
1

Embedded Systems Design: A Unified Hardware/Software
Introduction

Chapter 9: Control Systems

2Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control System

• Control physical system’s output
– By setting physical system’s input

• Tracking
• E.g.

– Cruise control
– Thermostat control
– Disk drive control
– Aircraft altitude control

• Difficulty due to
– Disturbance: wind, road, tire, brake; opening/closing door…
– Human interface: feel good, feel right…

3Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Tracking

4Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Open-Loop Control Systems

• Plant
– Physical system to be controlled

• Car, plane, disk, heater,…
• Actuator

– Device to control the plant
• Throttle, wing flap, disk motor,…

• Controller
– Designed product to control the plant

5Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Open-Loop Control Systems

• Output
– The aspect of the physical system we are interested in

• Speed, disk location, temperature
• Reference

– The value we want to see at output
• Desired speed, desired location, desired temperature

• Disturbance
– Uncontrollable input to the plant imposed by environment

• Wind, bumping the disk drive, door opening

6Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Other Characteristics of open loop

• Feed-forward control
• Delay in actual change of the output
• Controller doesn’t know how well thing goes
• Simple
• Best use for predictable systems

7Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Close Loop Control Systems

• Sensor
– Measure the plant output

• Error detector
– Detect Error

• Feedback control systems
• Minimize tracking error

8Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Designing Open Loop Control System

• Develop a model of the plant
• Develop a controller
• Analyze the controller
• Consider Disturbance
• Determine Performance
• Example: Open Loop Cruise Control System

9Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Model of the Plant

• May not be necessary
– Can be done through experimenting and tuning

• But,
– Can make it easier to design
– May be useful for deriving the controller

• Example: throttle that goes from 0 to 45 degree
– On flat surface at 50 mph, open the throttle to 40 degree
– Wait 1 “time unit”
– Measure the speed, let’s say 55 mph
– Then the following equation satisfy the above scenario

• vt+1=0.7*vt+0.5*ut
• 55 = 0.7*50+0.5*40

– IF the equation holds for all other scenario
• Then we have a model of the plant

10Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Designing the Controller

• Assuming we want to use a simple linear function
– ut=F(rt)= P * rt
– rt is the desired speed

• Linear proportional controller
• vt+1=0.7*vt+0.5*ut = 0.7*vt+0.5P*rt

• Let vt+1=vt at steady state = vss

• vss=0.7*vss+0.5P*rt

• At steady state, we want vss=rt

• P=0.6
– I.e. ut=0.6*rt

11Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Analyzing the Controller

• Let v0=20mph, r0=50mph
• vt+1=0.7*vt+0.5(0.6)*rt =0.7*vt+0.3*50=

0.7*vt+15
• Throttle position is 0.6*50=30 degree

12Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Considering the Disturbance

• Assume road grade can
affect the speed
– From –5mph to +5 mph
– vt+1=0.7*vt+10
– vt+1=0.7*vt+20

13Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Determining Performance

• Vt+1=0.7*vt+0.5P*r0-w0

• v1=0.7*v0+0.5P*r0-w0

• v2=0.7*(0.7*v0+0.5P*r0-w0) +0.5P*r0-w0 =0.7*0.7*v0+(0.7+1.0)*0.5P*r0-
(0.7+1.0)w0

• vt=0.7t*v0+(0.7t-1+0.7t-2+…+0.7+1.0)(0.5P*r0-w0)
• Coefficient of vt determines rate of decay of v0

– >1 or <-1, vt will grow without bound
– <0, vt will oscillate

14Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Designing Close Loop Control System

15Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Stability

• ut = P * (rt-vt)
• vt+1 = 0.7vt+0.5ut-wt = 0.7vt+0.5P*(rt-vt)-w

=(0.7-0.5P)*vt+0.5P*rt-wt

• vt=(0.7-0.5P)t*v0+((0.7-0.5P)t-1+(0.7-0.5P)t-2+…+0.7-0.5P+1.0)(0.5P*r0-w0)

• Stability constraint (I.e. convergence) requires
|0.7-0.5P|<1
-1<0.7-0.5P<1
-0.6<P<3.4

16Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Reducing effect of v0

• ut = P * (rt-vt)
• vt+1 = 0.7vt+0.5ut-wt = 0.7vt+0.5P*(rt-vt)-w

=(0.7-0.5P)*vt+0.5P*rt-wt

• vt=(0.7-0.5P)t*v0+((0.7-0.5P)t-1+(0.7-0.5P)t-2+…+0.7-0.5P+1.0)(0.5P*r0-w0)

• To reduce the effect of initial condition
– 0.7-0.5P as small as possible
– P=1.4

17Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Avoid Oscillation

• ut = P * (rt-vt)
• vt+1 = 0.7vt+0.5ut-wt = 0.7vt+0.5P*(rt-vt)-w

=(0.7-0.5P)*vt+0.5P*rt-wt

• vt=(0.7-0.5P)t*v0+((0.7-0.5P)t-1+(0.7-0.5P)t-2+…+0.7-0.5P+1.0)(0.5P*r0-w0)
• To avoid oscillation

– 0.7-0.5P >=0
– P<=1.4

18Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Perfect Tracking

• ut = P * (rt-vt)
• vt+1 = 0.7vt+0.5ut-wt = 0.7vt+0.5P*(rt-vt)-w

=(0.7-0.5P)*vt+0.5P*rt-wt

• vss=(0.7-0.5P)*vss+0.5P*r0-w0

(1-0.7+0.5P)vss=0.5P*r0-w0

vss=(0.5P/(0.3+0.5P)) * r0 - (1.0/(0.3+0.5P)) * wo

• To make vss as close to r0 as possible
– P should be as large as possible

19Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Close-Loop Design

• ut = P * (rt-vt)
• Finally, setting P=3.3

– Stable, track well, some oscillation
– ut = 3.3 * (rt-vt)

20Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Analyze the controller

• v0=20 mph, r0=50 mph, w=0
• vt+1 = 0.7vt+0.5P*(rt-vt)-w

= 0.7vt+0.5*3.3*(50-vt)
• ut = P * (rt-vt)

= 3.3 * (50-vt)

• But ut range from 0-45
• Controller saturates

21Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Analyze the controller

• v0=20 mph, r0=50 mph, w=0
• vt+1 = 0.7vt+0.5*ut

• ut = 3.3 * (50-vt)
– Saturate at 0, 45

• Oscillation!
– “feel bad”

22Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Analyze the controller

• Set P=1.0 to void
oscillation
– Terrible SS

performance

23Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Analyzing the Controller

24Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Minimize the effect of disturbance

• vt+1 =
0.7vt+0.5*3.3*(rt-vt)-w
– w=-5 or +5

• 39.74
– Close to 42.31
– Better than

• 33
• 66

• Cost
– SS error
– oscillation

25Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

General Control System

• Objective
– Causing output to track a reference even in the presence of

• Measurement noise
• Model error
• Disturbances

• Metrics
– Stability

• Output remains bounded
– Performance

• How well an output tracks the reference
– Disturbance rejection
– Robustness

• Ability to tolerate modeling error of the plant

26Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Performance (generally speaking)

• Rise time
– Time it takes form

10% to 90%
• Peak time
• Overshoot

– Percentage by which
Peak exceed final
value

• Settling time
– Time it takes to

reach 1% of final
value

27Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Plant modeling is difficult

• May need to be done first
• Plant is usually on continuous time

– Not discrete time
• E.g. car speed continuously react to throttle position, not at discrete interval

– Sampling period must be chosen carefully
• To make sure “nothing interesting” happen in between
• I.e. small enough

• Plant is usually non-linear
– E.g. shock absorber response may need to be 8th order differential

• Iterative development of the plant model and controller
– Have a plant model that is “good enough”

28Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Controller Design: P

• Proportional controller
– A controller that multiplies the tracking error by a constant

• ut = P * (rt-vt)
– Close loop model with a linear plant

• E.g. vt+1 = (0.7-0.5P)*vt+0.5P*rt-wt

• P affects
– Transient response

• Stability, oscillation
– Steady state tacking

• As large as possible
– Disturbance rejection

• As large as possible

29Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Controller Design: PD

• Proportional and Derivative control
• ut = P * (rt-vt) + D * ((rt-vt)-(rt-1-vt-1)) = P * et+ D * (et-et-1)

• Consider the size of error over time
• Intuitively

– Want to “push” more if the error is not reducing fast enough
– Want to “push” less if the error is reducing really fast

30Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

PD Controller

• Need to keep track of error derivative
• E.g. Cruise controller example

– vt+1 = 0.7vt+0.5ut-wt

– Let ut = P * et + D * (et-et-1), et=rt-vt

– vt+1=0.7vt+0.5*(P*(rt-vt)+D*((rt-vt)-(rt-1-vt-1)))-wt

– vt+1=(0.7-0.5*(P+D))*vt+0.5D*vt-1+0.5*(P+D)*rt-0.5D*rt-1-wt

– Assume reference input and distribance are constant, the steady-state
speed is

• Vss=(0.5P/(1-0.7+0.5P)) * r
• Does not depend on D!!!

• P can be set for best tracking and disturbance control
• Then D set to control oscillation/overshoot/rate of convergence

31Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

PD Control Example

32Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

PI Control

• Proportional plus integral control
– ut=P*et+I*(e0+e1+…+et)

• Sum up error over time
– Ensure reaching desired output, eventually
– vss will not be reached until ess=0

• Use P to control disturbance
• Use I to ensure steady state convergence and convergence rate

33Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

PID Controller

• Combine Proportional, integral, and derivative control
– ut=P*et+I*(e0+e1+…+et)+D*(et-et-1)

• Available off-the shelf

34Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Software Coding

• Main function loops forever, during each iteration
– Read plant output sensor

• May require A2D
– Read current desired reference input
– Call PidUpdate, to determine actuator value
– Set actuator value

• May require D2A

35Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Software Coding (continue)

• Pgain, Dgain, Igain are constants
• sensor_value_previous

– For D control

• error_sum
– For I control

36Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Computation

• ut=P*et+I*(e0+e1+…+et)+D*(et-et-1)

37Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

PID tuning

• Analytically deriving P, I, D may not be possible
– E.g. plant not is not available, or to costly to obtain

• Ad hoc method for getting “reasonable” P, I, D
– Start with a small P, I=D=0
– Increase D, until seeing oscillation

• Reduce D a bit
– Increase P, until seeing oscillation

• Reduce D a bit
– Increase I, until seeing oscillation

• Iterate until can change anything without excessive oscillation

38Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Practical Issues with Computer-Based Control

• Quantization
• Overflow
• Aliasing
• Computation Delay

39Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Quantization & Overflow

• Quantization
– Can’t store 0.36 as 4-bit fractional number
– Can only store 0.75, 0.59, 0.25, 0.00, -0.25, -050,-0.75, -1.00
– Choose 0.25

• Result in quantization error of 0.11
• Sources of quantization error

– Operations, e.g. 0.50*0.25=0.125
• Can use more bits until input/output to the environment/memory

– A2D converters

• Overflow
– Can’t store 0.75+0.50 = 1.25 as 4-bit fractional number

• Solutions:
– Use fix-point representation/operations carefully

• Time-consuming
– Use floating-point co-processor

• Costly

40Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Aliasing

• Quantization/overflow
– Due to discrete nature of computer data

• Aliasing
– Due to discrete nature of sampling

41Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Aliasing Example

• Sampling at 2.5 Hz, period of 0.4, the following are indistinguishable
– y(t)=1.0*sin(6πt), frequency 3 Hz
– y(t)=1.0*sin(πt), frequency of 0.5 Hz

• In fact, with sampling frequency of 2.5 Hz
– Can only correctly sample signal below Nyquist frequency 2.5/2 = 1.25 Hz

42Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Computation Delay

• Inherent delay in processing
– Actuation occurs later than expected

• Need to characterize implementation delay to make sure it is
negligible

• Hardware delay is usually easy to characterize
– Synchronous design

• Software delay is harder to predict
– Should organize code carefully so delay is predictable and minimized
– Write software with predictable timing behavior (be like hardware)

• Time Trigger Architecture
• Synchronous Software Language

43Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Benefit of Computer Control

• Cost!!!
– Expensive to make analog control immune to

• Age, temperature, manufacturing error
– Computer control replace complex analog hardware with complex code

• Programmability!!!
– Computer Control can be “upgraded”

• Change in control mode, gain, are easy to do
– Computer Control can be adaptive to change in plant

• Due to age, temperature, …etc
– “future-proof”

• Easily adapt to change in standards,..etc

