Supporting Software

Compilers and Autotuners
Virtual Machines
Middleware
Operating Systems

Virtual Machines Outline

Implementation

Virtual machines on multiprocessors
— Trango

— Rts hypervisor

— Georgiatech projects

PVM
DSM

03/03/2008

Main features of VMM

e Paravirtualization and binary translation
* Memory management
— Baloon process

* |/O management
— Hosted mode

What is a VM?

A virtualized system that
— Provides a consistent ABI to guest programs
— Runs on a host system (software + hardware)
— Controls resources available to guest programs

— May provide different resources than hardware
* Different Type (ex: JVML in Java VM)
« Different Quantity (ex: more/fewer CPUs, disks, etc.)
— May be of two major types
* Process: provides VM to a single process.
* System: emulates an entire machine w/ guest OS.

03/03/2008

Why use Virtual Machines?

Portability

Run software on a different OS

Run software on a different CPU
Aggregation

Modern machines are fast and underused

Put multiple servers in VMs on one real machine
Development

Complex software environments

Processor testing and simulation
Debugging

Can analyze every aspect of hardware behavior
Security

VMs provide greater isolation of software than regular OS

System Models

processes

processes

processes processes

L4

interface

e

— o
rogramming -
“ progra 9 kernel kernel kernel

VM1 VM2 VM3

kernel : T
virtual machine

implementation

hardware RaTaWars

03/03/2008

Types of Implementations

* A:Process VM:
— Application-level virtualization
- Eg.JVM

e B:System VM
— VMM /hypervisor

— E.g. Vmware ESX server (hardware support), XEN (paravirtualization), Vmware
(binary translation)

‘ Applications =
-
3 e i
Runtime system Operating system

S ——
Cperating system ‘ ‘

‘ Application

| I T I
Virtual machine monitor

Hardware ‘ I = T
Hardware

(a)

Process VMs

* Multitasking
— Each process in a multitasking OS
— VM = System call interface + ISA + VirtMem
* Emulators
— Allow a process to run on a different OS/ISA
— Types:
* Interpreter
* Dynamic binary translator

* High Level Language VMs
— ex: Pascal, JVM, CLR

03/03/2008

03/03/2008

System VMs

e Virtual Machine Monitor (VMM)
— Provides illusion of multiple isolated machines

— Manages allocation of and access to hardware
resources for multiple guest OSes

— Layer between hardware and guest OS
* VMM tasks

— State management

— Resource control

System VMs

Guest Apps

Guest Apps Guest OS

Applications

(O

Hardware Hardware

Hardware

a. Traditional OS b. Native VMM c. User-mode Hosted VMM

Virtualizable Architecture Requirements

e Equivalence:

— Software on the VM executes identically to its
execution on hardware, barring timing effects

* Performance:

— The vast majority of guest instructions are
executed on the hardware without VMM
intervention

* Safety:.
— The VMM manages all hardware resources

Instruction Types

e Privileged:

— instructions are those that trap if the processor is in user mode and do
not trap if it is in system mode

Control sensitive:

— instructions are those that attempt to change the configuration of
resources in the system

Behavior sensitive:

— instructions are those whose behavior or result depends on the

configuration of resources (the content of the relocation register or
the processor's mode)

03/03/2008

Virtualizable Architectures

e An architecture is virtualizable if the sets of
behavior and control sensitive instructions are
subsets of the set of privileged instructions

* On avirtualizable arch, a VMM works using a trap
and emulate technique
— Normal instructions run directly on processor
— Privileged instructions trap into the VMM

— The VMM emulates the effect of the privileged
instructions for the guest OS

VMM Modes

» Safety: guest OS may not change hardware resources
to impact other VMs or the VMM

* Guest OS runs in user mode

* VMM runs in supervisor mode
— Tracks virtual mode of VM
— User programs run in virtual user mode
— OS runs in virtual supervisor mode

* Exceptions & interrupts invoke VMM

— VMM can handle directly or produce a virtual exception for
guest OS

03/03/2008

System VM Execution

Timer Interrupt in running VM
Context switch to VMM

VMM saves state of running VM
VMM determines next VM to execute
VMM sets timer interrupt

VMM restores state of next VM

VMM sets PC to timer interrupt handler of
next VM

8. Next VM active

NouhkwNE

Virtualizing Processor

e A CPU architecture is virtualizable if it
supports direct execution:

— Executing the VM on the real machine and the
VMM retain ultimate control of the CPU

e All instructions that read or write privileged
state trap when executed in guest OS
— Some traps result from instruction type (1/0)

— Other traps result from VMM protecting
structures (memory pages)

03/03/2008

Handling Privileged Instructions

Instruction Trap invokes VMM Dispatcher
Dispatcher calls Instruction Routine
Changes mode to supervisor

Emulates instruction

Computes return target

Restores mode to user

N o U ks wNRE

Jumps to target

x86 is not virtualizable

» x86 architecture is not virtualizable:
— 17 sensitive non-privileged instructions.

* Visibility of privileged state:
— Guest OS can observe that current privilege level (CPS)
in code segment selection (%cs) is not kernel.

* Lack of traps when privileged instructions run at
user level:

— Certain instructions act differently in kernel mode than
user mode, but don’t cause a trap in user mode so the
VMM can detect this

03/03/2008

Example x86 Problem: POPF

* POPF instruction
— Pops flag registers from stack
— Includes interrupt-enable flag
— User mode, POPF modifies all but interrupt flag
— Kernel mode, POPF modifies all flags

Solutions

e Paravirtualization

— Patch source code containing problematic
instructions

e Binary translation
— Patch binary code the first time it executes
— Can be applied to emulate a different ISA

03/03/2008

10

Dynamic Binary Translation

Translate machine code at runtime.

Often x86 to x86 translation, but

Apple uses for emulating older processors.
VM interleaves translation and execution
Translate basic block (BB) of code.
Execute translated BB'.
Transfer control to next BB.
If next BB already translated, execute it.

LA o

Otherwise goto 1.

C Code Example

Iint 1sPrime(int a) {
for (int i = 2; 1 < a; i++) {
iIT (a% 1 == 0) return O;
+

return 1;

}

03/03/2008

11

Assembly Version

isPrime: mov

nexti:

prime:

hecx, hedi ; Yecx = Yedi (a)

3
mov Yesi, $2 ;1= 2
cmp Yesi, Yecx ; is i >= a?
Jjge prime ; jump if yes
mov Yeax, Yecx ; set Y%eax = a
cdq ; sign-extend
idiv Yesi ;adh i
test Yedx, Yedx ; is remainder zero?
jz notPrime ; jump if yes
inc Yesi s i++
cmp Yesi, Yecx ; is 1 >= a?
il nexti ; jump if no
mov Yeax, $1 ; return value in Yeax
ret

notPrime: xor

ret

Yeax, Yeax ; Yeax = 0

Jumps must be translated since translation can alter code layout.

Basic Block Translation

Most instructions copied identically.
Privileged instructions must be emulated.

Each translated BB must end with jump to next translated BB.

isPrime:

isPrime”’:

mov
mov
cmp

Jge

mov
mov
cmp
e
Jjmp

hecx, Jedi
fesi, $2
hesi, Yecx
prime

hecx, %hedi ; IDENT
hesi, $2

Y%esi, Y%ecx
[takenAddr] ; JCC
[fallthrAddr]

03/03/2008

12

Translation of 1ISPrime(49)

Note that prime: BB never translated since 49 is not prime.

isPrime’: #*mov
mov
cmp
jge

nexti’: *mov
cdg
idiv
test
jz

*inc
cmp
jl
Jmp

notPrime’: #*xzor

pop
mov

movzx

Jmp

Yfecx, Yedi ;
Yesi, $2

Yesi, Yecx
[takenAddr] ;

Yeax, %ecx H

fesi
Yhedx, Y%edx
notPrime’ H
H
Yhesi ;
Y%esi, lecx
nexti’ ;
[fallthrAddr3]

fheax, Yeax ;
%rit ;
7.gs:0xff39eb8 (%
Yecx, Y%riib
Ygs:0xfcTdde0 (8

IDENT

JcC
fall-thru into next CCF
IDENT

Jcc
fall-thru into next CCF
IDENT

; Jee

IDENT
RET

rip), %recx ; spill %recx

*Yrex)

* VMCB

Intel VT Extensions

Intel VT allows trap and emulate VMM on newer x86 chips.

— Virtual Machine Control Block
— Control state + subset of guest VM state

Guest mode
— New less privileged execution mode to allow direct execution of

guest code.

® vmrun

— New instruction to transfer from host mode to guest mode.

— Guest execution proceeds until condition specified in VMCB met, at

which point hardware performs an exit operation, saving guest

state to VMCB and loading VMM state, then executing VMM in host

mode.

03/03/2008

13

Intel VT Extensions

* Instructions

— Some sensitive instructions operate on non-root
VMX state; others produce a VM exit.

— VMCB controls which instructions VM exit.
* Interrupts

— External interrupts cause VM exits.

— VMCB controls which exceptions VM exit.

VMWare

e x86 dynamic binary translation VM
— Direct execution in user mode
— Binary translation in kernel mode
 VMWare Workstation, Player, Server
— Hosted VMM runs on Linux or Windows
— Any x86 OS can be used as guest OS
* VMWare ESX Server
— Native VMM runs directly on x86 hardware
— VMotion allows VM migration

03/03/2008

14

Virtualizing Memory

e Virtual Memory: Each process has its own

page table managed by the guest OS pointing

to real memory of the VM its running in

* Real Memory: Memory allocated to each VM

by the VMM. It is mapped to the physical
memory of the host hardware

e Physical Memory: The physical memory of the

host hardware

Shadow Page Tables

* Guest OS maintains its own page tables
— Virtual to real memory mapping
* VMM maintains shadow page tables
— Virtual to physical memory mapping
— Used by hardware to translate virtual addresses
— VMM validates guest page table updates
— Replicates guest changes in shadow page table
* Virtualize page table pointer register
— VMM manages real page table pointer
— Updates page table ptr when switching VMs

03/03/2008

15

Shadow Page Tables

guest rgadi | Guest Page Table
/l LI
guest writesf Guest OS

Accessed & Updates
dirty bits

R\Shadow Page Table
LI L]

VMM

/
MMU Hardware

Memory Management Issues

* VMM can page out some portions of the VM

e However, is the guest OS that knows better
what are processes requirements

* VVmware ESX server solution:

— Baloon process running inside the guest OS and
communicating with VMM

— VMM inflates the baloon when it wants to get
more memory from that VM: exploits guestOS
page replacement strategies

03/03/2008

16

Memory Management Issues

e Redundant copies of data and code between
different VMs

e Solution:

— Content based page sharing

Virtualizing I/O

* VMM must intercept all guest I/0 ops
— PC: privileged IN and OUT instructions
—1/0 operation may consist of many INs/OUTs
e Problem: huge array of diverse hardware
— Native VMM needs driver for each device
— Hosted VMM uses host drivers w/ perf penalty

03/03/2008

17

Virtualizing Devices

Dedicated Devices

— VM has sole control of device

Partitioned Devices

— VM has dedicated slice of device, treats as full

— VMM translates virtual full dev parameters to parameters
for underlying physical device.

Shared Devices

— VMM can multiplex devices.

— Each VM may have own virtual device state.
Nonexistent Devices

— Virtual software devices with no physical counterpart.

Virtualizing a Network Card

Neotwork Packet Send Neowwork Packet Receive
Guest 05 Ethernet HWY
OUT to 10 port Dlevice Inferrupt
VMM Host Ethemet Driver

—————————
Bridgs code

VMDriver VMMNet Driver

retum from se.bcfl',:

]
!
J Retumn to YMApp]
]

| VMApp !
]
1
]

VMApp
Syssal memepy to VM memory :
e ask VMM to raise IRQ |
VMNetDriver L ___ o 1
____________ p)
]’ Bridge code VMM
raise IR
Host Ethernet Driver l aise IRQ
OUT to 10 port Guest 05
Ethernet HW l INADUT to 1O port
packet iaunch VMM
FEEs=gEmss=s=ss== 1
I Contaxt switeh f
VMDriver :

1
'
]
! l Retum fram (OCTL!
! 1
' VMApPp !

packal receive completion

03/03/2008

18

VM Performance

* Why is VM slower than physical hardware?
— Emulation: Sensitive instructions must be emulated

— Interrupt Handling: VMM must handle interrupts, even if
eventually passed to guest

— Context Switches: VMM must save VM state when
controlled transferred to VMM

— Bookkeeping: VMM has to do work to simulate behavior
of real machine, such as keeping track of time for VMs

— Memory: Memory accesses may require access to both
shadow and local page tables

VM on Multiprocessors

* Benefits:
— Distribution of physical processors to guest Oses
— Reassignment depending on workload conditions
* VM migration
* |ssues:
— Lock-holder preemption avoidance
— Sub-optimal scheduling

03/03/2008

19

03/03/2008

Multiprocessor Virtual Machine

Virtual

Physical

Multiprocessor Virtual Machine

e Multiplexing multiple virtual CPUs on one
physical CPU

Virtual

Physical

20

Lock-Holder Preemption Problem

 Critical sections are used in SMP kernels to
ensure in-order data structure updates

— Fine grained locking to prevent performance hit
and preserve scalability

e The VMM can preempt a lock holder,
extending lock holding time
— Violation of statistical fairness of the lock

Solutions

e Co-scheduling:

— Each virtual cpu on a physical cpu for an equal time
slice

— Even if a lock holder is preempted another processor
will not spin on the preempted lock
* Problems
— Scalability
— Flexibility
— Cannot multiplex virtual CPU on physical CPU for fault
recovery or load balancing

03/03/2008

21

Intrusive Lock Holder
Preemption Avoidance

Modify guest OS to give hints to VMM

Before acquiring a lock, OS indicates that it
cannot be preempted for the next n
microseconds

Non-Intrusive Lock Holder
Preemption Avoidance

VMM monitors switches between user-level
and kernel-level modes

— Determine safe and unsafe states
Safe state: user level

— No lock holder possible

Unsafe state: kernel level

— Lock hold possible

— Monitor |A-32 HALT instruction to know if
processor is doing the idle loop (safe state)

03/03/2008

22

Locking-Aware VM Scheduling

e VCPUs are as threads for virtualization layer
that must be scheduled

e Scheduling properties:
— Fair access of VM to physical CPUs
— Lock-holder preemption avoidance

Time Balooning

* Problem: a multiprocessor OS bases load-
balancing decisions on physical CPU parameters
that are modified by the VMM
— Wrong process distribution among virtual processors
— Need more information about physical resource

allocation

e Solution

— Insert a baloon module that polls the VMM to know
about processing time for that VM

— When no physical cpu is allocated, it inflates the
baloon (generating virtual workload) to correct
scheduler assumption

03/03/2008

23

