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Wavelets bases in higher dimensions 
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Topics 

Basic issues 

•  Separable spaces and bases 

•  Separable wavelet bases (2D DWT) 

•  Fast 2D DWT 

•  Lifting steps scheme 

•  JPEG2000 

Wavelets in vision 

•  Human Visual System 

Advanced concepts 

•  Overcomplete bases 
–  Discrete wavelet frames (DWF) 

•  Algorithme à trous 
–  Discrete dyadic wavelet frames (DDWF) 

•  Overview on edge sensitive wavelets 
–  Contourlets 
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Separable Wavelet bases 

•  In general, to any wavelet orthonormal basis {ψj,n}(j,n)∈Z
2

 of L2(R), one can 
associate a separable wavelet orthonormal basis of L2(R2): 

•  The functions                   and                     mix information at two different scales 
along x1 and x2, which is something that we could want to avoid 

•  Separable multiresolutions lead to another construction of separable wavelet 
bases with wavelets that are products of functions dilated at the same scale. 

( )1, 1 1j n xψ ( )2, 2 2j n xψ
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Separable multiresolutions 

•  The notion of resolution is formalized with orthogonal projections in spaces of 
various sizes.  

•  The approximation of an image f(x1,x2) at the resolution 2-j is defined as the 
orthogonal projection of f on a space V2

j that is included in L2(R2) 

•  The space V2
j is the set of all approximations at the resolution 2-j .  

–  When the resolution decreases, the size of V2
j decreases as well. 

•  The formal definition of a multiresolution approximation {V2
j}j∈Z of L2(R2) is a 

straightforward extension of Definition 7.1 that specifies multiresolutions of L2(R). 
–  The same causality, completeness, and scaling properties must be satisfied. 
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Separable spaces and bases 

•  Tensor product 
–  Used to extend spaces of 1D signals to spaces of multi-dimensional signals 
–  A tensor product                   between vectors of two Hilbert spaces H1 and H2 satisfies 

the following properties 

–  This tensor product yields a new Hilbert space                                including all the 
vectors of the form                 where                 and                          as well as a linear 
combination of such vectors 

–  An inner product for H is derived as  

1 2x x⊗

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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,
Linearity

C x x x x x x
Distributivity
x y x y x x x y y x y y

λ λ λ λ∀ ∈ ⊗ = ⊗ = ⊗

+ ⊗ + = ⊗ + ⊗ + ⊗ + ⊗ +

1 2H H H= ⊗

1 2x x⊗ 1 1x H∈ 2 2x H∈

1 21 2 1 2 1 1 2 2, , ,H Hx x y y x y x y⊗ ⊗ =



Gloria Menegaz 6 

Separable bases 

•  Theorem A.3 Let                         . If                 and                are Riesz bases of H1 
and H2, respectively, then                            is a Riesz basis for H. If the two bases 
are orthonormal then the tensor product basis is also orthonormal.  

  

→ To any wavelet orthonormal basis one can associate a separable wavelet 
orthonormal basis of L2(R2) 

 

 However, wavelets               and                  mix the information at two different 
scales along x and y, which often we want to avoid. 
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Separable Wavelet bases 

•  Separable multiresolutions lead to another construction of separable wavelet 
bases whose elements are products of functions dilated at the same scale. 

•  We consider the particular case of separable multiresolutions 

•  A separable 2D multiresolution is composed of the tensor product spaces 

•  V2
j is the space of finite energy functions f(x,y) that are linear expansions of 

separable functions 

•  If                is a multiresolution approximation of L2(R), then                 is a 
multiresolution approximation of L2(R2).   
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Separable bases 

 It is possible to prove (Theorem A.3) that 

 

 

 is an orthonormal basis of V2
j. 

 A 2D wavelet basis is constructed with separable products of a scaling function and a 
wavelet 
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Examples 
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Separable wavelet bases 

•  A separable wavelet orthonormal basis of L2(R2) is constructed with separable 
products of a scaling function  and a wavelet . 

•  The scaling function  is associated to a one-dimensional multiresolution 
approximation {Vj}j∈Z.  

•  Let {V2
j}j∈Z be the separable two-dimensional multiresolution defined by  

•  Let W2
j
 be the detail space equal to the orthogonal complement of the lower-

resolution approximation space Vj
2 in Vj-1

2: 

•  To construct a wavelet orthonormal basis of L2(R2),Theorem 7.25 builds a wavelet 
basis of each detail space W2

j . 

2
j j jV V V= ⊗

2 2 2
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Separable wavelet bases 
 Theorem 7.25 

 Let ϕ be a scaling function and ψ be the corresponding wavelet generating an orthonormal basis of 
L2(R). We define three wavelets 

 
 
 

 and denote for 1<=k<=3 
 
 
 

 The wavelet family 
 
 

 is an orthonormal basis of W2
j and 

 
 

 is an orthonormal basis of L2(R2)  
 
On the same line, one can define biorthogonal 2D bases. 
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Separable wavelet bases 

•  The three wavelets extract image details at different scales and in different 
directions.  

•  Over positive frequencies,                                 have an energy mainly 
concentrated, respectively,on [0,π ] and [π,2 π]. 

•  The separable wavelet expressions imply that 
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Bi-dimensional wavelets 
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Example: Shannon wavelets 
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Biorthogonal separable wavelets 
Let ϕ ,ψ, ϕ  and ψ  be a two dual pairs of scaling functions and wavelets that generate

a biorthogonal wavelet basis of L2 ( ).
The dual wavelets of ψ1,ψ 2  and ψ 3  are 
ψ1 x, y( ) = ϕ x( ) ψ y( )
ψ 2 x, y( ) = ψ x( ) ϕ y( )
ψ 3 x, y( ) = ψ x( ) ψ y( )

One can verify that 
ψ1
j ,n ,ψ

2
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3
j ,n{ }
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Fast 2D Wavelet Transform 
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Fast 2D DWT 
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Finite images and complexity 

•  When aL is a finite image of N=N1xN2 pixels, we face boundary problems when 
computing the convolutions 

–  A suitable processing at boundaries must be chosen 

•  For square images with N1N2, the resulting images aj and dk, j have N1N2/22j 

samples. Thus, the images of the wavelet representation include a total of N 
samples.  

–  If h and g have size K, one can verify that 2K2-2( j-1) multiplications and additions are 
needed to compute the four convolutions  

–  Thus, the wavelet representation is calculated with fewer than 8/3 KN2 operations. 
–  The reconstruction of aL by factoring the reconstruction equation requires the same 

number of operations. 



Separable biorthogonal bases 

•  One-dimensional biorthogonal wavelet bases are extended to separable 
biorthogonal bases of L2(R2) following the same approach used for orthogonal 
bases 

•  Let                 be  two dual pairs  of scaling functions and wavelets that generate 
biorthogonal wavelet bases of L2(R). The dual wavelets of 

 

     are 
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ϕ,ψ, ϕ, ψ

ψ1 x, y( ),ψ 2 x, y( ),ψ 3 x, y( )

ψ1 x, y( ) = ϕ x( ) ψ y( )
ψ 2 x, y( ) = ϕ y( ) ψ x( )
ψ1 x, y( ) = ψ x( ) ψ x( )



Separable biorthogonal bases 

•  One can verify that 

•  are Riesz basis of L2(R2) 
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ψ1
j,n,m,ψ

2
j,n,m,ψ

3
j,n,m{ } j,n,m∈Z3

ψ1
j,n,m, ψ

2
j,n,m, ψ

3
j,n,m{ } j,n,m∈Z3
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Example 
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Example 
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Subband structure for images 

cD1(h) 

cD1(v) cD1(d) 

cD2(v) cD2(d) 

cD2(h) cA2 



Wavelet bases in higher dimensions 

•  Separable wavelet orthonormal bases of L2(Rp) are constructed for any  p≥2 with a 
procedure similar to  the two-dimensional extension. Let φ be a scaling function 
and ψ a wavelet that yields an orthogonal basis of L2(R). 

•  We denote θ0=φ and θ1 = ψ. To any integer 0≤ε<2p written in binary form ε=ε1,..εp 
we associate the p-dimensional functions defined in x = (x1. . . ,xp) by 

•  For ε=0 we obtain the p-dimensional scaling function 

•  Non-zero indexes ε correspond to 2p-1 wavelets. At any scale 2j and for 
n=(n1, . . . ,np) we denote 
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ψε x( ) =ϑ ε1 x1( )…ϑ εn xp( )

ψ 0 x( ) =ϕ x1( )…ϕ xp( )

ψε
j,n x( ) = 2− pj/2ψε x1 − 2

j n1
2 j ,,

xp − 2
j np

2 j

"

#
$$

%

&
''



Wavelet bases in higher dimensions 

•  Theorem 7.25 The  family obtained by dilating and  translating the 2p-1  wavelets 
for ε different from zero 

      is an orthonormal basis for L2(Rp).  

•  3D DWT 
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ψε
j,n x( ){ }1≤ε<2p , j,n( )∈Z p+1



3D DWT 
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HP ↓2 
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1D-DWT  
for  each depth  
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column  
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Fig. The filter architecture for 3D wavelet transform 
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Matlab notations 
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Matlab notations 


