Programming Models

Implementations and Examples

Identification of Parallelism

We can run computations in parallel if they not share data
Refinement:

— Both read: OK

— Write and (read or write): NOK
The order becomes important: data races

Formalization [Bernstein-1960]: Two computations C1 and C2 can
be done in parallel if none of the following conditions hold:

1. Clwrites into a location that is later read by C2:
a read-after-write (RAW) race.

2. Clreads from a location that is later written into by C2:
a write-after-read (WAR) race.

3. Clwrites into a location that is later overwritten by C2:
a write-after-write (WAW) race.

04/02/2008

04/02/2008

Parallel Loop Programming

e Different iterations to different processors

* On shared memory systems we can do a
PARALLEL DO loop

— The loop must be examined to find dependencies

Example

¢ Loop with NO data sharing:
DOI=1,N
Al)=A(l) +C
END DO

¢ Loop with possible WAR race
DOI=1,N
A(l) =A(I+1) + C
END DO

¢ Insome cases it is possible to achieve significant parallelism in the presence of
races:

SUM =0.0
DOI=1,N
R = F(B(1),C(1)) ! an expensive computation
SUM =SUM +R
END DO
e There is a race involving SUM, but if that floating-point addition is commutative
and associative the order in which the results are added to SUM does not matter
e If Fis expensive, we can gain by computing the values of F in parallel and then
update the SUM in the order in which computations finish

Example

However, to make this work, SUM updates must be in a critical region
SUM =0.0
PARALLELDO1=1,N

R = F(B(1),C(1)) ! an expensive computation

BEGIN CRITICAL REGION

SUM =SUM + R

END CRITICAL REGION

END DO

SPMD Programming

To implement the SUM reduction on a message passing system the SPMD can be used
— Scalar variables replicated
— Explicit communication

| This code is executed by all processors
I MYSUM, MYFIRST, MYLAST, R, and | are private local variables
I MYFIRST and MYLAST are computed separately on each processor
! to point to nonintersecting sections of B and C
| GLOBALSUM is a global collective communication primitive
MYSUM =0.0
DO | = MYFIRST, MYLAST

R = F(B(1),C(l)) ! an expensive computation

MYSUM = MYSUM + R
ENDDO
SUM = GLOBALSUM(MYSUM)

Here the communication is built into the function GLOBALSUM, which takes one value of its input
parameter from each processor and computes the sum of all those inputs, storing the result into a
variable that is replicated on each processor

04/02/2008

04/02/2008

Finite Difference Calculation Example

: REAL A(100), AWEN(100)
* Take a simple Fortran code that o

computes a new average value

for each data point in array A o1 =2 89

using a two-point stencil and EMEN(D) = [A[L-1) + A(1+11) * 0.5
stores the average into array ENDDD

ANEW

* Parallel version on a shared
memory machine with four
processors, using a parallel-loop

REAL Bi1207, EHEW(1D0]

dialect of Fortran PARALLEL [0 1 = 2, 93
e This code may not have AMER(L) = (A(L-1) + &(L+1)) * 0.5
sufficient granularity to ERDDZ

compensate for the overhead of
dispatching parallel threads

Version with Higher Granularity

» Each processor gets % of the REAL A{L0D), ANEN{10)
work :

* The PRIVATE statement specifies HEALEL I 16 - 1. 13, 25

FRIVETE 1, ryFirst, mylast

that each iteration of the IB-loop nyFiret = MLEIE, 2)

has its own private value of each mbast = WIN(IB + 24, 99)
. . . [0 I = nyFirst, mylast
variable in the list BHEH(T) = A{I-1) + A[1+1}} * 0.5

 This permits each instance of the

inner loop to execute
independently without
simultaneous updates of the
variables that control the inner
loop iteration

Message Passing Version

This code is written in SPMD style
so that the scalar variables myP,

myFirst and myLast are all I This code is executed by all processors

automa'tically replicated on each I myP iz a private local variable containing the processor mumber
processor—the equivalent of I myP rws from 0 to 3 _

PRIVATE variables in shared | Alazal snd AREWlocal ave local verzions of arrsys A and ANER
memory

IF (myP .HE. 01 send Elocal(l} to myP-1
IF (rywP .HE. 3] szend Eloczal (28) to mpPel
IF {myP (HE. 01 receive Alocal{Q} from myP-1

Each global array is replaced by a
collection of local arrays in each

memory
Two extra storage locations on each IF (myF HE. 3) receive Rlocal (26) from myP+]
processor—A(0) and A(26)—are myFirst = 1

used to hold values communicated mylast = 25
from neighboring processors. These IF fayF == 0] nyFirst = 2
cells are often referred to as ghost ~ IF fmyF == 3] mylast = 24

cells, halo cells, or overlap areas. 001 = myFirst, mylast
EHENT cal (1) = [Alocal{I-1] + Elocal [T+13} * 0.5
ENDDO

Improved Version

H I This code is executed by all processors
Insertlon Of Iocal I myP is a private local variable containing the processor number
computation between the ! =P runs frend s 2

. I Blocal and AHEWlocal are local versions of arrays & ard AHEA
sends and receives
IF [myP .HE. 0} send Alocal (1] to myP-1

\ IF jmyF .HE. 3} sand Alocal (26] to myPel

ol=z &
EHEWTocal (1) = (Alocal{l-1) + Elocal (I41}) * 0.5
ERDDD
Communication is IF inyP .HE. 0} THEH

receive Klocal (01 from myP-1

overlapped with the local ENEWT2cal {1} = [Alacal(D) + lecal (2] * 0.5

H H ERDIF
computation to achieve -

better overall parallelism receive Aocal (26) from nyPel
BHEW 2cal (25} = (Alocal(2d)] + Blocal (26]) * 0.5
ERDIF

04/02/2008

Pipeline Parallelism

Some parallelism may be
achievable by staggering
initiation of tasks and
synchronizing them so that
subsections with no

D1 J =2, H-1
DO =2, N1

ALY = (A[1-1.d% + A{1+1,d) + B{1J-1) + B(L,J+1)) * 0.25

ENDCO
ERCDD

interdependencies are run
at the same time

Although neither of the
loops can be run in parallel,
there is some parallelism

All of the values on the
shaded diagonal can be
computed in parallel
because there are no
dependences between any
of these elements

b
~ “Raglon of paralielism

Pipeline Parallelism

If we compute all the elements in any column on the same processor, so
that A(*,J) would be computed on the same processor for all values of J

If we compute the elements in any column in sequence, all of the
dependences along that column are satisfied. However, we must still be
concerned about the rows.
To get the correct result, we must delay the computation on each row by
enough to ensure that the corresponding array element on the previous
row is completed before the element on the current row is computed.
This strategy can be implemented via the use of events

EVENT READY(M.H) | Initialized to false

FERALLEL DO L = 1, W
POST{READY(L.L])

ERCCD
FERALLEL DO J = 2, H-1
DOL =2, Wl

WAIT[READY(L,J-11}
AlL) = (AQL-1,0) + A[L+1,0) + A[1,3-1} + A[1,3+1%) * D.25
POST{READY(L,J1]
ERICD
ERDDD

04/02/2008

Pipeline Parallelism

¢ |Initially all the events are false—a wait on
a false event will suspend the executing
thread until a post for the event is
executed

¢ All of the READY events for the first
column are then posted, so the
computation can begin

¢ The computation for the first computed
column, A(*,2), begins immediately.

Time

¢ As each of the elements is computed, its
READY event is posted so that the next
column can begin computation of the
corresponding element

Example Parallelization with Threads

* Asingle process can fork

multiple concurrent for (1 = 07 i < 12; i+%)

C[i] = A[i] + B[i];
threads
— Each thread encapsulate l
its own execution path

— Each thread has local |
state and shared
resources

fork (threads) |

-

— Threads communicate
through shared resources
such as global memory

~ @ th =

| join (barrier) ‘

L 1Y l

04/02/2008

Example Code with Threads

int A[12] = {...}; int B[12] = {...}; int C[12];
void add arrays(int start)
{
int i; | fork (threads) |

for (i1 = start; i < start + 4; 1i++)

C[i] = A[i] + B[i]:
}
int main (int argec, char *argv([]

{
pthread t threads ids[3]; ‘
int re, t;

-

~ @ th

join (barrier) ‘

for(t = 0; t < 4; t++) |
rc = pthread create(&thread ids[t],
NULL /* attributes *f,
add arrays /* function *f,
t o« 4 J* args to function */):

}
pthread exit (NULL):

Functional and Domain Decomposition
with Threads

e Functional decomposition or l
control parallelism

fork{thread
— Each thread performs a different | l l .
function i
* Domain decomposition ¥
— Several threads perform same g

| join arriM

computation but operate on
different data

04/02/2008

Performance Evaluation

e Example

— Calculate the distance from each point in A[1..4]
to every other point in B[1..4] and store results to

C[1..4][1..4]
for (1 =1 to 4)
'\-’1 for (j = 1 to 4)
’ - C[i]1[J] = distance(A[i], B[J])
* s ‘»
o [}
X < >
(B) ‘ P, ‘ ‘ P, ‘

Performance Evaluation

e Example

— Calculate the distance from each point in A[1..4]
to every other point in B[1..4] and store results to

C[1..4][1..4]
for (1 =1 to 4)
_ CI11[3] = distance(A[i], BI3])
& e B
‘
[]
(]
_ .
(B il =

04/02/2008

Performance Evaluation

e Example

— Calculate the distance from each point in A[1..4]
to every other point in B[1..4] and store results to

C[1..4][1..4]
for (i =1 to 4)
e Can break up work for (3= 1 to)
C[i]1[j] = distance(A[i], B[i])
between the two
GO
— P1 sends data to P2

Performance Evaluation

e Example

— Calculate the distance from each point in A[1..4] to
every other point in B[1..4] and store results to

C[1..4][1..4]
e Can break up work for (1 =1 to 4)
for (3 = 1 to 4)
between the two 1031 - dietanse(L11, BEL)
processors

— P:sends data to P:

— Piand P2compute ‘M\ ﬁ‘

— P, sends output to P, "

04/02/2008

10

Example Message Passing Program

processar 1

for (1 =1 to 4)

for (j = 1 to 4)

C[i] [J] = distance (A[i1], B[3])
sequential
parallel with messages
processor 1 processor 2
Aln] = {..} Aln] = {..}
Bn] = {..} Bln] = {..}
Send (A[n/2+1..n], B[1..n]) Beceive (A[n/2+1..n], D[1..n])
for (i =1 to n/2) for (i = n/2+1 to n)
for (3 = 1 to n) for (J = 1 to n)
C[i][J] = distance(&[i], B[1]) C[1i]1[J] = distance(A[1], B[3])
Receive (C[n/2+41..n][1l..n]) Send (C[n/2+1..n][1..n])

Performance Analysis

* Distance calculations between points are independent
of each other

— Dividing the work between two processors: 2x speedup

— Dividing the work between four processors: 4x speedup
¢ Communication

— 1 copy of B[] sent to each processor

— 1 copy of subset of A[] to each processor

e Granularity of A[] subsets directly impact ’
communication costs '

— Communication is not free

04/02/2008

11

04/02/2008

Understanding Performance

* What factors affect performance of parallel
programs?

e Coverage or extent of parallelism in
algorithm

e Granularity of partitioning among processors
* Locality of computation and communication

Limits to Performance Scalability

* Not all programs are “embarrassingly” parallel
* Programs have sequential parts and parallel

parts
Sequential part —— ; ; : I :
(data dependence) . | _ | .
Parallel part — |for (i=0; i<e; it+)
(no data dependence) M[i] = 1;

12

Amdhal’s Law

¢ Amdahl's Law: The performance improvement to be gained
from using some faster mode of execution is limited by the
fraction of the time the faster mode can be used

* Potential program speedup is defined by the fraction of code

that can be parallelized

25 seconds
+

50 seconds
+

25 seconds

100 seconds

sequential

parallel

sequential

time

Use 5 processors for parallel work

25 seconds ‘ sequential ‘
+

10 seconds [
+

25 seconds ‘ sequential ‘
60 seconds -

Speedup

e Speedup = old running time / new running time
= 100 seconds / 60 seconds

25 seconds
+

50 seconds
+

25 seconds

=1.67

(parallel version is 1.67 times faster)

sequential

parallel

sequential

100 seconds

time

Use 5 processors for parallel work

25 seconds ‘ sequential ‘
+

10 seconds [
+

25 seconds ‘ sequential ‘
60 seconds -

04/02/2008

13

Implications of Amdhal’s Law

* p = fraction of work that can be parallelized

* n =the number of processor
old running time

speedup = : ;
new running time

1
- -
| fraction of time to

fraction of time to et el K
complete sequential complete parallel wor
work

* Speedup tends to as number of processors tends to
infinity

* Parallel programming is worthwhile when programs
have a lot of work that is parallel in nature

Performance Scalability

Super linear speedups
are possible due to P
registers and caches P
rd
&/
] o s
e
- r& £
o 7
o se s
=] P s
o \"} s
«
§_ eo‘{i/ Typical speedup is
@ & . less than linear
| @t s
&, ¢
&,
s
o,
#
<
&
s
&
S S S ST T S R T
—t—t+—

number of processors

04/02/2008

14

Granularity

e Granularity is a qualitative measure of the
ratio of computation to communication

e Computation stages are typically separated
from periods of communication by

synchronization events

Fine vs Coarse Grain Parallelism

* Fine-grain Parallelism

— Low computation to
communication ratio

— Small amounts of
computational work
between
communication stages

— Less opportunity for
performance
enhancement

— High communication
overhead

* Coarse-grain Parallelism

— High computation to
communication ratio

— Large amounts of
computational work
between communication
stages

— More opportunity for

performance
enhancement

— Harder to balance
efficientlv

04/02/2008

15

Communication Cost Model

total data sent number of messages

",

0
C= f (0+i+ Z +3‘ overlap)

N\

/ / L

/o < N\

frequency cost induced by amount of latency

of messages / contention per hidden by concurrency
message with computation

overhead per
message

(at both ends) bandwidth along path

(determined by network)
network delay

per message

Overlapping Messages and
Computation

e Computation and communication concurrency can be
achieved with pipelining

* Essential for performance on Cell and similar distributed
memory multicores

time

no pipelining [GetData | Work | GetData| Work | GetData| Work

— Cell buffer pipelining example
with pipelining |GetDala,‘ Get Data ||, Get Data ""i Et:"t transfer for first buffex
Y Work Wark Work | mfc_get(buf[id], addr, BUFFER_SISE, id, 0, 0);
S id A= 1;
steady state while {!den=z) {
// Btart tranzfer for next buffer

addr += BUFFER SIZH;

mfc_get({buflid], adde, BUFFER SIEE, id, 0, 0};

// Wait until previous DMA raquest finishes
id *= 1;

=mfc write tag mask({l << id);

=mfc_read tag_status_all();

/{ Pzocess buffer from previous iteratiom
process_data(buf[id]);

}

04/02/2008

16

Types of Messages

e Synchronous vs
Asynchronous

* Blocking vs Non-
blocking

SYNC
¢ Sender notified when
message is received

BLOCKING
* Sender waits until message is
transmitted: buffer is empty

* Receiver waits until message is received:

buffer is full
¢ Potential for deadlock

Memory, network Memary, Memory; network Memary,
< =
|]
| I | | I | L L
Memary, Memary, Memory, network Memory,
=)

Cem
= I— = 1 =1
Memay, network Memary;

as D
| |

2 2
ASYNC

¢ Sender only knows that message is
sent

NON-BLOCKING

* Processing continues even if message
hasn't been transmitted

* Avoid idle time and deadlocks

Example

e Cell processor

— SPE and PPU message passing

Cell blocking mailbox *send”

// SPE doszs some work

f/{ BPE notifie=s PPU that task has completed
spu_write out mbox{<message>];

// SPE does some more work

{/{ SPE notifiez PPU that tazk has completed
spu_write out mbox{<message>];

Cell non-blocking data “send” and “wait”
// DHA back results
mfc put (data, cb.data addr, data sise, ...);

ff Wait for DMA completion
mfc_read tag status all();

04/02/2008

17

Source of Deadlocks

* |f there is insufficient buffer capacity, sender
waits until additional storage is available

* What happens with the following code
depends on length of message and available
buffer

Py P,

Send(..) Send(..)
Recv (...) Recv(..)

| P] P,
network

buffer

Solutions

* Increasing local or network buffering
e Order the sends and receives more carefully

P, P,
write message to buffer ~Send (..) Send (..)—| blocked since
and block until message buffer is full

is transmitted Recv(..) Recv (..) (no progress
(buffer becomes empty) until message
can be sent)
P, P,
Send(..) Recv (..) matching send-receive pair
Recv (..) Send(..) matching receive-send pair

04/02/2008

18

Broadcast

* One processor sends the same information to
many other processors <

— MPI_BCAST (in MPI language) : == =

for (i = 1 to n) Aln] =
for (j = 1 te n) B[n] = {.}
C[i]1[3J] = distance (A[i], B[]]) Broadeast (B[1..n])

for (i =1 to n)

// round robin distribute B
/{ to m processors

Send(A[i % m])

Reduction

* Example: every processor starts with a value and needs
to know the sum of values stored on all processors

* Areduction combines data from all processors and
returns it to a single process
— MPI_REDUCE
— Can apply any associative operation on gathered data
+ ADD, OR, AND, MAX, MIN, etc.
— No processor can finish reduction before each processor
has contributed a value
* BCAST/REDUCE can reduce programming complexity
and may be more efficient in some programs

04/02/2008

19

Example

e Parallel numerical integration

(1+x2)

{

40 static leng num steps = 100000;

volid main()

int i;
double pi, x, step, sum = 0.0;

step = 1.0 / (double) num steps;
for (1 = 0; 1 < num steps; 1++){
X = (i+ 0.5) * step;
sum = sum + 4.0 / (1.0 + x*x):

1

pi = step *# sum;
printf("Pi = %fi\n", pi):

Computing Pi with Integration
(OpenMP)

e Which variables are
shared?

— step

e Which variables are
private?
— X

e Which variables does
reduction apply to?
—sum

static long num steps = 100000;

void main ()
{
int i:
double pi, x, step, sum = 0.0;

step = 1.0 / (double) num steps;

#pragma omp parallel for 4
private (x) reduction (+:sum)

for (1 = 0; 1 < num steps; i++){
x = (i + 0.5) * step:
sum = sum + 4.0 / (1.0 + x*x):
}

pi = step * sum;
printf (“Pi = %f\n", pi):

04/02/2008

20

Computing Pi with Integration

(MPI)

static long num steps = 100000;

void main(int argc, char* argv[])

{

int i start, i end, i, myid, numprocs;
double pi, mypi, x, step, sum = 0.0;

MPI Init(&argc, &Sargv):
MPI Comm size (MPI COMM WORLD, &numprocs) :
MPI_Comm_rank (MPT_COMM WORLD, &myid)

MPT BCAST (&num steps, 1, MFI INT, 0, MPT COMM WORLD) :
i start = my id * (num : steps,/numprocs)

i end i start + (num : steps/numprocs)

step = 1.0 / (double) num steps:

for (1 i start:; 1 < 1 end; i++) {
X (I + 0.5) * stEp
sum = sum + 4.0 / (1.0 + x*x);

}

mypi = step * sum:

MPI_REDUCE (&mypi, &pi, 1, MPI DOUBLE, MET SUM, 0, MPI COMM WORLD) ;

if (myid == 0)
printf (“Pi = %f\n", pi):

MPI Finalizel():

Importance of Locality

e Locality of memory accesses (shared memory)

memory banks

for (i = 0; i € 16; i++) Al
cli] = B[4] + ...:

=

AL | AR

Af4] | | Al3] Al6]
(8] || A9 Al10]
l A[12] | A[13] | | A[4]

fork (threads)

memary interface

Parallel computation is

join (barrier)

contention and lack of
bandwidth

A3l
Al7]
A1)
A[15]

serialized due to memory

04/02/2008

21

Importance of Locality

e Locality of memory accesses (shared memory)

for (i = 0; 1 < 16;

i++)

C[i] = A[4i] + ...:

l

| fork (threads)

| join (barrier)

|

memory banks
Al0] | A4] Al8] Al12]
Al | | AlB] Al9] Al13]
Al2] | | AlB] A[10] | A[14]
Al3] || AL7] A[11] | A[15]

S
memory interface

Distribute data to relieve
contention and increase
effective bandwidth

04/02/2008

22

