

Università degli Studi di Verona, Facoltà di Scienze MM. FF. NN.

Dipartimento di Informatica
EDALab: Embedded System Design Center

Ca' Vignal, Strada Le Grazie 15
37134 Verona, Italia
Tel. +39 045 8027069
Fax +39 045 8027068

Verona, 16/03/2007

An Introduction to SMV
Nicola Bombieri

1 REQUIRED BACKGROUND 2

2 GOAL 2

3 WHAT IS SMV? 2

4 DUV MODELING 2

5 TEMPORAL PROPERTIES DEFINITION 5
5.1 TEMPORAL OPERATORS .. 5
5.2 PATH QUANTIFIER ... 6
5.3 LIVENESS AND SAFETY .. 6

6 SMV LIMITATION AND BOUNDED MODEL CHECKING 6

7 SMV COMMANDS 7

8 CASE STUDY 8

9 REFERENCES 8

1

Università degli Studi di Verona, Facoltà di Scienze MM. FF. NN.

Dipartimento di Informatica
EDALab: Embedded System Design Center

Ca' Vignal, Strada Le Grazie 15
37134 Verona, Italia
Tel. +39 045 8027069
Fax +39 045 8027068

1 Required Background
Students interested in learning SMV are required to know the fundamentals of

mathematical logic and basic concepts related to modeling and synthesizing digital systems.
Moreover, it is advisable that students are familiar with at least one among the following
traditional hardware description languages (HDL): VHDL, SystemC, Verilog.

2 Goal
The goal of this lecture consists of describing the basic concepts related to the use of the

SMV model checker to formally verify the correctness of a digital system description with
respect to the initial specification. Students will learn to:

• modeling a digital device by using the SMV language;
• defining temporal properties to formally describe the initial specification.

3 What is SMV?
SMV is a model checker, i.e., a tool for formal verification of finite state systems, like for

example, hardware devices [1]. In particular, SMV is used to exhaustively verify that each
behavior of the design under verification (DUV) satisfy the formal specification defined by
means of temporal properties. On the contrary, dynamic verification allows to verify the DUV
behavior only for the set of input stimuli provided during simulation.

SMV has been created to verify HW designs. In particular, it can be used to verify the
correctness of RTL or gate-level models of HW components as reported in Figure 1.
However, it is worth to note that model checking can be used to formally verify the
correctness of SW programs too.

To use SMV it is required to provide:

• An SMV language-based description of the DUV.
• A set of CTL (Computation Tree Logic) or LTL (Linear Time Logic) temporal

properties to verify.
Generally, SMV provides a response related to the validity of each verified property with

respect to the DUV model. When the property fails, SMV generates a counterexample (a set
of values for DUV signals involved in the property checking) to show the evidence of the
verification failure. However, sometimes, SMV can be unable to complete the checking when
the temporal/space resources (memory, computational time) provided to the tool are
insufficient to manage very complex DUV models.

4 DUV Modeling
Generally, the mathematical model adopted by model checking tools is know as Kripke

structure. According to this formalism, the DUV is represented as a triple M = (S, R, L)
where:

• S is a finite set of states;
• R ⊆ S×S is the next state relation;

2

Università degli Studi di Verona, Facoltà di Scienze MM. FF. NN.

Dipartimento di Informatica
EDALab: Embedded System Design Center

Ca' Vignal, Strada Le Grazie 15
37134 Verona, Italia
Tel. +39 045 8027069
Fax +39 045 8027068

Figure 1: Embedded system design flow.

SMV

SMV

Informal
specification

System
constraints

System modeling

System level
design

HW/SW partitioning
Architecture mapping

Reference
Architecture

(programmable device,
HW tecnology,
bus, memory)

Transactional level

HW
model

SW
model

Behavioral
level

design

Gate-level
design

HDL modeling and
HW partitioning

Behavioral synthesis
and IP reuse

Logic synthesis

RT-level
design

SW
source code

SW coding

SW Compilation

Object
code

Reference
RTOS

Interface definition

bus modelDevice
driver

Embedded System

Memory

SW Device
driverProgrammable

device HW SMV

SMV

Informal
specification

System
constraints

System modeling

System level
design

HW/SW partitioning
Architecture mapping

Reference
Architecture

(programmable device,
HW tecnology,
bus, memory)

Transactional level

HW
model

SW
model

Transactional level

HW
model

SW
model

Behavioral
level

design

Gate-level
design

HDL modeling and
HW partitioning

Behavioral synthesis
and IP reuse

Logic synthesis

RT-level
design

SW
source code

SW coding

SW Compilation

Object
code

Reference
RTOS

Interface definition

bus modelDevice
driver

Embedded System

Memory

SW Device
driverProgrammable

device HW

Embedded System

Memory

SW Device
driver

Memory

SW Device
driverProgrammable

device HW

3

Università degli Studi di Verona, Facoltà di Scienze MM. FF. NN.

Dipartimento di Informatica
EDALab: Embedded System Design Center

Ca' Vignal, Strada Le Grazie 15
37134 Verona, Italia
Tel. +39 045 8027069
Fax +39 045 8027068

• L: S→2AP is a function that labels each state in S with the set of atomic propositions
that hold on it.

However, from the practical point of view, SMV users are not required to explicitly define
the Kripke structure corresponding to the DUV. On the contrary, the DUV must be modeled
by using a programming language similar to traditional HDLs, e.g. VHDL or Verilog. The
details about the SMV language syntax can be found on the tool documentation [2,3], whilst
the semantic details should be already present on the students background. For this reason, we
report, in the following, only a commented example of a simple bus arbiter to provide a rapid
panoramic view of the main constructs of the SMV language. The role of the bus arbiter
consists of enabling accesses to the bus according to the requests sent by the devices which
share it (in our example, let us suppose that the bus is shared between two devices). The
arbiter has two inputs (for access requests) and two outputs (for access acknowledgments). In
case of concurrent requests, the arbiter assigns the bus alternatively (initially the device with
the highest priority is the one connected to input req1).

module main(req1,req2,ack1,ack2) --main module declaration
{
 input req1,req2 : boolean; --primary inputs declarations
 output ack1,ack2 : boolean; --primary outputs declarations
 bit : boolean; --declaration of a state variable

 next(bit) := ack1; --the value of bit at time t+1 will
 --equal the value of ack1 at time t

 if (bit) { --bit is used to alternate the priority
 ack1 := req1 & ~req2;
 ack2 := req2;
 }
 else {
 ack1 := req1;
 ack2 := req2 & ~req1;
 }

Expressiveness of the SMV language is the same of the HDLs previously cited. However,
the SMV language is rarely used to model the DUV. Generally, the DUV is written by using
VHDL, Verilog or SystemC, since such languages are supported by the majority of tools for
automatic design adopted in the industry. In such cases, to avoid a manual translation of the
code from the adopted HDL to the SMV language, it is sufficient synthesizing the HDL code
to obtain a gate-level Verilog description mapped on equations (logical ports must not be
mapped on any technology library, but they must be represented by means of the
corresponding logical operators of Verilog). Then, the gate-level code can be automatically
converted in SMV language by using the vl2smv command included in the SMV distribution.
Finally, it is necessary to define a main module that instantiates the description of the DUV
provided by the vl2smv as follows.

#include “DUV_filename.smv” --to include the converted gate-level code
module main ()
{

--declarations of variable necessary to instantiate the DUV module
--one variable for each I/O signals must be declared

4

Università degli Studi di Verona, Facoltà di Scienze MM. FF. NN.

Dipartimento di Informatica
EDALab: Embedded System Design Center

Ca' Vignal, Strada Le Grazie 15
37134 Verona, Italia
Tel. +39 045 8027069
Fax +39 045 8027068

VAR
 param_1 : type;
 param_n : type;

--instantiation of the module(s) of the DUV

label : module_name (
 in_1 <== param_1,
 … …
 out_m <== param_n
);

-- definition of properties
}

It must be observed that vl2smv allows to avoid a manual translation from HDL to SMV,
but the obtained code must be accurately checked. In some cases, the code generated by
vl2smv must be manually corrected to remove syntax errors introduced during the translation.

Finally, it is worth to note that some synthesis tools (e.g., Mentor Graphics
LeonardoSpectrum) generates assignment in the format:

operator (operand_1, operand_2, operand_3);

In such a case, it is necessary to modify the syntax of the assignment as follows:
operand_3 := operand_1 operator operand_2;

5 Temporal Properties Definition
To use SMV, properties derived from the specification must be defined by using LTL or

CTL. Both such logics include the traditional operators of the first order logic (and, or, not,
implication) and the four temporal operators F, G, U, X, necessary to specify properties
dependent on the time. The distinction between the two logics derives from the mode they
allow to manage the evolution of the DUV according to the time. In particular, in LTL the
time is linear along a single computational path. On the contrary, in CTL, given a state, the
past before it is unique, but the future can follow different computational paths. Then, in CTL
the temporal operators are always headed by a path quantifier between A and E that are not
included in LTL. Syntax and semantics of LTL and CTL are exhaustively defined in [1], thus,
in this lecture we report only the intuitive meaning of temporal operators and path quantifiers.
For this reason, it is necessary to define what computational path means with respect to a
Kripke structure: it is an infinite sequence of states π = (s0,s1, s2, …) such that R(si,si+1) hold
for i ≥ 0. In the following definitions, let us assume that p, q represent LTL properties, while u
represents a CTL property.

5.1 Temporal Operators
• F (eventually): it is used to define a condition that must be true eventually in the

future. For example, the property Fp is true if p is eventually true in the future.
• G (always): it is used to define a condition that must be always true. Thus, the

property Gp is true if p is always true.

5

Università degli Studi di Verona, Facoltà di Scienze MM. FF. NN.

Dipartimento di Informatica
EDALab: Embedded System Design Center

Ca' Vignal, Strada Le Grazie 15
37134 Verona, Italia
Tel. +39 045 8027069
Fax +39 045 8027068

• U (until): it is used to define a condition whose truth depends on another condition.
Thus, the property pUq (p until q) is true if q is true at some time t and p is true for
each t′ < t.

• X (next): it is used to define a condition that will be true on the next time. For
example, Xp is true at time t if p is true at time t+1.

5.2 Path Quantifier
• A (for all computational paths): it is used to define that, given a state s, a property is

always true whatever the computational path followed starting from s is. For example,
the property AGu is true if u is always true in each computational path.

• E (for some computational path): it is used to define that, given a state s, a property is
true in at least one computational path starting from s. For example, the property EFu
is true if u eventually holds at some future time in at least one computational path.

5.3 Liveness and Safety
Independently from the adopted logics, two kinds of properties can be defined from the

semantics point of view: safety and liveness. Safety properties are used to express the
necessity that a bad condition never happens (e.g., deadlock, mutual exclusion failure, …). On
the contrary, liveness properties are used to express the eventuality that some good condition
happens in the future (e.g., service warrantee, program termination, …).

Now, let us consider the bus arbiter previously defined. In the following four LTL safety
properties and one LTL liveness property are defined to check the correctness of the design.

--ack1 e ack2 must not be concurrently asserted (mutual exclusion)
mutex : assert G ~(ack1 & ack2);

--if the arbiter receives a request, it must answer to accord the bus
--access
serve : assert G ((req1 | req2) -> (ack1 | ack2));

--the bus access must be accorded to the device connected to ack1 only
--if this sent a request
waste1 : assert G (ack1 -> req1);

--the bus access must be accorded to the device connected to ack2 only
--if this sent a request
waste2 : assert G (ack2 -> req2);

--the bus access must be eventually assigned to the device with the lowest
--priority connected to req2 and ack2, or req2 is always deasserted
--(to avoid starvation of the device with the lowest priority)
no_starve : assert G F (~req2 | ack2);

To verify the previous properties, it is sufficient to include them in the same file of the
bus arbiter model before the closed bracket of the main module.

6 SMV Limitation and Bounded Model Checking
SMV, like the majority of other model checkers, verifies a property by traversing the

transition state graph of the DUV. During the verification of a property, SMV generates 2n

6

Università degli Studi di Verona, Facoltà di Scienze MM. FF. NN.

Dipartimento di Informatica
EDALab: Embedded System Design Center

Ca' Vignal, Strada Le Grazie 15
37134 Verona, Italia
Tel. +39 045 8027069
Fax +39 045 8027068

states, where n represents the number of state variables (registers) included in the logic cone
of the property (i.e., n is the number of state variables necessary to check if the property is
true or false). Thus, the computational effort required to verify a property rapidly increases as
the number of state variables raises, in particular when the states are explicitly enumerated.
This can lead to the well known state explosion problem which causes the incapability of
model checkers to complete the verification of complex systems without using advanced
reduction techniques like symmetry reduction, temporal case splitting, data type reduction,
…. These techniques are not covered in this lecture. To partially reduce complexity problems,
SMV uses BDD (Binary Decision Diagrams) to implicitly represent the state graph [4].
However, SMV cannot manage very complex designs (e.g., with more than 100 state
variables on a Sun Fire 280R equipped with a 750MHz dual UltrasparcIII processor and
4.0GB of RAM) without using the previously cited techniques related to compositional
verification.

Instead of using the BDD-based version of SMV, a valuable alternative is represented by
Bounded Model Checking (BMC). When the BMC mode is enabled, SMV accomplishes a
semi-decidable verification of properties, i.e., it tries to generate a counterexample of finite
length (the length is set by the user) by exploiting the capability of a SAT-solver to confute
the validity of a Boolean function. If a counterexample is founded, then the user is guaranteed
that the property is false. On the contrary, the incapability of generating a counterexample of
the desired length is not a proof of the validity of the property, since a longer counterexample
could exist.

SMV is arranged to be automatically interfaced to the zchaff SAT-solver [5]. In this way,
the failure of a property can be verified more quickly with respect to the use of the exhaustive
verification mode based on BDD.

7 SMV Commands
Command line

smv filename.smv to run SMV in text mode.
smv –bmc –l val filename.smv to run SMV in BMC mode with counterexample

of length val.
vw to run SMV in graphic mode.
smv --help to show the help.

Graphic mode

Menu Prop Verify all to verify all the defined properties.
Menu Prop Verify prop_nome to verify only the property prop_name (after

prop_name has been selected in the property
frame).

Menu Prop Options to enable the BMC mode select Use SAT-
based bounded model checking and
set the counterexample length in the Trace
length bound text area.

Tab Cone to see the number of state variables involved in
the verification of the property.

7

Università degli Studi di Verona, Facoltà di Scienze MM. FF. NN.

Dipartimento di Informatica
EDALab: Embedded System Design Center

Ca' Vignal, Strada Le Grazie 15
37134 Verona, Italia
Tel. +39 045 8027069
Fax +39 045 8027068

8 Case Study
As a case study, some properties for the ADPCM component will be presented. The

module is inserted into the V-CLIP system showed in Figure 2. It presented an API

Figure 2: V-CLIP system.

9 References
[1] E.M. Clarke, O. Grumberg, D.A. Patel. “Model Checking”, MIT Press, 2000.
[2] K.L. McMillan. “Getting Started with SMV”, Cadence Berkley Labs, 1999.
[3] K.L. McMillan. “The SMV Language”, Cadence Berkley Labs, 1999.
[4] K.L. McMillan. “Symbolic Model Checking”, Kluwer Academic Publishers, 1993.
[5] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik. “Chaff: Engineering an

efficient sat solver”. In: Proc. of the Design Automation Conference (DAC), pagg. 530—
535, 2001.

8

	Required Background
	Goal
	What is SMV?
	DUV Modeling
	Temporal Properties Definition
	Temporal Operators
	Path Quantifier
	Liveness and Safety

	SMV Limitation and Bounded Model Checking
	SMV Commands
	Case Study
	References

