQ

Instr 3§

Cycle 1§Cycle 2 Cycle 3 Cycle 4§Cycle 5 Cycle 6§Cycle 7

Ifetch I Reg

»IM

Ifetch

Bubblg] |Bubblg 1 j.Bubblg] |{Bubbla

Ifetch I Reg

Reg

44

Pipeline stalls (3)

& Another view of stalling

Chock cycle nuniber
L nstruction 1 2 3 d A a T &) 110
Load insiroctien 1 10 EX MEM WE
l=trnction i + 1 13 1D EX MEM WE
Im=irnction i +7 13 10 EX MEM WE
Imiroction i + 3 stall 13 10 EX MEM WE
I=troction i +4 13 10 EX MEM WE
Imtrnction i + 5 13 10 EX T EM
Imiroction i +4 13 10 EX

45

Structural hazard: comments

¢ Removing a structural hazard depends on its
“Importance”

& Example:
- Hazards due to memory have a significant impact
- Memory accesses are “popular”

- Hazards due to FP operations don’t
- FP operations are not very frequent

& Example 2:
- FP multiplication not pipelined in MIPS (5 cycles)
- Impact on CPI depends on:

- Frequency of FP multiplication (%)
- Distribution of FP multiplication (clustered or not)

- Average case:

- With uniform distribution of FP mult., we can tolerate 1 FP mult
each 5 instructions (20%) with negligible penalty

46

Data hazards

47

Data Hazards

¢ Data hazards occur when there are instructions
that need to access the same data (memory or
register) locations.

¢ Typical situation:
& instruction A precedes instruction B

& and B manipulates (reads or writes) aaita
before A does.

+ Violation of the instruction order
- The architecture implies that A completes entirely before B!

48

Data hazards: example

¢ Instruction sequence:
¢ ADD R1, R2, R3

¢ SUB R4, R5, R1
¢ AND R6, R1, RY
¢ OR R8, R1, R9
¢ XOR R10, R1, R11

¢ All instructions use the result of the ADD (R1)

¢ Problem:
- SUB will read the wrong value of R1!!!
- 2" AND as well

49

Data hazards

¢ Visualization:

: example (2)

IF ID EX MEM WB
add r1,r2,r3 |rfe*c+:I: Reg SHLPedL 2
sub r4,r1,r3 W Reg S Hdom Reg
and r6,rl,r7 Fretel] s e =es
or r8,rl,r9 Feret] =es S SHEPHH ==
| xor r10,r1,ri11 = .2 -

Reg

50

Data hazards classification (1)

¢ Read After Write (RAW)
Instr / tries to read operand before Instr /writes it

I: add r1,r2,r3 g |F|R_X1|ﬂlﬂl
J: sub r4,r1,r3 J: [FTR[XTMIW

51

Data hazards classification (2)

¢ Write After Read (WAR)
Instr / tries to write operand before Instr /reads it
+ Cannot happen in our pipeline
- All instructions take 5 stages
- Reads are always in stage 2
- Writes are always in stage 5
- Only for pipelines with “late” read

I: sub r4,r1,r3 i. LELRIX1Ix2]x3[x4| R [x5{w]
J: add r1,r2,r3 [FIRKiIMIW

K: mul r6,rl,r7 ’

Data hazards classification (2)

¢ Write After Write (WAW)

Instr / tries to write operand before Instr /writes it

& Leaves wrong result (instr 1)

& Cannot happen in our pipeline
- All instruction take 5 stages
- Writes are always in stage 5

- Only for pipelines with variable length pipelines

1: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,rl,r7

X1

X2

X3

X1

X4{W]|
W

53

Data hazards removal

¢ Simple Solution to RAW

¢ Hardware detects RAW and stalls
+ low cost to implement, simple
- reduces IPC

& Not enough: Should try to minimize stalls
¢ Minimizing RAW stalls

¢ Forward (bypass, short-circuit)
¢ Instruction scheduling

54

Forwarding

¢ Forwarding is the concept of making data available
to the input of the ALU for subsequent instructions

+ Even if the generating instruction has not arrived
yet to WB

¢ Concept can be extended:

¢ Forward = passing a result to the functional
unit that requires it

¢ Implementation:
+ Specific forwarding logic required (detection logic)
¢ Impact on control unit

55

Forwarding unit

1— ID/EX EXMEM MEM/WB

111
r

— 1
CEED

Registers
ForwardA >AL
 —
I. Data -
. memory

Regular Rs Forward]
path

EXMEM. RegisterR.

Ra IIT

Forwarding IJ

I
LL_. s

Forwarding

add ri1,r2,r3 ﬂiﬁ JE
sub ra4,ri,r3 . LZ&T_J{
and r6,r1,r7 . —LF.;TL
or r8,rl,r9 i,ﬂ

xor rl10,r1,rll I L {ﬁ

S7

Forwarding & stalls

¢ There are some instances where hazards occur,
even with forwardinag.

CC1 cC2 CC3 CC4 CC5

IW I”l, O(FZ) IM Fh;l:

ALU

sub r4, r1 ré " = oo |

and r6,ril, r7

or r8,rl1,r9

The data is not loaded
until after the MEM stage.

58

Forwarding & stalls (2)

¢ Actual execution:

CCH1 ccz2 CcC3 cC4 cCs cCé

w et oqr2) [+ Hf= e o
b raries (<] |fal

and r6,rl,r7 5

or r8,rl1,r9

- v B
o
(2|

59

Compiler scheduling for
data hazards

¢ Many stalls are frequent:
& Example: Code for A=B+C causes a stall for load of B

LW r1,B IF | ID | EX | MEM | WB

LW r2,C IF [ID |EX | MEM | WB

ADD r3,rl1,r2 IF [ID |Stall |EX | MEM | WB

SW A,r3 IF |sStal [ID |EX |MEM|WB

¢ Rather than just stall, the compiler can schedule
iInstructions so as to avoid the hazard

& Pipeline scheduling (or instruction scheaduling)
- Static scheme

60

¢ Example:

a=Db+c
d =e - F

¢ Slow code: Fast code:
LW Rb,b LW
LW Rc,cC LW
ADD Ra,Rb,Rc LW
SW a,Ra ><ADD
LW Re,e LW
LW RT,T SW
SUB Rd,Re,RT SUB
SW d,Rd S\

Compiler scheduling for

data hazards (2)

Rb,b
Rc,cC
Re,e
Ra,Rb,Rc
Rf, T
a,Ra
Rd,Re,RT
d,Rd

61

Data Hazards

& With pipeline scheduling

B scheduled B unscheduled

gcc

spice

65%
tex 2504

0% 20% 40% 60% 80%

% loads stalling pipeline

62

Control hazards

63

Control Hazards

¢ Control hazards occur when executing branch
(or jump) instructions

& Cannot fetch any new instructions until we know the
branch destination (i.e., end of MEM stage)

¢ Example:
40 sub $10, $4, $8
44 add $1, $10, $11
48 beq $1, $3, 20 // jumps to 48+4+20 = 72 if cond.

52 add $1, $2, $3\
New PC is known only after

72 v $4, 0($1) the result of the comparison
$1=%3 is known:
a) PC=PC+4
b) PC=72

64

Branch Stall Impact

¢ Branches are critical: each branch causes 3 stall cycles

/' IF | ID | EX MEM | WB

| IF | Stall | Stall | IF | ID | EX | MEM | WB

——
IF [ID | EX MEM

IF | ID EX

¢ Example:
¢ If CPI =1, 30% branch, Stall 3 cycles => new CPIl = 1.9 !l!

¢ Solution must deal with:

& Determination of branch taken or not earlier
AND
¢ Computation of taken branch address earlier

65

Handling branches

¢ MIPS pipeline:

+ Result of branch tests is explicitly tested
(normally in MEM stage)

¢ First solution:

¢ Move test to ID stage

- Must be fast
- compares with 0 are simple
- >= <= > < must OR all bits
- more general tests need ALU

¢ Add an adder to calculate new PC in ID stage
- Both taken and not-taken PC are calculated

¢ (Always) 1 clock cycle penalty for branch (instead of 3)

66

Handling branches (2)

¢ Anticipating branch target calculation

Taken PC
T/NT
Lo +— IDEX EX/MEM MEM/WB
—
T
- - Branch J
1__ Z6r0? taken

Re.10
u
) X

, IRy1..15
Instruction| IR = .
memory — MEM/WBLIR Registers
16 Sign 32
N rextend

(x <

|
D]€ lz)
N4
'
T

Branch analysis

SPEC95 distribution

¢ Classification y
+ Conditional branches | * 2 integer benchmaris |
- Forward branches 1: 2 FP benehmarks i
- Backward branches 6
¢ Unconditional ‘2‘
. Jumps 0 = l_-_
‘ gakeB/nOt taken 96 of executed instructions
IStripution:
67% of all o B o ko I
conditional oo | - -
branches 0 === F
are taken 12:[-, rrrr r.I
: 0/;gof gll conditionual branc%hesE)

Branch prediction technigues

¢ Stalls branch hazards can be almost completely
eliminated

¢ Solutions:

& Static predictions on the result of a conditional branch
(taken/not taken)
- Compiler-driven
1. Predict Branch Not Taken
2. Predict Branch Taken
3. Delayed Branch

¢ Dynamic predictions
- Hardware-driven

69

Predict Branch Not Taken (1)

¢ EXxecute successor instructions in sequence

(as If branch were not executed)

¢ In ID actual condition is evaluated:
- If not taken, OK (no penalty!)
- |If taken, we must:
- Replace current instruction with a NOP
- One stall cycle in pipeline if branch actually taken
¢ Care must be taken not to change the machine state
until the branch outcome is definitely known.

¢ Problem: only 33% of branches are untaken...

70

Predict Branch Not Taken (2)

¢ Example

|Unmkm Branch Instr HIF ||ID ||E:>< ||MEM ||WE || H |
nstr i+1 [IF D EX MEM W [|
[lnstr i+2 [| |IF D EX |MEM W |
|Tak£n Branch Instr HIF D EX ||M|~:M ||WE || || || |
nstr i+ [IF idle |ide |idte |ide I [|
Branch targel [| IF D [EX |MEM |WB [|
Branch target+1 I IF 1D [EX |MEM |WB |

71

Predict Branch Taken

¢ Predict Branch Taken
& 67% branches taken on average

& EXxecute instruction corresponding to branch target
address

¢ No advantage (but the higher probability):

- branch target address in MIPS is known no earlier
than branch result (regardless of anticipation)

- Still one cycle branch penalty
- On other machines: branch target may be known before outcome

72

Delayed branch (1)

¢ Generic structure:

branch instruction
sequential successor;’
sequential successor,

Fall-through: instructions that could
" be executed while determining the

sequential successor,
branch target i1f taken

result of the branch test

¢ Branch delay slot (BDS) = the number of cycles
required to resolve branch

- In MIPS, BDS = 1
& /n practice, execute the

instruction(s) in the BDS

regardless of the branch result

73

Delayed Branch (2)

¢ \What instructions are used to fill BDS?

¢ Three options:
- From before the branch
- From the target address
- From fall through

¢ Who fills BDS?

+ Typically done by the compiler!
¢ Could be the programmer

74

{a) From hefore hranch

ADD R1, B2, B3
ifREZ2 =10 then

Delay slot

(c) From fall through

ADD R1., B2, B3
ifEl1 =0 then

| Delay slot
SUB R4, RS, BE6

-

Delayed Branch (3)

bhecomes

ifRZ2 =0 then

ADD R1, B2, B3

ADD El, B2, B3
if Rl =0 then

SUEB R4, E5, B6

ADD E1, B2, B3
ifR1 =0 then

STUEB R4, BE5, B6

-

a)

b)

From before:

€ Best solution, used when possible

€ Branch must not depend on the
rescheduled instructions

From target:

€ Sub-optimal

€ Usually the target instruction will

need to be copied because it can
be reached by another path

& Effective for highly-taken branches

From fall through

& Effective for highly-not-taken
branches

To make this optimization legal for
(b) and (c), it must be OK to
execute the SUB instruction when
the branch goes in the unexpected
direction.

€ That is, work might be wasted

but the program will still execute
correctly.

75

Canceling branch

¢ To improve the ability of the compiler to fill branch
delay slots, most machines with conditional
branches have a cancelling branch:

+ If the branch behaves as predicted, the instruction in
the branch delay slot is executed as in a delayed branch

o If the branch is incorrectly predicted, the instruction in
the delay slot Is turned into a NOP

¢ Result:

¢ Requirements on the instruction placed in the delay slot
are removed
- Solutions b) and c¢) are now usable

76

Canceling branch (2)

¢ Example:
ampie Executed anyway,
but made a NOP
, . 1 /

Untaken branch instr F |0 |Ex |[MEM |WE '

Branch delay instr(i+ 1) IF 1T idie idle |idie

Instr i+32 IF ID EX WEM

Instr i+3 IF IC: EX

Instr i+4 IF 1T

Taken branch instr IF I |EX |MEM |[WE

Branch delay instr(i+ 1) IF I Ex WEM |[WE

Branch target IF 1D EX IWED

Branch target+1 IF IC EX

Branch target+2 IF IC

Predicted-taken canceling branch

i

Evaluating Branch Alternatives

Pipeline speedup =

CPI

pipelined = CPI

Pipeline depth

1 +Branch frequency x Branch penalty

ideal

+ # of stall cycles per instruction =
= 1+ # of stall cycles per instruction

Scheduling Branch| CPI speedup v. Speedup v.
scheme penalty, unpipelined stall

Stall pipeline 3 1.42 | 3.5 1.0

Predict taken 1(0.33)|1.14 | 4.4 1.26

Predict not taken 1 (0.67)| 1.09 | 4.5 1.29

Delayed branch | 0.5 1.07 | 4.6 1.31

Conditional & unconditional branches= 14%, 65% change PC
NOTE: (ex.: 1.42 =1 + 3*0.14)

78

Filling branch delay slots

¢ Compiler effectiveness for single branch delay slot:

¢ Fills about 60% of branch delay slots

& About 80% of instructions executed in branch delay
slots useful in computation

¢ About 50% (60% x 80%) of slots usefully filled

¢ Not very used anymore

+ Avallability of HW resources allows dynamic (HW)
branch prediction

79

Compiler-driven branch prediction

¢ Branch prediction could be done during
compilation
+ Still a static prediction
& Can help compiler to decide how to fill BDSs

¢ Two strategies:

+ Static analysis of program behavior
- Backward branch predict taken, forward branch not taken
- Based on statistics

¢ Using profile (i.e., run time) information
- Record branch behavior, predict branch based on prior run

80

Frequency of Misprediction

70%r

alvinn

compress

doduc

Compiler-driven branch

prediction (2)

¢ Prediction from static analysis

gcc
hydro2d

espresso
mdljsp2

Always taken

ora
swm256

tomcatv

Misprediction Rate

14%~
12%T
10%+
8% T
6% T
4%+
2%T
0%-

alvinn

compress

doduc
espresso
gcc
hydro2d
mdljsp2
ora

Taken backwards
Not Taken Forwards

swm256

tomcatv

81

Compiler-driven branch

prediction (3)

¢ Misprediction rate ignores frequency of branch
& How “critical” are these branches?

¢ Better metric:
+ “Instructions between mispredicted branches”

100000 -+

10000 <+

1000 +

100 A

10 -

‘I -

Instructions per mispredicted branch

Q
O
(@]

alvinn
compress
doduc
espresso
hydro2d
mdljsp2
ora
swm256
tomcatv

B Profile-based] Direction-based

Dynamic branch prediction

83

Dynamic branch prediction

¢ Dynamic = decision changes over time based
on past history

¢ Done by hardware
o Conceptually: F(x;, X5, ..., X))
+ £ : function expressing the result of a branch prediction

® X, X, ..., X, parameters that affect F
- related to prediction history

¢ If F> 0.5 branch taken, otherwise not taken

¢ Example:

& F(X) =X (X =result of last branch)

- Poor, all predictions treated the same way, regardless of their
individual probabilities

84

Branch History Table (BHT)

¢ Simplest solution:
+ Use a table that stores branch history
+ During IF, access BHT to predict branch outcome
o During ID, check if this is a branch

¢ Implemented as a (fully associative) cache:
¢ LRU replacement

Branch PC | stats

Ox00ff3d0f | 011

+ To save space, only some (5+6) LS bits of PC are stored
& History = n bits

85

Branch History Table : example

¢ 1-bit history:

sub ri,rl,rl rl:=0
add ri1,r1,10 -rl:= 10
loop:
subi ri,rl,1 Srl--

bnez rl1,loop

+ First 9 times, branch is taken (history bit =1)
¢ 10™ time: branch not taken (history bit =0)
+ Next time, branch will be not taken (error)

¢ Branch actually taken 90%
+ Prediction only 80%

86

Branch History Table

¢ Typical solution uses a 2-bit prediction
& Change only if mispredicted twice
& Updated as 2-bit saturating up-down counter

Predict Not Taken

& Experimental data (SPEC95)

- P(NN) =0.11
- P(NT) =0.54 Success probability
- P(TN) = 0.61

- P(TT) = 0.97

87

Branch target buffer (BTB)

¢ With BHT we only save time for the computation
of the branch condition
¢ Can we predict the branch target address?

¢ Include in BHT branch targets!
¢ Branch Target Buffer

Branch PC | Branch target address | stats

Branch target buffer (2)

¢ Operations:

PC to memory and BTB

IF N ALY
Hit?
... N nisabmanen
N<>Y Predicted PC
1D Branch? .
in memory
Use some
... T e R
prediction
Norvmal Insevrt In correct
TR
EX' | execution BTB predition

Note: assumes no
anticipation and BTA
calculation in EX stage

A\ 4

Cancel instruction;
compute alternative PC
Fetch other destination

A\ 4

Update stats;
continue without stalls

89

BTB performance

¢ Cases 1 & 3:
¢ BTB hit and correct
prediction: 0 penalty
¢ Case 2:

¢ BTB hit and wrong
prediction

¢ 1 cycle only (get PC+4)

¢ Case 4:

¢ BTB hit and wrong
prediction

Case | BTB | Prediction | Result | Penalty
hit cycles
1 Y T T 0
2 Y T NT 1
3 Y NT NT 0
4 Y NT T 2
5 N T 2
6 N NT 0

& 2 cycles (must wait for computation of correct address)
(Assuming target address calculation in EX)

¢ Case 5 & 6:
¢ BTB miss

& NT default prediction => 2 cycle for T result

(NT prediction for BTB miss)

Two-level predictors

¢ To improve prediction accuracy use a two-level
mechanism
First level: use the history of last A branches
& Second level: branch result for last stimes it was

preceded by that history

& Example: k=8, s=6
o Last k branches yielded 11100110 (1=T, O=NT)
Last s times this pattern appeared result was 101010
¢ Decision is 1 (=T)

91

Two-level predictors:

Implementation

¢ Two tables:

& Branch History Register (BHR)
- K-Dbit shift register (contains history of last k branches)
- Used as index in Pattern History Table

& Pattern History Table (PHT)

- 2Kentries

- Each entry contains s bits

¢ Control: 00
* FSM: 11....10

PHT

Prediction

—»

A

S

c Sc+1
State

transition

92

Branch prediction accuracy

95%

90%

85%

807%

75%

70

65%

Bl

Branch-Prediction Accuracy on SPECint&2

4%

i+

Branch Prediction Algorithm

210644 (4K*)
21164 (2K")
x586 (2K")
21066 (2K) PPC 604 (512)
+ 'k R10000 (512)
raSparc (512)
& S Cyrix M1 (256°)
AMD K5 (1K)
PPC 601 RE000 (1K) PA-8000 (258)
PPC 6073 Pentium (256)
FPower2
R4x00
+ PO
MicroSparc-2
+ PA-T=00
SuperSparc
486
R3000
MicroSparc
HyperSparc
WVBOD
SH
Always Always BTFN Compiler 1-bit 2-bit Two
Mot Taken Taken Directed History History Level

From Microprocessor Report

93

Impact of hazards: summary

¢ Results for some SPEC benchmarks:

¢ % of stalled instructions

¢ Average:
- 6% branch stalls
- 5% load stalls

¢ Resulting CP1 = 1.11

& Assuming:
- Perfect memory system
- No clock overhead

16

12

10

(@} N H (o)) (o0

W load stalls

O branch stalls| |

|

=

=

compress eqntott

espresso

gcc li

94

Summary

¢ Pipelining helps instruction bandwidth, not latency

& Hazards limit performance
+ Structural: need more HW resources
& Data: need forwarding, compiler scheduling
& Control: early evaluation & PC, delayed branch, prediction

¢ Increasing length of pipe increases impact of hazards
¢ Interrupts, Instruction Set, FP makes pipelining harder

¢ Compilers reduce cost of data and control hazards
¢ Load delay slots
& Branch delay slots
& Branch prediction

¢ Hardware can improve that

95

