13/02/2008

Programming Models

Languages and Technologies

Contents

* Advanced languages for multicore systems
— Programming languages for Non-Uniform Cluster
Computers
* |IBM X10
— Programming languages for embedded systems

* Models of computations
* Streamit

What is X107

* X10is a new experimental language developed in the IBM PERCS
project as part of the DARPA program on High Productivity Computing
Systems (HPCS)

* X10’s goal is to provide a new parallel programming model and its

embodiment in a high level language that:

1. is more productive than current models,

2. can support higher levels of abstraction better than current
models, and

3. can exploit the multiple levels of parallelism and nonuniform data
access that are critical for obtaining scalable performance in
current and future HPC systems,

Current X10 Environment

X10 source program

Foo.x10
x10c Foo.x10 X10 compiler --- translates Foo.x10 to Foo.java,
l uses javac to generate Foo.class from Foo.java
. X10 program translated into Java
Foo.class Foo.java
x10 Foo.x10 l
X10 Virtual Machine X10 extern
i ; interface
(JVM + J2SE libraries + External DLUs

X10 libraries +
X10 Multithreaded Runtime)

X10 Abstract Performance Metrics
X10 Program Output (event counts, distribution efficiency)

X10 Tutorial

13/02/2008

Future X10 Environment

‘ TOOLS (e.g. Eclipse) |

Very High Level Languages (VHLL's), Implicit parallelism,

Domain Specific Languages (DSL’s) Implicit data distributions

‘ X10 Libraries |

X10 places --- abstraction of explicit
‘ X10 High Level Language | control & data distribution

Mapping of places to nodes in

| X10 Deployment l HPC Parallel Environment

HPC Runtime Environment Primitive constructs for
parallelism, communication,

(Parallel Environment, MPI, LAPI, ...) and synchronization

| Operating system ‘

Future X10 Environment: Targeting
Scalable HPC Parallel Systems

Front-end File interconnect Pset 0
Nodes Servers °° set
il
Functional
Gigabit - interconnect
Etherne
Pset 1023

X10 Tutorial

13/02/2008

Future X10 Environment: Targeting
Scalable HPC Parallel Systems

Clusters (scale-out) File

interconnect
SMP Servers oo Pset 0
Multiple cores on achip ||=
Coprocessors (SPUs)
SMTs
SIMD
“Full P
P CIuHr e interconnect
E E
vt Pset 1023

| Memory |’_,,—"

X10 vs. Java

* X10is an extended subset of Java
— Notable features removed from Java
* Concurrency --- threads, synchronized, etc.
* Java arrays —replaced by X10 arrays
— Notable features added to Java

* Concurrency — async, finish, atomic, future, force, foreach, ateach,
clocks

* Distribution --- points, distributions
* X10 arrays --- multidimensional distributed arrays, array reductions,
array initializers,
* Serial constructs --- nullable, const, extern, value types
* X10 supports both OO0 and non-0O0 programming paradigms

X10 Tutorial

13/02/2008

X10 vs. Java

X10 developers think Java will be a suitable platform
for High performance computing by 2010

X10 addresses the main limitation of Java for NUCC
systems: the notion of single uniform heap

— Introduction of the Partitioned Global Address Space
(PGAS)

— Programmers control which objects and activities are co-
located using the concept of places

X10 addresses another limitation of Java: heavyweight
mechanism for managing threads and messages

— Introduction of asynchronous activities

Java: Concurrency

Java has a predefined class java.lang.Thread which provides the
mechanism by which threads are created

public class MyThread extends Thread {
public void run() {

}

However to avoid all threads having to be subtypes of Thread, Java
also provides a standard interface

public interface Runnable {
public void run();

}

Hence, any class which wishes to express concurrent execution
must implement this interface and provide the run method

Threads do not begin their execution until the start method in the
Thread class is called

13/02/2008

Java: Synchronization

* All the interleavings of the threads are NOT
acceptable correct programs

* Java provides synchronization mechanism to
restrict the interleavings

* Synchronization serves two purposes:
— Ensure safety for shared updates
* Avoid race conditions
— Coordinate actions of threads

* Parallel computation
* Event notification

Java: Mutual Exclusion

* Prevent more than one thread from accessing critical
section at a given time
— Once a thread is in the critical section, no other thread can

enter that critical section until the first thread has left the
critical section.

— No interleavings of threads within the critical section

— Serializes access to section

synchronized int getbal() {
return balance;
}

synchronized void post(int v) {
balance = balance + v;
}

13/02/2008

Java: Atomicity

* The synchronized keyword takes as a
parameter an object whose lock the system
needs to obtain before it can continue

synchronized (ace)
if (acc.getbal() + val > 0)
acc.post(val);
else
throw new Exception();
out.print(*your balance is © + acc.getbal());

X10: Places

* A collection of resident mutable data objects and activities
operating on the data

* The number of places is fixed at compile time

* Places are virtual
— Mapping to physical locations is done in the deployment step

— Objects and activities do not migrate across places but places
can migrate across physical locations

— An activity in a place can spawn activities on remote places

* Within a place, activities operate on memory in a
sequentially consistent fashion

* Inter-place data access follows a weak ordering semantic

13/02/2008

X10 Programming Model
(Single Place)

e Activity = lightweight thread
Immutable Data (1)
-- final variables, value

type instances e Single Place Memory model

— No coherence constraints needed for | and S

— Main program starts as single activity in Place 0

| Shared Heap (H) storage classes
I o o — Guaranteed coherence for H storage class --- all
% % § Activities 3 writes to same shared location are observed in
Locally f:“ same order by all activities
(co,s,‘e",'::{‘;:f::s to I I I sl:acz;(‘:g) — Largest deployment granularity for a single
place is a single SMP

intra-place shared

heap) Storage classes:
¢ Immutable Data (1) In order to be accessed by different
o Shared Heap (H) activities variables must be declared as “final”

e Activity Stacks (S)

Basic X10 (Single Place)

Core constructs used for intra-place (shared memory) parallel
programming:

e Async = construct used to execute a statement in parallel as a new
activity

e Finish = construct used to check for global termination of statement
and all the activities that it has created

* Atomic = construct used to coordinate accesses to shared heap by
multiple activities

e Future = construct used to evaluate an expression in parallel as a
new activity

e Force = construct used to check for termination of future

13/02/2008

async statement

async <stmt>
— Parent activity creates a new child activity to execute <stmt> in the same place as
the parent activity
— An async statement returns immediately — parent execution proceeds immediately
to next statement
— Any access to parent’s local data must be through final variables
* Similar to data access rules for inner classes in Java

Variable n must be declared as
final --- its value is passed from
parent to child activity

Example
public class TutAsync {
const boxedInt oddSum=new boxedInt();
const boxedInt evenSumzriew boxedInt();
public static void in(String[] args) {
final int n = 100;
async [for (int i=1 ; i<=n ; i+=2) oddSum.val += 1i;

for (int j=2 ; j<=n ; j+=2) evenSum.val += j;

finish statement

e finish <stmt>
— Execute <stmt> as usual, but wait until all activities spawned (transitively) by
<stmt> have terminated before completing the execution of finish S
— finish traps all exceptions thrown by activities spawned by S, and throws a
wrapping exception after S has terminated.

* Example:
Ffinish {
async for (int i=1 ; i<=n ; i+=2) oddSum.val += i;
for (int j=2 ; j<=n ; j+=2) evenSum.val += j;

}

13/02/2008

Atomic statements & methods

atomic <stmt>, atomic <method-decl>

An atomic statement/method is conceptually executed in a single step, while other
activities are suspended

— Note: programmer does not manage any locks explicitly
An atomic section may not include

— Blocking operations

— Creation of activities

Example:
finish {
async for (int i=1 ; i<=n ; i+=2) {
double r = 1.0d /7 i ; atomic rSum += r;
T

for (int j=2 ; j<=n ; j+=2) {
double r = 1.0d /7 j ; atomic rSum += r;
3
}

System.out.printIn(*'rSum = " + rSum);

foreach loop (Parallel iteration)

The X10 foreach loop is similar to the pointwise for loop, except that each
iteration executes in parallel as a new asynchronous activity i.e.,

— “foreach (point p: R) S” is equivalent to “for (point p : R) async S”

As before, finish can be used to wait for termination of all foreach iterations
— finish foreach (point[i,j] : [0:M-1,0:N-1]) ...

Allowing a single foreach construct to span multiple dimensions makes it
convenient to write parallel matrix code that is independent of the underlying
rank and region e.g.

— foreach (point p : A.region) A[p] = f(B[p], C[p], DIp]) ;

Multiple foreach instances may accesses shared data in the same place = use
finish, atomic, force to avoid data races

13/02/2008

10

Limitations of using a Single Place

Shared Heap (H)

I % % § Activities
Locally
I I I Activity

Stacks (S)
Storage classes:

Synchronous
(coherent access to
intra-place shared
heap)

¢ Immutable Data (1)
e Shared Heap (H)
e Activity Stacks (S)

Place 0
[]

Largest deployment granularity for a
single place is a single SMP

— Smallest granularity can be a single
CPU or even a single hardware
thread

Single SMP is inadequate for solving
problems with large memory and
compute requirements

X10 solution: incorporate multiple
places as a core foundation of the X10
programming model

Enable deployment on large-scale
clustered machines, with integrated
support for intra-place parallelism

Scalable X10: using multiple places

Partitionla

Local Heap (LH)

I % % § Activities
Locally o

Synchronous
(coherent access to
intra-place shared
heap)

Activity
Stacks (S)

Place 0

Storage classes:

Immutable Data (I)

PGAS
— Local Heap (LH)

d Global Address Space (PGAS)
Local Heap (LH)
Outbound Inbound
activities activities
:D % % § Activities
Globally
Asynchronous .
Activity
“ o0 I II Stacks (S)
Inbound Outbound
activity activity Place (MAX_PLACES -1)
replies replies

- Remote Heap (RH)

Activity Stacks (S)

Place = collection of activities & objects

— Activities and data objects do not move

after being created

Scalar object, O -- maps to a single place
specified by O.location

Array object, A —may be local to a place or
distributed across multiple places, as
specified by A.distribution

13/02/2008

11

Locality Rule

* Any access to a mutable (shared heap) datum must be
performed by an activity located at the place as the datum

Inter-place data accesses can only be performed by creating

remote activities (with weaker ordering guarantees than
intra-place data accesses)

Activity Execution within a

Atomic sections do not

Place
Ready Executing
Inl‘.)o'u.nd Activities Activities
activities
~_|
Completed Blocked
Activities Activities

—

Outbound
replies

[aonc }—1
)

/ have blocking semantics

r; Outbound activities

Place-local activity can
only its stack (S), place-
local heap (LH), or
immutable data (1)

— 1

Inbound replies

13/02/2008

12

Place Management

e place.MAX_PLACES = total number of places
— Defaultvalue is 4
— Can be changed by using the -NUMBER_OF_LOCAL_PLACES option in x10 command
* place.places = Set of all places in an X10 program(see java.lang.Set)
e place.factory.place(i) = place corresponding to index i
¢ here = place in which current activity is executing
e <place-expr>.toString() returns a string of the form “place(id=99)”
¢ <place-expr>.id returns the id of the place

X10 Data Structures

X10 language defines mapping from X10
objects to X10 places, and abstract l
performance metrics on places
Future X10 deployment system will define
mapping from X10 places to system nodes; not l

supported in current implementation
System Nodes

Inter-place communication
using async and future

* Question: how to assign A[i] = B[j], when A[i] and and B[j] may be in different
places?
* Answer #1 --- use nested async’s!
finish async (B.distribution[j]) {
final int bb = B[j];
async (A.distribution[i]) A[i] = bb;
b
e Answer #2 --- use future-force and an async!
final int b = future (B.distribution[j]) { B[] }-force(Q:
finish async (A.distribution[i]) A[i] = b;

13/02/2008

13

ateach loop
(distributed parallel iteration)

The X10 ateach loop is similar to the foreach loop, except that each iteration executes
in parallel at a place specified by a distribution

— “ateach (pointp:D)S” is equivalent to “for (point p : D.region) async (D[p]) S”

As before, finish can be used to wait for termination of all ateach iterations
— “finish ateach(point[i] : dist.factory.unique()) S” creates one activity per place, as
in an SPMD computation
— ateach is a convenient construct for writing parallel matrix code that is
independent of the underlying distribution e.g.,

* ateach (point p : A.distribution) A[p] = f(B[p], C[p], D[p]) ;

X10 clocks: Motivation

e Activity coordination using finish and force() is accomplished by checking for
activity termination

* However, there are many cases in which a producer-consumer relationship
exists among the activities, and a “barrier”-like coordination is needed without
waiting for activity termination

— The activities involved may be in the same place or in different places

Phase 0

Phase 1

Activity O Activity 1 Activity 2

13/02/2008

14

X10 Clocks

clock ¢ = clock.factory.clock();
— Allocate a clock, register current activity with it. Phase 0 of c starts.

async(..) clocked (cl1,c2,.) S
ateach(..) clocked (cl,c2,.) S
foreach(..) clocked (cl,c2,.) S

— Create async activities registered on clocks c1, c2, ...

c.resume();

— Nonblocking operation that signals completion of work by current activity for this
phase of clock ¢

next;

— Barrier --- suspend until all clocks that the current activity is registered with can
advance. c.resume() is first performed for each such clock, if needed.

— Next can be viewed like a “finish” of all computations under way in the current
phase of the clock

X10 Clocks

c.dropQ);

— Unregister with c. A terminating activity will implicitly drop all clocks that it is
registered on.

c.registered()
— Return true iff current activity is registered on clock c
— c.dropped() returns the opposite of c.registered()

ClockUseException

— Thrown if an activity attempts to transmit or operate on a clock that it is not
registered on

13/02/2008

15

Example

Example of transmitting finish async {
clock from parent to child final clock c = clock.factory.clock();
foreach (point[i]: [1:N]) clocked (c) {
white{trae)
int old_A_i = A[i]; int new_A_i = Math.min(A[i],B[i]);
if (i>1)new_A_i=Math.min(new_A_i,B[i-1]);
if (i<N)new_A_i=Math.min(new_A_i,B[i+1]);
Ali] = new_A_j;
next;
int old_B_i = B[i]; int new_B_i = Math.min(B[i],A[i]);
if (i>1)new_B_i=Math.min(new_B_i,A[i-1]);
if (i <N)new_B_i = Math.min(new_B_i,A[i+1]);

B[i] = new_B_i;
NOTE: exiting from while next;
loop terminates activity for if (old_A_i == new_A_i && old_B_i == new_B_i) break;
iteration i, and }// while
automatically deregisters)/_/ f_oreach
activity from clock / finish async

Models of Computations for
Embedded Systems

* A Model of computation is a formal representation of
the operational semantics of networks of functional
blocks describing the computations

* MoC is related to an application or an architecture
— A mapping is required

Sl

13/02/2008

16

Language Styles

* Finite versus infinite state

— Some models assume that an infinite number of states can exist;
other models are finite-state

* Control versus data

— Many programming languages have been developed for control-
intense applications such as protocol design

— Similarly, many other programming languages have been
designed for data intense applications such as signal processing

* Sequential versus parallel

— Many languages have been developed to make it easy to
describe parallel programs in a way that is both intuitive and
formally verifiable

— However, programmers still feel comfortable with sequential
programming when they can get away with it

Terminology

e Actor Actor

— Encapsulates part of the
functionality of a design

* Relation token
— Actors are connected with each . i
Relation

other using relations
* Token
— A quantum of information
— Represents a communication fire {
signal
* Firing
— Internal computation senditoken)

— Communication with other Port
actors 1

foken — get();

Fort

(Active/FPassive)

13/02/2008

17

£\
b
- kY
fire
token = get(); 'l
send{ioken) {
L / Exit
e A

Two kinds of Actors:

Active/Passive Actors

X

fire |
while(1) {
token = get();
send(token);
}
}

Passive Actor:

Active Actor:

Scheduler needed

— Schedule ABBCD

A firing needs to terminate
Fire-and-exit behavior

Schedules itself

A firing typically does not terminate
— Endless while loop

Process behavior

Communication between Actors

fire { fire {
Token .
send(); get();
port | .
Actor 1. — Actor 2.

= ommunication<

~~{Semantics)
£\

Data Type of the Token

Integer, Double, Complex

Matrix, Vector
Record

Way exchange takes place

Buffered

Timed
Synchronized

13/02/2008

18

Finite State Machines

More efficient way to describe sequential control

Formal semantics which allows for verifying various
properties like safety, liveness, and fairness

FSM may only have one state active at the time
FSM has only a finite number of states

KEY=0N == START -

Port KEY @ =

KEY=CFF or BELT=0N => / \
/ \, ALARM=OFF 1 WAH:/l @ Port_START
(@)=
Port BELT @ / _—
- . \\ B / .
~ Port_ALARM
Port_ END @ M:mx__ -"/ \"- END=5 =
= Eg_TBi_r; or —{ ALARM ALARM=0N
EY=0FF => \
ALARM=0FF _______

Dumb Wiring Models

Network of concurrent executing actors
— passive Actors
— Communication is unbuffered

A model progresses as a sequence of “ticks.”

Computation and Communication is instantaneous within a
tick.

At a tick, the values of the registers are defined by state
update equations

fire { fire { D' =C(A().B(D))
. Token e
send(): (Dbl et

! port port]...

13/02/2008

19

Synchronous/Reactive Models

Network of concurrent executing actors

— passive Actors

— Communication is unbuffered

A model progresses as a sequence of “ticks.”

Computation and Communication is instantaneous
within a tick.

At a tick, the signals are defined by a fixed point

equation: x| | £
Characteristics of SR Models yvi=| £fi(2)
— Tightly Synchronized R FACRY

— Control intensive systems | [

Fixed point equation
E ?‘f IB

Synchronous Dataflow

Network of concurrent executing actors
— passive Actors
— Communication is buffered

A model progresses as a sequence of “iterations.”
A “firing rule” determines the firing condition of an actor.

At each firing, a fixed number of tokens is consumed and
produced

Characteristics of SDF
— Compile time analyzable

— Memory/Schedule/Speed schedule: ABBBC

fire { Tokens firs {

ot P
-

1 port

13/02/2008

20

Process Networks

Network of concurrent executing processes
— active Actors
— Communicate over unbounded FIFOs

Performing some operation, a blocking read or a non-blocking
write
Characteristics of Process Networks

— Deterministic Execution

— Doesn’t impose a particular schedule
— (Dynamic) Dataflow

fire { Token | fre g
send(}; 'DO*HHHIHH}—*‘I&ﬁH
. ot port | |

Communicating Sequential
Processes

Network of concurrent executing processes
— active Actors
— Communicate by rendezvous

Reads block until a blocking read or a non-blocking write
Characteristics of CSP

— Inherently non-deterministic execution
— Formalization of Agent/Repository

E\Pmc&s

Token e

13/02/2008

21

Hierarchical Composition

Each model of computation has advantages and
disadvantages

— Ease of representation

— Formally provable properties

— Computational completeness

— Concurrency vs. Sequentiality

* Combine models of computation hierarchically to
balance those tradeoffs:

— Preserve formal properties in composition

— Proper abstraction

Codesign Finite State Machine

* Network of concurrent executing actors

— Passive Actors

— Synchronous locally

— Asynchronous globally
* An “event” causes the evaluation (firing) of a FSM
* Characteristics of CFSM

— Compile time analyzable

— Reactive systems

Timed Event

FSM @——O——@ FSM

port port

13/02/2008

22

Notes

Not all Models of Computation are concurrent

— Good representations of sequential operations and state
can be just as important as representing concurrency

No model of computation makes all the right design

tradeoffs...

— Less structured models of computation sometimes easier
to use and sometimes more difficult...

The semantics of models of computation actually say

very little about "implementation”

— Although in many cases there are known good ways of
implementing them

Streamit

For programs based on streams of data

— Audio, video, DSP, networking, and
cryptographic processing kernels

Examples: HDTV editing, radar tracking, [|:| Sclztier H

microphone arrays, cell phone base (ipr,) (tpr.) (ter.)

stations, graphics BT T F

Several attractive properties

— Regular and repeating computation

— Independent filters with explicit
communication

— Task, data, and pipeline parallelism

ata

13/02/2008

23

Streaming Models of Computation

* Many different ways to represent streaming
— Do senders/receivers block?
— How much buffering is allowed on channels?
— Is computation deterministic?
— Can you avoid deadlock?
* Three common models:
— Kahn Process Networks
— Synchronous Dataflow
— Communicating Sequential Processes

Streaming Models of Computation

Communication | Buffering Notes
Pattern

Kahn process

Data-dependent,

Conceptually

- UNIX pipes

networks (KPN) but deterministic | unbounded - Ambric (startup)
Synchronous Static Fixed by - Static scheduling
dataflow (SDF) compiler - Deadlock freedom
Communicating Data-dependent, | None - Rich synchronization
Sequential allows non- (Rendesvouz) | Primitives

Processes (CSP)

determinism

- Occam language

/(S0)
N

space of program behaviors

13/02/2008

24

What is Streamit

* A high-level, architecture-independent
language for streaming applications
— Improves programmer productivity (vs. Java, C)
— Offers scalable performance on multicores

* Based on synchronous dataflow, with dynamic
extensions
— Compiler determines execution order of filters
— Many aggressive optimizations possible

The Streaming Project

* Applications
— DES and Serpent [PLDI 05]

— MPEG-2 [IPDPS 06]

¥

— SAR, DSP benchmarks, JPEG, ...
* Programmability Front-end
— Streamlt Language (CC 02)
— Teleport Messaging (PPOPP 05) T
— Programming Environment in Eclipse (P-PHEC 05) \-.ﬂrlnft?f_id_xivﬂ.b
* Domain Specific Optimizations T T
— Linear Analysis and Optimization (PLDI 03) Simulator SR

— Optimizations for bit streaming (PLDI 05)

— Linear State Space Analysis (CASES 05)
¢ Architecture Specific Optimizations :
— Compiling for Communication-Exposed 7 'y
Architectures (ASPLOS 02) Cluster IEM X10
— Phased Scheduling (LCTES 03) gk packend

— Cache Aware Optimization (LCTES 05)
— Load-Balanced Rendering (Graphics Hardware 05)
msg code X10 runtims

(Java Library) Optimizations

Raw
backend

-
Uniprocessor
backend

13/02/2008

25

Example: A Simple Counter

void-=void pipeline
add IﬂtSrZJLrJ)I'CE‘O; V1 Counter
add IntPrinter(); IntSource
})
void->int filter 01 IntPrinter
int x;
init{x=0;} o
work push 1 { pLISh (){++)} } o strc COUFIT.-GF.StI' -0 counter
% .Jcounter -i 4
b 0
int->void filter 01 1
work pop 1 { print(pop()); } 2
} 3

Representing Streams

Conventional wisdom: streams are graphs
— Graphs have no simple textual representation
— Graphs are difficult to analyze and optimize

* Insight: stream programs have structure

unstructured structured

13/02/2008

26

13/02/2008

Structured Streams

filter (] e Each structure is single-
pipeline input, single-output
] maybe . .
3334 awsweant e Hierarchical and
language construct Composable

Splltjﬂln 7 parallel computation

feedback loop

e w
1
\ J .

v

Filter Example: Low Pass Filter

float->float filter LowPassFilter (int N, float freq) {
float[N] weights;

o
init { o
weights = calcWeights(freq); N{g
: X
work peek N push 1 pop 1 {
float result = 0; filter

for (int i=0; i<weights.length; i++) {
result += weights[i] * peek(i);

O

push(result);
pop();

27

Low Pass Filter in C

vora tml ¢ FIR functionality obscured by
ints dast, buffer management details
intx destindex, e Programmer must commit to a
int destBufferSize, particular buffer implementation
e strategy

float result = 0.0;
for (int 1 = 0; 1 < N; i++) {
result += welghts[i] * src[(*srclndex + 1) %* srcBufferSize]:
}
dest[*destIndex] = result:
*srclndex = (*srclndex + 1) % srcBufferSize:
*destIndex = (*destIndex + 1) % destBufferSize;

Pipeline Example: Band Pass Filter

float—float pipeline (int N, +
float low, ‘ LowPassFilter ‘
float high) { !
add LowPassFilter(N, low); | HighPassFilter |
add HighPassFilter(N, high); |
by

13/02/2008

28

Split-Join Example: Equalizer

float—float pipeline (int N, Equalizer

float lo,
float hi) {

add splitjoin {
split duplicate;

for (int i=0; i<N; i++)
add BandPassFilter(64, lo + i*(hi - lo)/N);

join roundrobin(1);

b

add Adder(N);

Building Larger Programs: FM Radio

void->void pipeline (int N, float lo, float hi) {
add AtoD();
add FMDemod();
add splitjoin {
split duplicate;

)

for (int i=0; i<N; i++) { - *)

add pipeline { - - -
add LowPassFilter(lo + i*(hi - lo)/N); LPF, LPF, | |LPF,
add HighPassFilter(lo + i*(hi - lo)/N); HPF.| [HPF,| |HPF,

} [2]

join roundrobin(); [

s
add Adder();

e
add Speaker();

13/02/2008

29

13/02/2008

SplitJoin Options

* Split duplicate
* Split roundrobin (N)
* Join roundrobin (N)

h

= N=2 N=1 N=1,2,3

=z

>

Matrix Transpose
N

.

~

A

P

/

TeTelele [e]e]ele ([ele]ele
M ¢lole e M+ | 60 [0fe M- | e }e-ole
\==?; [efefele [efefeie
l: Xoundrobm(?) 3 roundrobin(1)
S / S
o [
J. roundrabin(?), roundrobin(M)
(oo 08 [eTe e e [oTee]s
M [JE FE 3 M (I JE B) M (I JE U)
¥ ¥ ¥ Vjyj¥e [F][¥]
N N N
float->float splitjoin (int

int N) {
split roundrobin(1);
for (inti=0; i<N; i++) {
add Identity <float>;
}
join roundrobin(M);

¥

30

Bit Reversed Ordering

* Many FFT algorithms require a bit-reversal stage

* Ifitem is at index n (with binary digits b0 b1 ... bk),
then it is transferred to reversed index bk... b1 b0

* For 3-digit binary numbers:

00001111 ég
00110011 T T~
01010101 < o
I l n-"/ . -~ T

7 "
00001111 _5 \O’/
00110011 e ¢
01010101 .

Bit Reversed Ordering

_ @RRW) eRR()
@RR(w,) @RR(w,) SRR(1) T®RR(1)
e - \\. - -) “\1 e g I - -\‘J
\‘.,_f:_a(wz))R/R(wz) \Eg@) V_E_‘RR(E)
T®RR(w,) “SRR@)

13/02/2008

31

13/02/2008

Bit Reversed Ordering

complex-=>complex pipeline (int N) {

if (N==2) { , @_Lﬂ

add Identity<complex>;
}else { j i%}
add splitjoin { gi i ;E 3‘; .;: ; \kl
split roundrobin(1);] &5 :E ;/2
add BitReverse(N/2); 3’ “1&5"‘-’
add BitReverse(N/2); — _—

& ~F
join roundrobin(N/2); diﬁ

N-Element Mergesort

int->int pipeline (int N) {
if (N==2) { R
add Sort(N); = =N

Y else { é?ﬂ Eﬁ% ﬁ;;l é}
add splitjoin { %

split roundrobin(N/2); = as l—_'-l?‘s
add MergeSort(N/2); = ==
add MergeSort(N/2); E
join roundrobin(N/2); :
b
¥
add Merge(N);
b

32

N-element Mergesort (3-level)

N
Nf.? ___7__.@__7__&2:‘_7

2 <5 v ry/g__.,a-:?x_agg
M@EQEM@ Aﬁﬁ;Q /8 Ngg;i@ﬁ NE N8

Sorl| |Sort| |Sort| |Sor1| |Sc|r1| |Surt| ‘Son| |Son|
T

.

v v
[Merge] [Mergd [Merge] Mergd
"---.k_h____r)__’_,.—-" ""-H,____k !_’_,.—-"

MPEG-2 Decoder

MPEG bif sream

====5 vin]
Slon COEMCIEnts MECTOBIOCRS, Mofion Vertvs

EQUENTY E'TGE\JEI?___.-- aiffersntially coged
g“‘a‘?:"?ﬂlﬁrﬁﬂ‘,_—-" M VeI
Zlqzag
<0r muantlzsuon lon -‘9010r Dacod
¥
1DCT [—h"“t
SSILI[HNDH
Spanaly encoged N.\W'C.\‘:S i — W"Gf‘ VeCIors

i
—_

J,o{ &1]
tar
- -) - .
fMation Companeation (Maticn Companaatior] (Motion Companastio
eprys |TEOEENCE 3| | cppy | TEfETERGE J <F71> | TETEFENGE |
i pete

cmunuP-up:-

jein roungreddn(l, 1, 11
'Ech\r‘EﬂEﬂl:l:!‘.\"E

<rre- Ploture Reordar
Coior $paca Converalon

v
SUpLT io piEper

1 Pleturefesedsr |3%H*H) to FT2:

: ColeorSpaceConveraien|3vHeH) ;

13/02/2008

33

