

Università di Verona Dipartimento di Informatica



# Introduzione a IP versione 6

Davide Quaglia a.a. 2008/2009

#### Requisiti

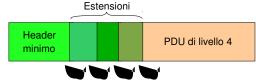
- Miliardi di indirizzi per evitare esaurimento anche in caso di assegnamento non ottimale
- Riduzione della dimensione delle tabelle di routing
- Semplificazione per consentire ai router di elaborare i pacchetti ancora più velocemente
- Migliore sicurezza (autenticazione e riservatezza)
- Migliore supporto per applicazioni in tempo reale (ad es. multimediali)
- Miglioramento del multicast
- · Possibilità di host mobili senza cambiare indirizzo
- Possibilità di modificare il protocollo in futuro
- Coesistenza tra vecchio TCP/IP e IPv6

#### **Sommario**

- Introduzione
  - Motivazione e cronologia
  - Requisiti
  - Coesistenza tra IPv6 e IPv4
- Formato del pacchetto
- Indirizzamento
- Autoconfigurazione
- Capacità di instradamento avanzate
- Bibliografia

# Coesistenza tra vecchio TCP/IP e IPv6

- IPv6 non è compatibile con IPv4
- IPv6 è compatibile con i protocolli che "stanno sopra" al protocollo IP
  - Protocolli di Trasporto: TCP, UDP
  - Protocolli di segnalazione: ICMP, IGMP
  - Protocolli di routing: OSPF, BGP
  - Protocolli applicativi: DNS, HTTP, ecc...


.

#### Motivazione e Cronologia

- Esaurimento degli indirizzi
  - A causa dell'assegnazione a classi
- Requisiti diversi per utenti diversi
  - Utenza residenziale
  - Utenza mobile
  - Necessità di garanzie di QoS per certe applicazioni
  - Reti di sensori (→ Internet of Things)
- Nel 1990 Internet Engineering Task Force (IETF) iniziò a lavorare su una nuova versione di IP
  - RFC 1550 apre la discussione
- Nel 1993 prende forma IPv6

#### Dimensione dell'header IP

- Nella maggior parte dei pacchetti, certi campi del vecchio IPv4 non erano usati
- Occorre da un lato ridurre gli sprechi, dall'altro introdurre un modo efficiente per gestire le informazioni solo quando servono



# Header minimo del pacchetto IPv6 32 Bits Version Traffic class Flow label Payload length Next header Hop limit Source address (16 bytes) Destination address (16 bytes)

#### Estensioni dell'header

- Se presenti devono apparire nell'ordine della tabella
- Lunghezza variabile (ma almeno 8 byte)
- Campi opzionali sono specificati nel formato type length|value

| Extension header           | Description                                |  |
|----------------------------|--------------------------------------------|--|
| Hop-by-hop options         | Miscellaneous information for routers      |  |
| Destination options        | Additional information for the destination |  |
| Routing                    | Loose list of routers to visit             |  |
| Fragmentation              | Management of datagram fragments           |  |
| Authentication             | Verification of the sender's identity      |  |
| Encrypted security payload | Information about the encrypted contents   |  |

10

#### Header minimo del pacchetto IPv6

- Version (4 bit): ha valore 6
- Traffic class (8 bit): eredita le funzioni del ToS
- Flow label (20 bit): assieme a Src Addr e Dest Addr può servire a creare una label per funzioni "tipo MPLS"
- Payload length (16 bit): lunghezza del payload
- Next header (bit): codice della prossima intestazione o del tipo di PDU di livello 4
- Hop limit (8 bit): eredita le funzioni del TTL
- Source address (128 bit): vedere slide sul formato
- Destination address (128 bit): vedere slide sul formato

Formato delle estensioni

- Next header (1 byte): indica l'intestazione che segue oppure la PDU di livello 4
- Header extension length (1 byte): lunghezza dell'estensione – 8 (8 byte è la dim minima)

| Next header | Header extension length | Extension-specific data |
|-------------|-------------------------|-------------------------|
|             |                         |                         |

4

# Differenze rispetto a header IPv4

- L'header ha lunghezza fissa (40 byte)
- Eliminazione campo IP Header Length
- Eliminazione campo Protocol (esiste next header)
- Eliminazione dei campi per gestire la frammentazione
  - E' stata ridotta la necessità di frammentare (minore lavoro nei router → maggiore throughput)
  - E' stata introdotta un'estensione di header quando serve
- Eliminazione del campo Checksum che doveva essere ricalcolata in ogni router
  - minore lavoro nei router → maggiore throughput

Esempio di hop-by-hop options: opzione per grandi pacchetti

- Usato per indicare lunghezze maggiori di 64KB
- Type (1 byte): 194 = opzione per grandi pacchetti
- Size (1 byte): 4 = "la dimensione è su 4 byte"
- Jumbo payload length (4 byte): dimensione (valore > 65536)
- Grandi pacchetti aumentano l'efficienza di reti veloci perché ammortizzano il tempo fisso di elaborazione

| Next header          | 0 | Type = 194 | Size = 4 |  |
|----------------------|---|------------|----------|--|
| Jumbo payload length |   |            |          |  |

## Esempio di estensione per il routing

- Routing type (1 byte): per ora è stato definito solo il codice 0 = source routing
- Type-specific data: in caso di source routing sono elencati una serie di indirizzi IPv6 di router attraverso cui passare
- Segments left (1 byte): nr. di router ancora da

| visitare<br>Next header |   | Header extension length | Segments left |  |
|-------------------------|---|-------------------------|---------------|--|
| Ų                       | 3 | Type-spec               | cific data    |  |

### Formato degli indirizzi

- 128 bit (16 byte)
- Notazione: 8 gruppi (separati da ":") di 4 cifre esadecimali
  - 8000:0000:0000:0000:0023:0567:0000:CDEF
- Abbreviazioni:
  - · Si possono omettere gli zeri iniziali di un gruppo
  - 8000:0000:0000:0000:23:567:0:CDEF
  - Gruppi contenenti solo zeri possono essere sostituiti da una coppia di ":" (vale per UNA SOLA sequenza di gruppi a zero)
    - 8000::123:4567:0:CDEF

. .

#### **Frammentazione**

- Solo l'host mittente può frammentare i pacchetti (in IPv4 anche i router potevano frammentare)
  - Il lavoro dei router viene semplificato aumentandone il throughput
  - Se un router riceve un pacchetto troppo grande lo scarta e manda all'host mittente un messaggio ICMP
- I campi relativi alla frammentazione sono contenuti in una estensione opzionale dell'header
- Header minimo e eventuali header opzionali non possono essere frammentati

# Formato degli indirizzi (2)

- Gli indirizzi IPv4 possono essere scritti in due modi:
  - Padding con (128-32) bit a "0"
    - notazione IPv6
    - in notazione decimale puntata (o "dotted") portata a 128 bit con degli zeri (rappresentati da una coppia di ":")
      - ::157.27.242.10
  - Anteponendo 16 bit a "1" ai 32 bit dell'indirizzo e i restanti (128-16-32) messi a "0"
    - Notazione IPv6
    - in notazione decimale puntata portata a 128 bit con il prefisso "::FFFF:")
      - ::FFFF:157.27.242.10

17

# Estensioni dell'header per la sicurezza

- L'estensione Authentication serve per determinare con sicurezza l'identità del mittente
- L'estensione Encrypted Security Payload serve per cifrare il payload in modo da proteggerne il contenuto da occhi indiscreti
- Entrambe queste estensioni derivano da ciò che in IPv4 si chiamava IPSec

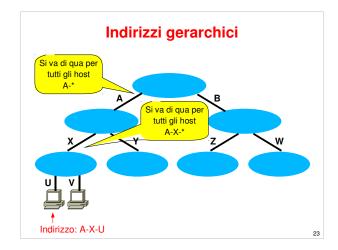
#### Tipi di indirizzi

- Non esistono più le classi
- Indirizzo non assegnato: 00..0 (tutti 128 bit a 0)
- Indirizzo di loopback: 00..1 (127 zeri e un "1")
- Multicast: FFxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx
- Indirizzi privati
  - Link local unicast: iniziano con i bit 1111 1110 10
    - da usare nella procedura di autoconfigurazione (vedi lucido apposito)
  - Site local unicast: iniziano con i bit 1111 1110 11
    - da usare in intranet (indirizzi privati mai propagati su Internet)
- Unicast global addresses
  - indirizzi pubblici
  - attualmente sono assegnati quelli che iniziano con i bit 001<sub>18</sub>

#### Netmask

- La maschera di bit indicava quale parte dell'indirizzo era da considerarsi come prefisso della rete
  - Es: 157.27.242.10/255.255.255.0
- Negli ultimi anni si era affermata la notazione "/XX"
  - Es: 157.27.242.10/24
- In IPv6 rimane solo quest'ultima notazione
  - Es: 8000:0000:0000:0000:0123:4567:89AB:CDEF/112

Problema dell'assegnamento degli indirizzi (3)


Core router: tabelle di instradamento lunghe

Edge router: tabelle di instradamento corte

# Problema dell'assegnamento degli indirizzi

 La rete Internet, come anche la rete telefonica, ha una organizzazione gerarchica





# Problema dell'assegnamento degli indirizzi (2)

- I numeri del telefono riflettono la gerarchia della rete telefonica (prefisso internazionale, codice d'area, numero dell'abbonato)
  - Questo semplifica il lavoro nelle centrali di commutazione
- Gli indirizzi IPv4 invece non riflettono la gerarchia della rete Internet (in realtà tengono conto di un solo livello)
  - Conseguenza: le tabelle di routing crescono man mano che si sale verso i core router



# Indirizzi unicast globali

- Gerarchia a 3 livelli:
  - Public Topology
  - Site Topology
  - Interface Identifier
- Public topology is the collection of providers and exchanges who provide public Internet transit services.
- Site topology is local to a specific site or organization which does not provide public transit service to nodes outside of the site.
- Interface identifiers identify interfaces on links.

#### **Neighbor Discovery**

- L'host diffonde un messaggio ICMPv6 di richiesta del router
  - Destinazione: gruppo multicast predefinito allo scopo
  - Sorgente: indirizzo IPv6 con prefisso link local unicast + 0..0 + indirizzo MAC (48 bit)
- Il router interessato risponde con un messaggio ICMPv6 di annuncio del router contenente il prefisso giusto per la rete
  - L'host completa il prefisso con il MAC ottenendo il proprio indirizzo IP

28

# Indirizzi unicast globali

- Hanno struttura che riflette la gerarchia della rete

■ FP Format Prefix (001)

TLA ID Top-Level Aggregation Identifier

RES Reserved for future use

NLA ID Next-Level Aggregation IdentifierSLA ID Site-Level Aggregation Identifier

| - II            | <ul> <li>INTERFACE ID Interface Identifier</li> </ul> |     |           |           |                      |
|-----------------|-------------------------------------------------------|-----|-----------|-----------|----------------------|
| 3               | 13                                                    | 8   | 24        | 16        | 64 bits              |
| FP              | TLA<br>ID                                             | RES | NLA<br>ID | SLA<br>ID | Interface ID         |
| Public Topology |                                                       |     | •         | Site      |                      |
|                 |                                                       |     |           | Topology  | Interface Identifier |

# Capacità di instradamento avanzate: indirizzi anycast

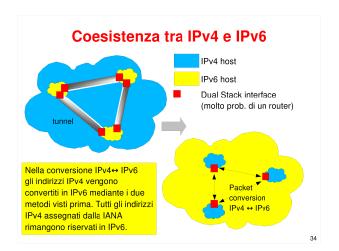
- Sono normali indirizzi unicast
- Un gruppo di interfacce di host o router aventi la stessa funzionalità hanno lo stesso indirizzo unicast che prende il ruolo di indirizzo anycast
- Quando un client fa una richiesta diretta a tale indirizzo, essa viene servita dall'interfaccia più vicina
- Il concetto "più vicino" viene determinato dal routing
- Questa modalità permette la creazione di servizi ridondati per aumentarne la robustezza

20

# **Autoconfigurazione**

- Permette ad un host di ottenere un indirizzo IP in maniera dinamica
- IPv6 eredita la soluzione DHCP (Dynamic Host Configuration Protocol) a cui aggiunge una seconda tecnica chiamata Neighbor Discovery (ND)

#### Transizione da IPv4 a IPv6

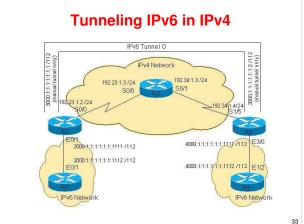

- Transizione graduale
  - I nodi IPv4 continuano a colloquiare con nodi IPv4
  - I nodi IPv6 devono colloquiare con nodi IPv6 anche se i nodi interposti utilizzano solo IPv4
- Due soluzioni da combinare:
  - Operatività a doppia pila (dual stack operation)
  - Tunneling IPv6 in IPv4
  - Packet conversion from IPv4 to IPv6

27

# **Dual Stack Operation**

- L'apparato ha sopra il Livello Datalink sia IPv4 sia IPv6
- Si utilizza il valore contenuto nel campo Version per decidere quale versione del livello network utilizzare

IPv6 Protocollo di Livello Datalink




# **Tunneling IPv6 in IPv4**

- All'inizio del tunnel si incapsula il pacchetto IPv6 in un pacchetto IPv4 avente come sorgente e destinazione il nodo iniziale e terminale del tunnel, rispettivamente
- Al termine del tunnel si butta via il pacchetto IPv4 esterno
- I nodi iniziale e terminale del tunnel devono implementare la Dual Stack Operation e devono avere un programma di gestione del tunnel

# **Bibliografia**

- IETF
  - RFC 2460-2466
  - http://www.ietf.org/html.charters/6man-charter.html
- http://www.ipv6.org/
- Wikipedia
  - http://it.wikipedia.org/wiki/IPv6
  - http://en.wikipedia.org/wiki/IPv6
- http://www.it.ipv6tf.org/index.php
- http://www.ipv6forum.com/
- Supporto per Linux
  - http://www.pluto.it/files/ildp/HOWTO/Linux+IPv6-HOWTO/

