Supporting Software

Compilers and Autotuners
Virtual Machines
Middleware
Operating Systems

Task Migration on MPSoCs

Needed for distributed memory not cache coherent MPSoCs
— Cache coherent SMP: move task status only...
— Distributed memory MPSOC: move code and data too!!!

Process migration to:
— Workload balancing

— Power consumption (with DVFS and SD) - - -
— facilitate thermal chip management * * *

Challenges for embedded systems INTERCONNECT

— Low - overhead

Private Private Private

- Pred|Ctab|I|ty Mem Mem Mem

03/03/2008

Task Graph Runtime Allocation

=

Allocation INTERCONNECT

Private Private

Mem Mem

T
T

1
1

INTERCONNECT
Private Private Private
Mem Mem e Mem

Migration for Variability

INTERCONNECT INTERCONNECT
Private Private Private Private Private
Mem Mem o Mem Mem Mem

.

*

o

»

INTERCONNECT
Private Private Private
Mem Mem o Mem

03/03/2008

Migration Methodology

* Code checkpointing

— Task migration is provided in an almost transparent way. The only
cooperation required to the programmer or to the compiler is the
insertion of hints in the code specifying points or regions of code
where migration is enabled

— For embedded systems it increases predictability
— Full transparency is hard in this context

e Daemon support (middleware approach)
— Replica for each processor
— Handle code/data transfer and task spawning

Task migration support

e Process migration to:

— facilitate thermal chip management by moving tasks away from hot processing
elements,

— balance the workload of parallel processing

— reduce power consumption by coupling with dynamic voltage and frequency
scaling

* Well developed for cache-coherent SMPs
— New challenge in NoC-based MPSoCs, where each core runs its own local
copy of the operating system in private memory.
e A migration paradigm similar to computer clusters

— With the addition of a shared memory support for inter-processor
communication

— Extremely low overhead

[Acquaviva DATE06]

Luca Benini NoCs07

03/03/2008

Migration Steps

offline:
The programmer defines the migration points

online:
1. Saving the context of the migrating task
2. Transfer of the context on shared memory
3. Kill the task
4. Creation of a copy of the task on a new processor
5

Restore the context of the new task

Kernel Daemons Infrastructure

The migration process is managed using two kinds of kernel
daemons:

— amaster daemon on a single (master) processor,

— slave daemons on each (worker) processor.
The master daemon is directly interfaced to the decision engine
providing the selected policy for run time task allocation.

Master and slaves interact using interrupts and shared memory
data structures to perform:

— synchronized allocation/deallocation of tasks data structures inside the private Oses
— task data copy from the source processor to the destination processor

Mechanism: task replication / recreation

03/03/2008

TM in Distributed Memory
Architectures
* When moving app/kernel context pointers are

not valid anymore unless data structures have
the same position in memory

e Solutions
— PIC (Position Independent Code)

— Hardware support (replicated address space) but
still need to keep the same position in memory
(strong limitation)

Task replication

Execution | running :&Ieepingm_leepingg
view:
CORE CORE CORE
#0 #1 #2
tprivae | | private |
Memory i
view:

shared

task replication

10

03/03/2008

03/03/2008

Execution | JEB=XSleeping running LB Sleeping
view:
CORE CORE CORE .
E #1 #2 :
private
Memory i S_daemon i
view: ;
shared
task replication
11
Task re-creation
T T T T T T T T TS TS T T T s T T s s s s =
E ti I
ViX:\;l.J on running - exited I
' |
|
| CORE CORE CORE I
1 #0 #1 #2 I
: I
[[I
_______________________ - === 1
: private — private |
M 1 M_daemon :
. emory 1 S_daemon |
view: | :
! I
: shared |
L e o e e e e e e e e N e e e e e e e e e e o N
task deallocation
12

Task re-creation

5?:;9t|0nMxited running
.| core CORE CORE
E #0 #1 #
e LT e L] e
Memory daeron
view: I | PO
shared
task re-creation
13
Replication vs. Re-creation
10000000
9000000 -—— TSK RECREATION —@——@— /.
8000000 TASK REPLICATION — & & /
7000000 //
é 6000000
S 5000000 / ___—
g 4000000 / —
3000000 / ——
2000000 / = =
1000000 ?, o
-
o

Task size (KB)

Cost of replication: increased memory usage

LA L L B LN L L B L L L B B S |
0 128 256 384 512 640 768 896 1024

14

03/03/2008

Migration mechanism

CORE CORE CORE

#0 #1 #2
task resume msg
] Bmaiion requefpt

set migration request

a

M? D? PO state
POY 2 (data,
PIN - user stack,
kernel stack)

shared

M_daemon() { process0() { process0() {

migration_point migration_point
if (migration_taken) if (migration_taken)
exit; exit;

load_balancing();
set_migration_request;

OS Implications

e Task replication is suitable for OS with no
dynamic loading capabilities (eCos, RTEMS)
— No need for dynamic process creation
— User address space is statically assigned

— Lower migration overhead but lower memory
overhead

e Task re-creation requires dynamic loading
capabilities (uClinux, Linux)
— Exec is very expensive (address space copy)

— Larger migration overhead but lower memory
overhead

03/03/2008

Deamon Overhead as a Function of Update
Frequency

-- 8 tasks
-- 16 tasks

-- w/o decision 8 tasks

-- w/o decision 16 tasks

w decision 8 tasks

-- w decision 16 tasks

CPU utlization
CPU utikzation

= » 40 = 0 ™ a0 w0 e i 2 1
update frequency (Hz) update frequency (Hz)

each 10 timeslices (100ms each timeslice (10ms)
Master daemon Slave daemon

¢ Master and slave daemons overhead as a function of update frequency
— Reasonable update frequency lead to negligible overhead of middleware daemons
— The overhead introduced by load balancing algorithm is still negligible

17

Deamon Overhead as a Function of
Task Size

Note: minimum size is 64KBytes

EEOT . .
because of OS min allocation for

processor address space

&) K - Ex: tasks size of Software Defined Radio
= SDRtasks application fits in 64Kbytes

w7 ‘
1EHT , t
o600
] 128 268 34

e Migration overhead:
— 2Mcycles for 256Kbytes task => roughly 10ms @ 200MHz
— 0.5Mcycles for 64Kbytes task => roughly 2.5ms @ 200MHz
— Migration overhead is on the order of one timeslice
e BUT: most of the accesses are to the shared memory => impact of bus contention
must be taken into account which may impact predictability

EH 840 768 L] o
Task size (KB)

18

03/03/2008

while(1) {

t

Checkpoint Overhead:
SW Radio Example

261

(]
w

(X

checkpoint () ; -

overhead %
-~
&
]
8

infifo.getikelem) ;
for{q=0; q < FH_FRAME_SIZE; q++) { %%
f{ demcdulation .
temp = (elam.d[q] * lastElem); O e [re——— Worker o

zlem.d[q] = mGain =*
arctan(slem.d[gq]l, 1.0/lastElsn);
lastElem = elem.d[q];
}
for(int w=0; win_workers; w++)
cutfifo[w]-rputifelem) ;
}

User-Level Migration

e OS-assisted migration implies modification of
the OS

— User specifies migration points only

e User level approach is based on a user-level
library

— Portability

— User is responsible of context definition
» Alternative:

— Compiler-assisted context definition

03/03/2008

10

03/03/2008

Migration overhead

Consumer (migrazion, shared bus)
Daemon on master
260.000 o
240.000 < processor decides
200.000 . .
180.000 migration
% 160.000
£ 140.000
'2 120.000
- 100.000 | | .
e I | I I
20,000 ! ! — i N
T T 1 |
20000 | R
2 202 402 602 802 1002 1202 1402 1602 1802 2002 2202 2402
Frame
Before migration After migration

Throughput 32165 Frames/sec ‘ Throughput 62955 Frames/sec

95.7% improvement
Migration time (from command to restore): 7.54 ms

Treaction W 65.6%
Texec 34.4%

0 1.000000 2.000.000 3.000.000 4.000.000 5000000 6.000.000

Tempo (ns)

Optimizations are needed to reduce migration overhead

Optimization of Migration Costs

e Architectural/infrastructural optimizations
— Interconnection
— Interrupts
— Scheduling effects

» Software optimizations

— Migration context reduction
— Efficient use of memory hierarchy

11

Communication and Synchronization
Optimizations

Communication architecture
Core access to their private memory without contention largely optimizes exec overhead

Decod
Proc 1

—_ Mem privata 1

Cosrssmn) - ... —— B
o
shared privata 1 privata 2

Proc 1 Proc 2

Crossbar
Synchronization
Synchronization between deamons using interrupts improves reaction time
Polling Interrupt
Master Slave Master Slave
| RD message RD message
WR message WR message

Results

Migration time

8.000.000

7.000.000

-36%

5.000.000 _V

So00000
=

3.000.000 EXECtime

2.000.000

N

6.000.000

Tempo (ns)

1.000.000

o

SHARED BUS FULLCROSSBAR CROSSBAR +
INTERRUPT

03/03/2008

12

Migration Context Optimization

Int@lligeaii onigriadibthefithms

Example of code:

(id; pointer; type; size)

int items
main
intx;//id1 (3; *x; int; 1)
inty; //id 2 (2: *y; ints 1)
intz; //id3 insert_item(x);
“—— inpeséritersfaly); — (3%t)
N insert_item(z);
Y . .
o — |nsertF|te_m(yL;.
9 y = 1; //first instruction in which appears y °
c e -
& «~——— remove_item(z); Migrated °
>
‘%X migration_point; —— ilems: °
O e——— insert it .
%’ insert_item(x); YV, 2 °
ug &\ x = y; //last instruction in which appears y
o <« remove_item(y);
ol
C
& <« remove_item(x);
return;
}
25
Private memory
Decoder Jpeg

. It uses an array of 240*160
elements to save the coefficients of

the image.

. A technique to allot the array to
increase the performance of the
migration.

. The unique item needed to the

migration is the array, also thank to
the chosen of the migration points.

Shared memoy
main(){

*short dct_data;
Human_DC_decoding;

migration_point;
Human_AC_decoding;

migration_point;
Luminance_decoding;

migration_point;
Fourier_reverse_transform;

Checksum;

26

03/03/2008

13

Impact of Migration Points

The cost of the migration on the main(){
considered architecture is: short dct_data[240*160];
— X, =6,8 msec (case 1: private Human_DC_decoding;

memory allocation)
migration_point;
— X, =3,5msec (case 2: shared

memory allocation) Human_AC_decoding;
Considering a speed-up of 100% migration_point;
after the migration, we can say that
to compensate X: Luminance_decoding;
— In the first case it’s convenient to o .
migrate only untill the first migration_point;
checkpoint.
— In the second case it’s Fourier_reverse_transform;
conveniente to migrate only
untill the second checkpoint. Checksum;
}

27

Migration Impact on Soft Real-time
Apps

¢ DVFS and migration are used to achieve the wanted application
throughput

¢ Optimal configurations can be either determined offline or at runtime

* In the following example, a SW Defined Radio application has been
characterized
— Pareto optimal configurations
— A configuration is:
(procl frequency, tasks)

(proc2 frequency, tasks)

(procN frequency, tasks)

28

03/03/2008

14

—
=]

1,6

Power (W)
o o © S
B OO0 O = N B

0 , 2 100MH: all tasks migration cost@200MHz
4.2mJ

0+

0

Migration to handle Runtime
Performance Requirements

1 core 2 cores 3 cores
1 dem | dem
Il:pl‘.bpfz.bpfa.lpl'.con i bpf1,bpf2
: i Ipf .con bpl3
Pareto i i [FEmrzdem
1 1 [320MHz bpf1,bpf2
1 i [320MHz Ipf.con,bpf3
i i
. ! [320MHz dem
! ! (200MHz bpl1,bpf2
i g | 2000Hz |pl con,bpf3
[3200MHz dem
320MHz bpl1,bpl2,bpt3 Jpl con |
| i
[2000MHz dem
2000z bpf1,bpf2 bpf3 Jpf con
T
—_— i
! migration cost@320MHz
1 ! 8,38mJ
]

T T

4000
Frame rate (fps)

2000

6000

SW Radio

8000

29

Applications

Migration Impact on Streaming

Deadline misses due to migration as a function of queue size

Migration is a sporadic event: it can be handled with suitable buffer design

Missed Frames

Buffer size form
compensation

igration cost

~3

Queus Size

30

03/03/2008

15

Example

i) | 00%

Exec time base = 11 msec

ckl
| |

ckIZ ck%

[[
10%

30%

[[
20%

40%

Without migration:

Do not pay the migration cost
No speed-up

With migration:

Speed up of 2X in the new processor where the task runs alone
Depends on when the migration happens
Pay the migration cost
31

Migration@ckl1

P1 loaded at ckl
l 21,1msec

ET————.......—.————.

(11 msec-10%) * 2

1,1ms
1,1ms 10 msec
X1=6,8msec 17.8 msec
14,5 msec
X2=3,5msec

32

03/03/2008

16

Migration@ck?2

P1 loaded at ck2

|

4.4ms (11-4.4msec) * 2=13.2 ms 17.6ms

33

Migration@ck3

P1 loaded at ck3

|

15.8ms

6.6ms
(11-6.6ms) * 2=8.8 ms

6.6ms

14.5 ms
X2=3.5ms 4.4ms

34

03/03/2008

17

Message Passing

e Message passing (from Alessandro)

e Remote objects (from Luca)

. Distributed queue middleware:
- Support library for streaming channels in a MPSoC
environment.
- Producer / consumer paradigm.
— FIFOs are circular buffers.

J Three main contributions:

1.

MP-Queue library

Configurability: MP-Queue library matches several
heterogeneous architectural templates.

An architecture independent efficiency metric is given.
It achieves both high efficiency and portability:

* synch operations optimized for minimal interconnect
utilization.

¢ data transfer optimized for performance through
analyses of disassembled code.

* portable Cis the final implementation language.

03/03/2008

18

03/03/2008

Message delivering

Read cqunter Wrire counter

Communication library primitives

1. Autonit_system()
1. Every core has to call it at the very beginning.
2. Allocates data structures and prepares the semaphore arrays.

2. Autoinit_producer()
1. To be called by a producer core only.
2. Requires a queue id.
3. Creates the queue buffers and signals its position to n consumers.

3. Autoinit_consumer()
1. To be called by a consumer core only.
2. Requires a queue id.
3. Waits for n producers to be bounded to the consumer structures.

4. Read()
1. Gets a message from the circular buffer (consumer only).

5. Write()
1. Puts a message into the circular buffer (producer only).

19

Architectural Flexibility

Configuration space: i
multidimensional view ;

Synchronization
mechanism

FIFO buffer
logcation ~.__

\
Cacheability smm/

of shared cacheable
and nof

Synchronization
semantic

Dynamic
allocation

Multi core architectures
with distributed memories
(scratchpad).

2. Purely shared memory
based architectures.

rmiianties 3. Hybrid platforms (MPARM
reading cycle accurate simulator,

different settings).

¢ Shares bus accesses are
minimized as much as
possible:

— Local polling on
scratchpad
memories.

¢ Insertion and
extraction indexes are
stored into shared
memory and protected
by mutex.

¢ Data transfer section
involves shared bus
— Critical for
performance.

Transaction Chart

Producer Core | | |] € Care
[Produce Shared Consumer
x scratchpad memory scratchpad

get token write

M_token_read

L one
| -data transfer|

. —gone

 Remotemotifying —— |\
= e done———— availahle-_

__get and inc index read
N dong———____J

get_token_w ‘5"""

“data_transfer
Local

polling |

B done —

Remote notifying

Shared bus

03/03/2008

20

Seque

nce diagrams

Overall
synch time:
23%

300

280

260

Overall
synch time:
40%

201

220

Bus cycles (1 read + 1 write)

200

180

160

140

120

100

80

60

40

20

Producer

Consumer

and 1

e Paralllg

— dq,_

¢ Synch

ucer

transf

— Local polling onto scratch
semaphore:

— Signaling to remote core scratch:

— “Pure” daJ;Lfer to and from

FIFO buffer in shared memory:

Message size $4\WIRBDS

Communication efficiency

L) T SR R

90.00%
80.00%

70.00%
60 00weal number of bugcyc}e?/

J Comparison against ideal
point-to-point
communication:

— 1-1 queue,

— Interrupt based
queue.

>
e through the MP-?O%E'base d message passing,
2 50.00%
0 40.00% And.
¢ Queue 1-2 Interrupt
30.00%um b scyclesneedegtoPerfoith 1 write+1read |
erg}iok (idea/ 1 word transferCHyoverhead)
20-00%0[) (\/ i W Ideal Throughput
10.00%

0,000t normalized metric:
o archictetture indeperdetst

Not-absotute timings, depen

4

Words per token

ding of the frequency ctock of CPU,

T T T T T 1
m@etri¢o24 2048 4096 8192 1638

reded to complete T word transfer For small messages the

library synchronization
overhead is prevailing,

d While for a 256 words size
we reach good
performance.

Monotonicity, difference in
absyntotic behaviour.

O Abrupt variation of the
curve slope.

Interrupt based notification
adds overhead (~15%).

03/03/2008

21

Low-level optimizations are critical!

| 16 words per token | ‘ 32 words per token ‘
1
0000000 <main=: 0: eladocfod mov ip, sp
0: ela0cood ov ip, sp 4: e9z2ddg30 stmdb sp!, {ra, r5, fp, ip, 1r, pc}
4 adddon Lt el 1 Lot L £ R: 224chi =
a: * Gcc compiler avoids to 0
c: 275 9 '[insert the multiple load
1? /multiple store loop from
15: 25—, unrolled + length 32 words on.
1c: . T optimized
2751+— .
20: 2 e Code size would be
2;: g exponentially rising.
Bec: _g 200 -
: ©
:g: § Eg e Up to 256 words per
hs: 125 i token we can tolerate the |||
Be: 100 code size growing.
a0 FE. -
fa o 50 \ s - - +
ey o — Fiffe b1 0 <nain>
4c: 0 : 54074 strord, [r5. #116)
50: 8 16 32 64 128 256 -
a4, Words per token [54004 strb rrff, rs, #4]
58: sTrasST o T = ffffe b1 0 <nain-
T A e :tlboogri Tdr r0, [fp, -2148]
Al 1ba830 ldmdb fp, {r4, r5, fp, sp, pc}
Compiler-aware optimization benefits
W W E
100.00% I I I 1 x T x T T T T Mol | e LY
90.00% = | | IR
o 1 g Wﬂ"'é PRANATE BRARED ? il i
8000 /o ral m::ar m?‘w it !:
70.00% I""' = ° About 15%
60.00% < |mprov.ement with 32
- word sized messages.
[E] o,
5 50.00% ¢ 1-1 unrolled .
S 40.00% » P Queue 1-1 * ATypical IPEG 8x8
= b 1-2 urclled block is encoded in a
- 30.00% y_l h Queue 1-2 32 word struct.
'y k Ideal Throughput — 8x8x16 bit data.
20.00% —*
10.00% 4 e Above 256 words, we
don’t get any
0.00% v v v T improvement by using
4 8 16 64 128 2

Words per token

T T T r T]
6 512 1024 2048 4096 8192 1638|
4

“loop unrolling”.

03/03/2008

22

Shared cacheable memory management with flush

Flushing is needed

¢ Queue 1-1 m Queue 1-1 4 |deal Throughput EO aV°i°,' -
Cacheable shared thLaShmr? if no
cache coherency
100.00% + support is given.
90.00% .
¢ With small
80.00% messages, flush
compromises
70.00% 1 performances.
5., 60.00%+ e 64 words is the
g break-even size
o 50.00%- for cacheable-
‘o shared based
E 40.00% + communication.
o/ |
30.00% e Efficiencyis
o/, | asymptotically
20.00% rising to 98% !
10.00% 5
0.00%
Words per token

JPEG Decoding parallelized through MP-Queue

Starting from a sequencial JPEG
decoding:

1. Huffman extraction.

2. Inverse DCT.

3. Dequantization.

4. Frame reconstruction.

Split —Join parallelization.

After step 1, the reconstructed 240 x
160 image is:
- split by master core into slices;

- delivered to N worker cores through
MP-Queue messages.

2 different architectural templates
are explored.

Configuration space: |
m| imensional view

FIFO buffer

location e

Cacheability
of shared

SN
cacheabld

Synchronization Dynamic
mechanism allocation
Palling +\lnterrupt /Ae-allocable
Shared Polling -

Natification
mechanism

»/B roadcast

03/03/2008

23

Experimental part: metrics

Parallel cores

Cost [bus transactions]

JPEG Split join with one 1-N buffer in
shared memory (cachable)

1200000.0
O] Communication
overhead
1000000.0 [Extra parallel
overhead
[Parallel ideal
800000.0 E Serial region [—
[Jinitialization
600000.0 —
400000.0 —
200000.0 —
0.0

Parallel cores

Y

W | | P
S e
Lt

*We explored
configurations with 1, 2, 4
and 8 workers (parallel
cores).

eExecution time (cost in
terms of bus transaction)
scales down.

eShared bus becomes quite
busy while using 8 parallel
cores: destination
bottleneck negates speed
up.

03/03/2008

24

JPEG Split join with locally mapped

(scratchpad) 1-1 queues

1200000.0
] Communication
—_ overhead
@ 1000000.0 [l Extra parallel This version performs
2 overhead significantly better when
8 u Par_a"el 'd_eal N increases beyond 2.
0] 800000.0 E Serial region
§ [Initialization |t eliminates the waiting
4] 600000.0 — time due to contention:
B ® on the bus
3 ¢ on the shared
8 400000.0 —1 memory.
200000.0 —
0.0+
Parallel cores
Comparison of the two templates
1200000.0 CACHEABLE SHARED 1200000.0 SCRATCHPAD
] Communication Bl Communication
—_— overhead
@ 10000000 @ 1000000.0 [Extra parallel
o S overhead
g 8 [l Parallel ideal
g 800000.0 g 800000.0 E Serial region —
© % [Initialization
8 6000000 4 § 600000.0
=2 =}
3 3
G 400000.0 1 8 400000.0

200000.0

0.0

Parallel cores

1

2

8

0.0+——
Serial

1 2
Parallel cores

¢In the second experiment (using scratchpad located 1-1 queues) the communication

overhead becomes negligible.

eExtra parallel overhead remains:

e this is mostly due to a synchronization mismatch;
it would be removed through a pipelined execution of the JPEG decoding.

03/03/2008

25

