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Abstract

The Cumulative Match Curve (CMC) is used as a mea-
sure of 1:m identification system performance. It judges
the ranking capabilities of an identification system. The
Receiver Operating Characteristic curve (ROC curve) of a
verification system, on the other hand, expresses the qual-
ity of a 1:1 matcher. The ROC plots the False Accept Rate
(FAR) of a 1:1 matcher versus the False Reject Rate (FRR)
of the matcher. We show that the CMC is also related to
the FAR and FRR of a 1:1 matcher, i.e., the matcher that is
used to rank the candidates by sorting the scores. This has
as a consequence that when a 1:1 matcher is used for iden-
tification, that is, for sorting match scores from high to low,
the CMC does not offer any additional information beyond
the FAR and FRR curves. The CMC is just another way of
displaying the data and can be computed from the FAR and
FRR.

1 Introduction

Performance evaluation of 1:1 biometric verification sys-
tems is achieved through estimating the False Accept Rate
(FAR) and the False Reject Rate (FRR) and using these es-
timates to construct a ROC (Receiver Operating Character-
istic) curve that expresses the tradeoff between the FAR and
FRR [1].

The ROC is a well-accepted measure to express the per-
formance of 1:1 matchers. How to measure the performance
of identification systems is perhaps less clear. One measure
is the Cumulative Match Curve (CMC) [2, 3, 4], which ex-
presses the performance of biometric identification systems
(1: m search engines) that return ranked lists of candidates.
Specifically, when an identification system always returns
the identities associated with the K highest-scoring biomet-
ric samples from an enrollment database (gallery). To es-
timate the CMC, the match scores between a query sample
and the m biometric samples in the database are sorted. The
lower the rank of the genuine matching biometric in the en-

rollment database, the better the 1;m identification system.

The matcher is tested on multiple galleries and typically
it is assumed that the same 1:1 matcher can be used for all
galleries. The database (gallery) is an integral part of a 1: m
search engine because without an enrollment database there
is no identification system. However, the testing methodol-
ogy of identification systems does not allow for tuning the
system to the database.

Moreover, we show that there is a relationship between
the ROC and the CMC associated with a 1:1 matcher (see
also [1]). That is, given the ROC or given the FAR/FRR of a
1:1 matcher, the CMC can be computed and expresses how
good this particular 1:1 matcher is at sorting galleries with
respect to input query samples.

This paper is organized as follows. The next section in-
troduces the CMC and Section 3 shows how to estimate a
CMC given data samples. Section 4 introduces the closed
world assumption under which the CMC is often estimated.
In Section 5 the relation between the ROC and CMC is de-
rived. Section 6 gives some empirical results and Section 7
ends with some conclusions.

2 The CMC

Assume that we have a (large) set of biometric samples
B; with associated ground truth ID(B;). Key to measuring
a CMC curve associated with a 1:1 matcher is the assembly
of two subsets of samples [4]:

1. A gallery set G. There are m biometric samples in
gallery set G = {By, Ba, ..., By, }; these are m bio-
metric identifiers of different subjects.

The gallery set G can be thought of as the enrolled
database of biometric identifiers.

2. A probe set denoted as Q is a set of n “unknown” sam-
ples (B, B, ..., B},) or {B),{ = 1, ...,n}, associated
with the n subjects.

The probe or query set Q can be from any set of in-
dividuals. However, usually probe identities are pre-



sumed to be in the gallery G. The probe set may con-
tain more than one biometric sample of a given person
and need not contain a sample of each subject in G.

Given a query biometric B, € Q and a biometric
B; € g, the output of a biometric matcher is a similarity
score s(By, B;). In order to estimate the Cumulative Match
Curve, each probe biometric is matched to every gallery
biometric and a total of n x m similarity scores is computed,

S¢ = {s(By, B1),s(By, B2),....,8(By; Bn)}, £=1,...,n.

We have n sets Sy of m similarity scores each. The scores
s(By, B;),i = 1,..,m for each probe biometric Bj, { =
1,...,n are ordered as

S(BévB(l)) > S(BévB(Q)) Z ez S(BévB(m)) (1)

and probe By is assigned the rank k, = k if the matching
sample from G is B(;). Hence the rank estimate k; of probe
Bj is k if the matching gallery biometric is in the k-th loca-
tion of the sorted list of (1), or equivalently, if the matching
identity is in the k-th location of the associated list (or vec-
tor) of biometric identifiers,

Cm(By; G) = (Bay, By, - By, -, Bamy)- (2)

We denote this list as C,,,(By; G) because the sorted list
depends on input query B; and on the gallery .

3 Estimating the CMC

We have set K of n rank estimates {ks;¢ = 1,...,n}
(with 1 < ky < m), one estimate for each probe biometric
Bj; each rank is defined only if the correct identity is in the
ordered list of gallery biometrics C,,(Bj; G) of (2).

Before going into the Cumulative Match Curve (CMC),
let us first define the discrete rank probabilities P(k), k =
1,...,m, of a biometric search engine. These probabilities
associated with a search engine are simply the probabilities,
summing to 1, that the identity associated with a probe has
rank k. The P(k) are the true frequencies of occurrence,
or discrete probabilities, of ranks 1 < k£ < m. Basically,
P(k) could be any discrete Rank Probability Mass (RPM)
function. However, a Rank Probability Mass function with
low average rank, is preferred.

Given the probe and gallery data, the P(k) associated
with a biometric matcher, are estimated by

P) = (ki =H 3)

1
= —(#keK=k), k=1,..,m.
n

The probability P(k) that a matching biometric has rank &
is estimated as the fraction of probe biometrics B}, for which

k¢ = k; P(1) is an estimate of the probability that the rank
of any probe is 1, 13(2) is an estimate of the probability that
the rank is 2, and so on.

The Cumulative Match Curve estimates the distribution
of the ranks k¢, ¢/ = 1,...,n of probes {B{, B}, ..., B.};
CMC(k) is the fraction of probe biometrics B; that have
rank k; < k. That is,

CMC(k) = %(# ke < k) @)

n

1 1
~(#keK<k)=—
n n

1 (ke < k).
=1

Hence by definition, the true CMC is the sum of the P (k)

CMC(k) = > P(r); k=1,..,m, (5)

r=1

(see Figure 1). The CMC estimate is the distribution of the
estimated ranks, denoted as k, and estimates the probability
Prob(k, < k). The random variable k, takes on discrete
values 1,2, ...,m, determined by gallery G size m. Fig-
ure 1 shows a Cumulative Match Curve CMC(k); a higher
CMC(1) and a steeper slope of the curve at k¥ = 1 indi-
cate a better 1:1 matcher to implement 1: m search through
sorting.

1 1

CMC (k)

Figure 1. The CMC (left) is a weighted sum of
step functions 1(k, < k) at k£ = k, as on the
right

To estimate (4) probes can be constructed in two ways:
one of which is with the closed universe assumption. Every
probe biometric identity ID(B;) is some identity ID(B;) in
the gallery G of size m.

4 Closed universe

Each probe biometric B; has a corresponding gallery
biometric B; and the correct match is always somewhere
in the return vector of (2). This means that for each probe
¢ =1,..,n,arank ks, 1 < ky < m, is defined and can be
determined from reordered list

Cwm(By; G) = (Ba), B2y, -+ Bim))- (6)



To identify an unknown sample Bj from the samples
B;,i = 1,...,m in gallery G, let the decision rule be to
choose the highest-scoring candidate in vector C,,,(By; G)
of (6) as the correct answer:

Decide ID(B}) = ID(dy)), 7

the top sample from reordered vector C,,(Bj; G) =
(B(l)a B(Q)a ey B(m))'

Selecting the top gallery biometric Cy(By; G) = B €
G as the correct match may appear to be a good identifica-
tion strategy, because identifier By is in gallery G and may
be believed to be the most likely candidate on the top of
the ranked list. The estimated rank probability P(k = 1)
of (3) is an estimate of the probability of correct identifi-
cation, under this assumption. A subject cannot be falsely
rejected and cannot be falsely accepted; he or she can only
be misidentified.

Alternatively, to make a decision, one can construct
a short vector (candidate list) Cx(Bj; G) of identities
of the K top-scoring gallery biometrics B;. This list of
identities associated with the top K gallery biometrics,
CK(Bé, g) = (B(1)7 B(Q), ey B(K))T comprises the K
most likely identities.

Now, suppose the gallery G is some “most wanted” list
and the decision rule is

ID(Bj)) is “Most wanted,”
ID(By) is “Most wanted”

if By € Cx(By; G), or,
if rank of B) < K.

(®)
That is, a correct decision is deemed to have been made if
the true identity of unknown sample B; is in the candidate
list of length K. This is the negative identification prob-
lem: “Is subject ID(By) em not on some list?” Of course,
the closed world assumes that every subject ID(By) that is
authenticated is on this “wanted” list.

This assumption will be relaxed in Section 5.3.

As is the case when we only consider the top candidate
on the list (7), also for K > 1, a sample Bé cannot be falsely
rejected and cannot be falsely accepted, he or she can only
be mistakenly left off the candidate list. Again, only identi-
fication errors can be made, with probability

Prob (Bj is misidentified; K) = Pp(K). 9)

This error probability depends first of all on candidate
list size K and is lower for larger K. It further depends on
the gallery size m and is higher for larger m. A third influ-
ence is the quality of the match engine, or the distributions
of genuine and imposter scores. The probability of correct
identification then is

Prob (B, is identified; K) = CMC(K) = 1 — Pp(K).

The Cumulative Match Curve is an estimate of the prob-
ability of correct identification as a function of candidate

list size K identification. The discrete function CMC(K)
converges to 1 when K approaches m. The faster the con-
vergence, the more likely it is that the genuine matches are
in short candidate lists for a given biometric matcher.

5 The CMC, FAR/FRR relation

Even though the decision rule of (8) does not use any
thresholds, the match engine produces scores s(Bg,Bi),
and we can relate the CMC to the False Accept and False
Reject rates of the underlying 1:1 biometric matcher used
in the 1: m search engine, by realizing that for every search
the genuine score of the correct template can be interpreted
as a “virtual threshold” on the imposter scores s(Bj, B;),
ID(Bj) # ID(B;) from the rest of the database. (Note that
this relation between the CMC and the FAR/FRR only holds
when the 1:1 matcher is used for sorting the gallery scores.)

Each probe Q is a biometric B), with a corresponding
biometric B; in gallery G. Matching probe biometric By to
a gallery of size m is equivalent to drawing of m random
variables:

1. One genuine score X = s(By, B;) for B; € G with By
and B; from the same identity.

2. A setof (m — 1) imposter scores {Y1, ..., Yin—1}, i.e.,
{s(B},B;),i = 1,...,(¢ = 1),({ + 1),...,m}, where
the B; are in the gallery but not including biometric
B, matching to Bj.

To look at this, we turn to the rank probabilities of (3) first
to simplify the analysis

P(k) = Prob(rank By is k), k=1,...,m.

These can be determined using joint probabili-

ties p(z,y1,...,Ym—1) of the m random variables
{s(By}, B;),i =1,...,m}.

5.1 Gallery size m = 2

Pick a gallery size of m = 2 for the moment; this can
be depicted in the 2y plane. Any probe biometric B), with
¢ = 1 will result in a pair of random variables (X, Y"), with
X = s(Bj, B1) a genuine score and Y = s(Bj, B2) an
imposter score. The genuine score is from probability den-
sity function (PDF) f(z); the imposter scores are from PDF
g(y), each associated with the 1:1 matcher. There exist only
two rank probabilities

P1) =
P@) =

Prob (rank Byis 1) = Prob(X >Y),
Prob (rank By is2) = Prob(Y > X).
Let the joint probability density for a probe (X,Y") be

p(z,y) = f(x)g(y), assuming independence of the gen-
uine and imposter score (see Figure 2). The rank probabil-
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Figure 2. The probability of misidentification
when gallery size is m = 2

ity P(1) is the integral of p(x,y) over the area x > y and
is the probability of correct identification. Rank probability
P(2) = 1 — P(1), the probability of misidentification, is
the integral of p(x, y) over the area x < y. These two rank
probabilities can be written down.

First look at the probability of correct identification,
P(1). In Figure 2, this is the probability that genuine score
X > Y. This is the probability mass for z > y

PQ)

Prob(X >Y) = // p(z,y) dydz
x>y

/Oof(w/m 6(y) dy da
/yo / f(z)dxdy

= /:0 f(z)[1 — FAR(x)] dz

| a1~ FRRG))dy (10)
y=
The interpretation of (10) is shown in Figure 3. Given any
genuine score X = x, the probability that y < = is the prob-
ability that y is not a False Accept when adjusting thresh-
old ¢, to declare score z a match, i.e., is [I — FAR(z)].
Conversely, given any y, the probability that x > y is
[1 — FRR(y)], the probability that x is not a False Reject at
threshold .

What is the probability that the correct identity has rank
2, i.e., what is P(2)? From Figure 2 it is seen that the prob-
ability that the imposter similarity score Y is larger than X
is the integral of p(x, y) over the shaded region y >

=1- P(1) = Prob(X <Y)

// xydydxf/ f(z) FAR(z) dz

_ /_0 (y) FRR(y) dy. (11)

Interpretations of these probabilities are as above. The first
integral of (11) is shown in Figure 4a. Given some genuine

1 - FRR(y)

/ N
g S Pid f(y)\\_

y

Figure 3. For gallery size m = 2, the proba-
bility of correct identification is the integral
of f(x)[1 — FAR(z)] and g(y)[1 — FRR(y)] as in
(10)

score X = x, the probability that an imposter score ¥ is
larger than x is FAR(z), the probability of a False Accept
at threshold x. The shaded area in the detail of Figure 4b is
the probability of incorrect identification; this is the integral
f(z) FAR(z) over all possible genuine scores x.

The second integral of (11) is an integral of possible val-
ues for imposter scores y. For any y the probability that gen-
uine score x is less than y is the probability of a False Reject
at threshold y; the integral over g(y) FRR(y) = P(2).

5.2 Gallery size m > 2

When m > 2, a probe Q is the drawing of one random
genuine score X and the drawing of (m — 1) random im-
poster scores Y;, 1 =1,....m — 1.

Let us first examine rank probability k¥ = 1, i.e., P(1).
This is Prob (rank X is 1), hence the probability that X >

Y1, X > Y5,...,X > Y,,_1. Again assuming indepen-
dence, the joint probability density of (x, y1, yo, ..) is
m—1
p(xvylv' o Ym— 1 g
i=1

The rank probability P(1) is the integral of p(z,y1,y2,..),
as in Figure 2, but over a hyper region this time:

P(1) =
fcc fy1<m T fym,1<z p(‘]:" Yty .oy ym—l) d'r dyl o dZ/m—l
= 20 1 @) (TS S o) dy:) da.

(12)
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Figure 4. For gallery size m = 2, the prob-
ability of misidentification is the integral of
f(z) FAR(x)

Using (10), this becomes
P(1) = /OO f(z) [1 — FAR(z)]™ ' da. (13)
=0

Figure 5 compares P(1) for m = 2 of (10) with the P(1)
for m > 2 of (13). The probability [1 — FAR(z)|™ ! <«
[1 — FAR(z)] for large m and Prob (rank X is 1) obvi-
ously becomes less and less for larger m.

1 - FAR
@ [1-FAR@)]""!

J)

Figure 5. The probability P(1) that genuine
score X is assigned rank 1 goes down for
increasing m

By extending the above, we are now ready to construct
P(k), the probability that the “some” correct identity ends
up in the k-th position of the return vector C,,,. The proba-
bility that rank X is k is the probability that (k — 1) of the
(m — 1) imposter scores Y7, ..., Y,,_1 are greater than X.

This is given by
P(k) = (7)) x
fﬂf fyr-yk,1>x fyk~~~ym,1<xp($7 (X2} ym71> dx--- dym71,

accounting for the number of ways (k — 1) imposter scores
can be selected from (m — 1). Using (10) and (11), this
becomes

(71?:11) fooo (Hfz_ll fyoizg(yz) dyz> f(z) x
(I fio 9(vi) dys )

And we have

P(k) =
(71 [ [FAR(z)]F=t f(2) [L — FAR(z)]™ % dz.
(14
The interpretation of (14) is as above. Given some gen-
uine score X = x with probability density f(z), there
are (k — 1) imposter scores Yy greater than a with prob-
ability [FAR(z)]*~!. There are an additional (m — k)
imposter scores Yy that are less than x with probability
[1 — FAR(z)]F 1.
An approximate interpretation of (14) is the following.
If we assume that the genuine score PDF f(x) is relatively
narrow and can be well approximated by an impulse func-
tion §(x — &), with & the expected match score of By, (14)
becomes
m—1

P(k) ~ (k B 1) [FAR(2)]* "' [1 — FAR(z)]™*. (15)

This is the probability that (k — 1) imposter scores Y are
greater than &, and (m — k) imposter scores Y are less than
xZ.

Remember, the Cumulative Match Curve CMC(K) of
(17) is an estimate of the probability of correct identification
as a function of candidate vector Ck size K. A sample B’
is “correctly identified” if the corresponding identity in the
gallery has rank K or less, and following (5), we get for the
true CMC

CMC(K) = Y4, P(k) =
Sy (7)) SO FAR(2))* ! f(2) [1 — FAR(2)]™* da.

(16)
When using (15), this becomes approximately
CMC(K) ~
Sk (R0 [FAR@)FH 1 - FAR(@)™ 8, (17)
K=1,..m.

The probability that the true rank % of the correct identity
< K is the sum of the true individual probabilities that rank
iskfromk=1tok = K.



One thing about Expression (17) between the CMC of a
1: m search engine and the FAR/FRR of a 1:1 match engine
should be noted again. Given the way the CMC is computed
by sorting s(Bj, B;) as in (1) is only one particular way of
implementing 1: m search based an a 1:1 search engine.

5.3 Open world

Suppose there are an additional 7nknown biometrics
of unknown samples B’ in the probe. Then the CMC is
weighted by the prior probability that B’ € G

Nknown m

M ~+ Nunknown

Nknown T Nunknown

While the CMC is a useful characterization of a system in
controlled evaluations, it is only a partial characterization of
the performance of a system.

6 Experiment

Figure 6 shows a plot of an empirical CMC versus its
theoretical form. The theoretical form was estimated by first
computing the FAR and FRR distributions from the matcher
scores and then using Expression (16) to estimate CMC(K)
for K ranging from 1 to the size of the gallery. Given the
matcher scores, the empirical form was estimated by calcu-
lating the CMC directly from its definition and without first
computing the FAR or FRR distribution.

CMC(K)
°
2
g

cmcFormal
cmcEmpirical -------

L
1 10 100
Candidate List Size, K

Figure 6. Theoretical versus empirical form of
the CMC.

It is easy to see that as candidate list size, K increases,
the error decreases and when K reaches the gallery size,
both empirical and theoretical estimates (correctly) reach 1.
For this very same reason, note that the difference in empir-
ical and theoretical estimates decreases as the candidate list
size increases. Further, it can be observed that the maximum
discrepancy between theoretical and empirical estimates is

about two percent and it is empirical evidence supporting
the integrity of our theoretical derivation.

7 Conclusions

Performance evaluation of biometric systems is an im-
portant topic. The generally accepted method for express-
ing the performance of a 1:1 verification system is an ROC
curve. Typically, the performance of a 1: m identification
system is expressed by a Cumulative Match Curve (CMC),
which is really a discrete function. In this paper we have
shown that the CMC is directly related to the ROC, the
tradeoff between the FAR and FRR as a function of the
operating threshold. That is, given the characteristics of a
1:1 matcher in terms of genuine and imposter score distri-
butions or estimates thereof, the CMC can be constructed.
Hence, as it is used today, the CMC is more a performance
measure of a 1:1 matcher (verification system) than a per-
formance measure of a 1:m identification system.

When computed with the “probe-gallery” approach, the
CMC merely expresses the sorting capabilities of a 1:1
matcher. A better way of testing 1:m identification sys-
tems is to make the galleries public some time before the
test and sequester the probe biometric samples till the time
of the test. It is then up to identification system designer
how to use a 1:1 matcher in the identification task—if a 1:1
matcher is used at all.

In our experiment, we have used a very simple identifica-
tion scheme based on a 1:1 matcher. Note that in many ap-
plications, the identification process may involve more than
a matcher (see, for example, [1], Chapter 16). In such situa-
tions, the discrepancy between empirical CMC (from iden-
tification procedure) and the theoretical CMC (from theo-
retical analysis of 1:1 FAR and FRR using Expression (16)
can be an important metric for assessing the additional value
provided by identification process.
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