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2D Wavelets 

Hints on advanced Concepts 
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Advanced concepts 

•  Wavelet packets 

•  Laplacian pyramid 

•  Overcomplete bases 
–  Discrete wavelet frames (DWF) 

•  Algorithme à trous 
–  Discrete dyadic wavelet frames (DDWF) 

•  Overview on edge sensitive wavelets 
–  Contourlets 
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Wavelet packets 
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Wavelet packets 
Both the approximation and the detail subbands are further decomposed 



Gloria Menegaz 5 

Packet tree 
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Wavelet Packets 
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Laplacian Pyramid 

Low-pass Interpolation ↓2 ↑2 

coarser version 

prediction 

- 
residual 

residuals 
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Overcomplete bases 
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Translation Covariance 

Translation DWT 

DWT Translation 

Signal 

Signal 

Wavelet 
coefficients 

Wavelet 
coefficients 
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Translation covariance 

If translation covariance does not hold: 
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NOT good for signal analysis 
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Rationale 

•  In pattern recognition it is important to build representations that are translation 
invariant. This means that when the pattern is translated the descriptors should be 
translated but not modified in the value. 

•  CWTs and windowed FT provide translation covariance, while sampling the 
translation parameter might destroy translation covariance unless some conditions 
are met. 

•  Intuition: either the sampling step is very small compared to the translation or the 
translation is a multiple of the sampling step. 
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Translation invariant representations 
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Translation covariance 

•  The signal descriptors should be covariant with translations 
–  Continuous WT and windowed FT are translation covariant.  

–  Wavelet frames (DWF) are constructed by sampling continuous transforms over uniform 
time grids.  

–  The sampling grid removes the translation covariance because the translation factor τ is 
a priori not equal to the translation interval 
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Sampling and translation covariance 

τ

If the translation does not correspond to a multiple of the sampling step, a different set 
of samples will be obtained by keeping the same sampling grid 
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Sampling and translation covariance 

τ
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Translation invariant representation 

•  If the sampling interval             is small enough than the samples of                        
are approximately translated when f is shifted.  

•  Translation covariance holds if                   namely it is a multiple of the sampling 
interval  
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Translation invariant representation 

•  Uniformly sampling the translation parameter destroys covariance unless the 
translation is very small 

•  Translation invariant representations can be obtained by sampling the scale 
parameter s but not the translation parameter u 
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Dyadic Wavelet Transform 

•  Sampling scheme 
–  Dyadic scales 
–  Integer translations 

–  If the frequency axis is completely covered by dilated dyadic wavelets, then it defines a 
complete and stable representation 

•  The normalized dyadic wavelet transform operator has the same properties of a frame operator, 
thus both an analysis and a reconstruction wavelets can be identified 

•  Special case: algorithme à trous 
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Algorithme à trous 

•  Similiar to a fast biorthogonal WT without subsampling 

•  Fast dyadic transform 
–  The samples of the discrete signal a0[n] are considered as averages of some function 

weighted by some scaling kernels φ(t-n) 

–  For any filter x[n], we denote by xj[n] the filters obtained by inserting 2j-1 zeros between 
each sample of x[n] → create holes (trous, in French) 
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Algorithme a trous 

•  Proposition 

The dyadic wavelet representation of a0 is defined as the set of wavelet coefficients up to 
the scale 2J plus the remaining low-pass frequency information aJ 

 
 
 
 
–  Fast filterbank implementation 
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Analysis 
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Synthesis 

         hj+1 

     gj+1 

aj+2 

dj+2 

+      hj 

     gj 

aj+1 

dj+1 

+ 
aj 

Overcomplete wavelet representation: [aJ, {dj}1≤j≤J] 



Gloria Menegaz 22 

Algorithme a trous 
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DWT vs DWF 

•  DWT 
–  Non-redundant 
–  Signal il subsampled 
–  Not translation invariant 
–  Total number of coefficients: 

   NxNy 
 

•  Compression 

•  DWF 
–  Redundant (in general) 
–  Signal is not subsapled 
–  Filters are upsampled 
–  Translation invariant 
–  Total number of coefficients:  

  (3J+1)NxNy 
 

•  Feature extraction 
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Discrete WT vs Dyadic WT 

Original 

HL LH HH LL 

DWT 

Dyadic WT 
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Example 1 
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Example 2 
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Rotation covariance 

•  Oriented wavelets 

–  In 2D, a dyadic WT is computed with several wavelets which have different spatial 
orientations  

•  We denote 

•  The WT in the direction k is defined as 

–  One can prove that this is a complete and stable representation if there exist A>0 and 
B>0 such that 

Kk
k yx ≤≤1)},({ψ

⎟
⎠

⎞
⎜
⎝

⎛
= jj

k
j

k yxyxj
2
,

22
1),(2 ψψ

),(),(),,()2,,( 22 vufvyuxyxfvufW kkjk
jj ψψ ∗=−−=

{ } ( )
2

2

1

ˆ( , ) 0,0 , 2 ,2
K

j j
x y x y

k j
A Bω ω ψ ω ω

+∞

= =−∞

∀ ∈ − ≤ ≤∑ ∑R



Gloria Menegaz 28 

Oriented wavelets 

–  Then, there exists a reconstruction wavelet family such that 

•  Gabor wavelets 

–  In the Fourier plane the energy of the Gabor wavelet is mostly concentrated in 
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Gabor wavelets – dyadic scales 
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Gabor wavelets 
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Gabor wavelets – dyadic scales 

•  Other directional wavelet families 
–  Dyadic Frames of Directional Wavelets [Vandergheynst 2000]  
–  Curvelets [Donoho&Candes 1995] 
–  Steerable pyramids [Simoncelli-95] 
–  Contourlets [Do&Vetterli 2002] 
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Dyadic Frames of 
Directional Wavelets 

Pierre Vandergheynst (LTS-EPFL)  
http://people.epfl.ch/pierre.vandergheynst 
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Dyadic Directional WF 
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Dyadic Directional Wavelet Frames 

•  Directional selectivity at any desired angle at any scale 
–  Not only horizontal, vertical and diagonal as for DWT and DWF 
–  Rotation covariance for multiples of 2π/K 

•  Recipe 
–  Build a family of isotropic wavelets such that the Fourier transform of the mother wavelet 

expressed in polar coordinates is separable 

–  Split each isotropic wavelet in a set of oriented wavelets by an angular window 
•  Express the angular part Θ(φ) as a sum of window functions centered at θk 
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Partitions of the F-domain 

2π ϕ 
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Dyadic Directional Wavelet Frames 

4 orientations (K=4) 
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Dyadic Directional Wavelet Frames 

DDWF 

Feature Images or 
Neural images 

Orientation 

S
cale 

Scaling 
function 

Properties 
•  Overcomplete  

• Translation covariance 

•  Rotation covariance for given angles 
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Contourlets 
Brief overview 

Minh Do, CM University Martin Vetterli, LCAV-EPFL 
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Contourlets 

•  Goal 
–  Design an efficient linear expansion for 2D signals, which are smooth away from 

discontinuities across smooth curves 
–  Efficiency means Sparseness 

–  [Do&Vetterli] Piecewise smooth images with smooth contours 
–  Inspired to curvelets [Donoho&Candes] 
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Curvelets 

•  Basic idea 
–  Curvelets can be interpreted as a grouping of nearby wavelet basis functions into linear 

structures so that they can capture the smooth discontinuity curve more efficiently 

–  More efficient in capturing the geometry -> more concise (sparse) 
representation 
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Parabolic scaling 
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M. Do and M. Vetterli, The Contourlet Transform: An Efficient 
Directional Multiresolution Image Representation, IEEE-TIP 
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Curvelets 

Embedded grids of approximations in 
spatial domain.  
 
Upper line represents the coarser scale and 
the lower line the finer scale. 
 
Two directions (almost horizontal and 
almost vertical) are considered. 
 
Each subspace is spanned by a shift of a 
curvelet prototype function. 
 
The sampling interval matches with the 
support of the prototype function, for 
example width w and length l, so that the 
shifts would tile the R2 plan. 
 
The functions are designed to obey the key 
anisotropy scaling relation: 
 

width ∝ length2 

Close resemblance with complex 
cells’ (orientation selective RF)! 
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For a given rate, a better 
representation of edges 
is reached 
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Summary of useful relations 

•  If f is real 
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Conclusions 

•  Multiresolution representations are the fixed point of vision sciences and signal 
processing 

•  Different types of wavelet families are suitable to model different image features 
–  Smooth functions -> isotropic wavelets 
–  Contours and geometry -> Curvelets 

•  Adaptive basis 
–  More flexible tool for image representation 
–  Could be related to the RF of highly specialized neurons 
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