

Università degli Studi di Verona, Facoltà di Scienze MM. FF. NN.

Dipartimento di Informatica
EDALab: Embedded System Design Center

Ca' Vignal, Strada Le Grazie 15
37134 Verona, Italia
Tel. +39 045 8027069
Fax +39 045 8027068

Verona, 02/03/2007

Automatic Synthesis from VHDL
Nicola Bombieri

1 REQUIRED BACKGROUND 2

2 GOAL 2

3 INTRODUCTION 2

4 LEONARDOSPECTRUM 4
4.1 TECHNOLOGY... 4
4.2 INPUT... 4
4.3 CONSTRAINTS... 5
4.4 OPTIMIZE.. 5
4.5 REPORT TIMING AND EXAMINE RESULTS.. 5
4.6 SAVING THE DESIGN... 5

5 REFERENCES 6

1

Università degli Studi di Verona, Facoltà di Scienze MM. FF. NN.

Dipartimento di Informatica
EDALab: Embedded System Design Center

Ca' Vignal, Strada Le Grazie 15
37134 Verona, Italia
Tel. +39 045 8027069
Fax +39 045 8027068

1 Required Background
Students interested in learning automatic HDL synthesis are required to know the

fundamentals of VHDL language. Moreover, it is advisable that students are familiar with
concepts of combinational and sequential digital systems.

2 Goal
The goal of this lecture consists of analyzing the key concepts of digital circuit synthesis,

that is, the translation from RT level towards gate-level. The main steps are described by
using one of the more important commercial tools for the HDL synthesis.

Students will learn to:

• Analyze several ways to implement a digital circuit behavior at RTL;
• Synthesize RTL descriptions by setting the implementation details dependent on the

architectural choices.

3 Introduction
After a system description has passed the verification phase by means of dynamic and/or

static verification, it is ready to undergo the synthesis process. Figure 1 shows the whole
design process and it underlines the exact point in which the synthesis task is set up.

The RTL device implementation is translated into a set of elementary blocks at gate-level.
Since several architectures are available, the same behavioral description can be translated to
different gate-level implementations. Software tools aid designers in this task, by offering the
opportunity to automatically synthesize the RTL code with regard to the chosen target
architecture.

Due to the difficulty in interpreting the full VHDL semantic, the VHDL syntax accepted
by the synthesis tools is often reduced to a subset of synthesizable statements (i.e., FOR loop,
wait condition, etc.). For this reason, one step of behavioral synthesis could be necessary
before synthesize the circuit towards the gate level (see Figure 1).

2

Università degli Studi di Verona, Facoltà di Scienze MM. FF. NN.

Dipartimento di Informatica
EDALab: Embedded System Design Center

Ca' Vignal, Strada Le Grazie 15
37134 Verona, Italia
Tel. +39 045 8027069
Fax +39 045 8027068

Figure 1: Embedded system design flow.

Informal
specification

System
constraints

System modeling

System level
design

HW/SW partitioning
ArchitecturemappingReference

Architecture
(program ablem

HW
 de cev tecnology

i ,) , memorybus, Transactionallevel

HW
model

SW
model

Behavioral
level

design

Gate-level
design

Behavioralsynthesis
and IP reuse

Logic synthesis

RT-level
design

SW
source code

SW coding

SW Compilation

Objec t
code

Reference
RTOS

System Informal
constraints specification

System

System level
design

HW/SW partitioning
ArchitecturemappingReference

Architecture

Interface definition

bus modelDevice
driver

Embedded System

Memory

SW Device
driverProgramm ble a

device HW

Leonardo
Spectrum©

(program able de ce , m
HW

v tecnology
i) , memory Transactionallevelbus,

HW
model

SW
model

Transactionallevel

SW HW
model model

ng

Behavioral
level

design

Gate-level
design

Behavioralsynthesis
and IP reuse

Logic synthesis

RT-level
design

SW
source code

SW codi

SW Compilation

Objec t
code

Reference
RTOS

Interface definition

bus modelDevice
driver

Embedded System

Memory

SW Device
driverProgramm ble a

device HW

Embedded System

Memory

SW Device
driver

Memory

SW Device
driverProgramm ble a

device HW

HDL modeling

3

Università degli Studi di Verona, Facoltà di Scienze MM. FF. NN.

Dipartimento di Informatica
EDALab: Embedded System Design Center

Ca' Vignal, Strada Le Grazie 15
37134 Verona, Italia
Tel. +39 045 8027069
Fax +39 045 8027068

4 LeonardoSpectrum
LeonardoSpectrum by Mentor Graphics is one of the more widespread tool for the

automatic synthesis task. It drives designers through the architectural choices by means of a
simple graphical interface.

In the following, a short guideline will be proposed for every step. The adpcm module of
the V-CLIP system [1] will be used as case study.

4.1 Technology
Setting the advanced FlowTabs from the Tools menu, the designer starts the guided

procedure of the synthesis.

Application Specific Integrated Circuit (ASIC) vs. Field Programmable Gate Array
(FPGA) is the first choice, that is, the technology in which the device will be mapped.
Deciding between ASICs and FPGAs requires designers to answer tough questions
concerning costs, tool availability and effectiveness, as well as how best to present the
information to management to guarantee support throughout the design process.

ASIC is generally adopted to implement a specific computational application and offers
the best performances. On the other hand, its cost is extremely high.

FPGA is released as a standard product for general purposes. Its final implementation is
defined by the user. The programmability feature is the main advantage w.r.t. ASIC. For
example, in case when a bug is found during the verification phase, the block can be re-
programmed and the bug fixed as a consequence.

The technology we are going to select for the adpcm module is an FPGA by Xilinx and
the board feature are the following:

 Board: SPARTAN3;

 Device: 3S200ft256

Clicking on Load Library, the right window reports us if the library loading process is
successfully completed.

4.2 Input
Selecting the Working Directory, the file (adpcm_RTL.vhd) is ready to be open.

LeonardoSpectrum inputs the design when the designer clicks on the Read button. The read is
accomplished in two phases:

1. analyze: the HDL is syntactically checked, dependencies are checked and generic
parameters are resolved.

2. elaborate: during this phase LeonardoSpectrum synthesizes the HDL into an
EDIF-like in-memory database. The design is composed of generic gates and

4

Università degli Studi di Verona, Facoltà di Scienze MM. FF. NN.

Dipartimento di Informatica
EDALab: Embedded System Design Center

Ca' Vignal, Strada Le Grazie 15
37134 Verona, Italia
Tel. +39 045 8027069
Fax +39 045 8027068

black-box operators. Later the black box operators will be replaced with efficient
technology-specific operators from a vendor-supplied library.

4.3 Constraints
Designers specify the clock frequency, clock cycle, and global path constraints for the

whole design. Hence, the smallest design for the give frequency is then created. All path
between ports and registers are constrained to one clock period. Specific delays can be
customized by specifying a maximum delay between each. The clock reference time is zero.

We set 100 MHz as clock frequency and then we apply the setting.

4.4 Optimize
There are two major optimization functions within LeonardoSpctrum. The optimize

command performs global area optimization and may be run with or without timing
constraint. Running without timing constraint produces the smallest area design. Global
optimization is run on each module in the design hierarchy (if it exists) separately. Normally,
LeonardoSpectrum has four groups of algorithms that can be run on each module.

The optimization level of effort can be set: the selected effort is traduced in time spent to
optimize the synthesis with the selected constraint.

Students should try to synthesize the adpcm module, firstly imposing the maximum effort
to optimized the area constraint and then to optimized the delay constraint. Students should
compare the results to note the translation differences of the same starting block.

4.5 Report Timing and Examine Results
After the designer run timing optimization, he can generate a timing report. Unlike

optimization algorithm, timing reports display timing paths through hierarchical boundaries.

If the design is still not meeting performance requirements, the designer can either loosen
the timing constraints or run again timing optimization. If he is within 10% of his timing
goals, he may want to run the design through the place/route tools to get the accurate post-
place/route timing value. Leonardo calculates delays using a conservatives pre-layout
estimate. If the designer is close to meet his timing constraint (according with Leonardo
estimate), he may have actually met the timing constraint according to the accurate post-
layout value produced by he place/route tool.

Specify a report file name (.txt) for both the area report and delay report.

4.6 Saving the design
After the design meets the area and timing constraints, the designer can write out the

design as a netlist file. This netlist file can be read by a downstream tool (such as place/route
tool) or read back into LeonardoSpectrum as a hierarchical block in a larger design.

Specify a filename, a format (VHDL) and click on Write to create the output result.

5

Università degli Studi di Verona, Facoltà di Scienze MM. FF. NN.

Dipartimento di Informatica
EDALab: Embedded System Design Center

Ca' Vignal, Strada Le Grazie 15
37134 Verona, Italia
Tel. +39 045 8027069
Fax +39 045 8027068

5 References
[1] EDALab “V-CLIP: A Voice-Client over IP”, http://www.edalab.net.

6

	Required Background
	Goal
	Introduction
	LeonardoSpectrum
	Technology
	Input
	Constraints
	Optimize
	Report Timing and Examine Results
	Saving the design

	References

