B

Verification and Validation of
Embedded Systems

Nikil Dutt

UC Irvine
ICS 212 Winter 2005

+ Material adapted from Sandeep Shukla
Templates from Prabhat Mishra

ICS212 WQO5 (Dutt) Verification and Validation 1

Acknowledgements

® Macie] Ciesielski (Umass, Amherst)
® Kenneth McMillan (Cadence Berkeley Labs)

ICS212 WQO5 (Dutt) Verification and Validation 2

® Introduction
& What is verification/validation
¢ Why do we need it
¢ Formal vs. simulation-based methods

® Math background
¢ BDD’s
¢ Symbolic FSM traversal

ICS212 WQO5 (Dutt) Verification and Validation 3

Why Verification/Validation?

® Design complexity crisis
¢ system complexity, difficult to manage
¢ more time, effort devoted to verification than to design
¢ need automated verification methods, integration

® Examples of undetected errors

¢ Ariane 5 rocket explosion, 1996 (exception occurred when
converting 64-bit floating number to a 16-bit integer)

¢ Pentium bug (multiplier table not fully verified)
4 many more

ICS212 WQO5 (Dutt) Verification and Validation 4

Functional Verification of SOC Designs

., 2000 10008 £
D 2
5 S
> 200 108 >
(D) -
S I
= E
> 20 100M =
LLJ =
) n
10M 100M
LOgiC Gates Source: Synopsys

/1% of SOC re-spins are due to logic bugs

Source: G. Spirakis, keynote address at DATE 2004

ICS212 WQO5 (Dutt) Verification and Validation S

Functional Validation of Microprocessors

® Functional validation is a major bottleneck

¢ Deeply pipelined complex microarchitectures

800

Pentium

Pre-silicon logic bugs per generation
(Source: Tom Schubert, Intel, DAC 2003)

7855

TR
I ,

Pentium Pro Pentium 4

25000

Next ?

® Logic bugs increase at 3-4 times/generation

¢ Bugs increase (exponential) is linear with design
complexity growth.

ICS212 WQO5 (Dutt) Verification and Validation

Pentium 4 Bugs Breakdown

Source: Bob Bentley, HLDVT 2002

i u}
Urzanialyzed blgs, 24% Careless Coding, 13%

Miscommunication, 11%

Design mistake, 3%

Incorrect assertions, 2%

Late definition, 2%
Microarchitecture, 9%

Random initialization, 3%
Complexity, 4%
Documentation, 4% Logic changes, 9%

E u]
Fower down 1s5ues, 5% Corner cases, 8%

Micro-architectural complexity Is a major contributor

ICS212 WQO5 (Dutt) Verification and Validation

7

Verification/Validation Methods

® Simulation - performed on the model

® Deductive verification
® Model checking
® Equivalence checking

® Testing - performed on the actual product

(manufacturing test)

® Emulation, prototyping

ICS212 WQO5 (Dutt) Verification and Validation 8

Verification/Validation Methods

@ Simulation - performed on the model

O
Validation

O

O

ICS212 WQO5 (Dutt) Verification and Validation 9

Verification/Validation Methods

/ODeductive verification\

® Model checking

° : .
\Equwalence checklng<
’ \\\
Formal
O

Verification

ICS212 WQO5 (Dutt) Verification and Validation 10

Verification/Validation Methods

Physical level

® Testing - performed on the actual product

(manufacturing test)

® Emulation, prototyping

-

ICS212 WQO5 (Dutt) Verification and Validation 11

Why Formal Verification

® Need for reliable system (sw & hw) validation

® Simulation, test cannot handle all possible cases

® Formal verification conducts exhaustive
exploration of all possible behaviors

¢ compare to simulation, which explores some of possible
behaviors

¢ If correct, all behaviors are verified

¢ if incorrect, a counter-example (proof) is presented

® Examples of successful use of formal verification
¢ SMV system [McMillan 1993]
¢ verification of cache coherence protocol in IEEE Futurebus+ standard

ICS212 WQO5 (Dutt) Verification and Validation 12

Verification

® Design verification = ensuring correctness of the design

® Typically compare against
¢ A reference model

& an implementation (at different levels)
¢ An alternative design (at the same level)

Design 1

i)

?

behavior HDL/RTL <——

III
)

structure Gate level

function < Logic level

layout Mask level

ICS212 WQO5 (Dutt) Verification and Validation

Design 2

RTL

Logic level

Gate level

Mask level

Il
)

13

Overview — Formal Methods

® Theorem proving
¢ Deductive reasoning

® Model checking
¢ Problem statement
¢ Explicit algorithms (on graphs)
¢ Symbolic algorithms (using BDDs)

® Equivalence checking
¢ Combinational circuits
¢ Sequential circuits

ICS212 WQO5 (Dutt) Verification and Validation 14

Formal Verification

® Deductive reasoning (theorem proving)
¢ uses axioms, rules to prove system correctness
¢ No guarantee that it will terminate
¢ difficult, time consuming: for critical applications

® Model checking

¢ automatic technique to prove correctness of
concurrent systems: digital circuits,
communication protocols, etc.

® Equivalence checking
¢ check if two circuits are equivalent

ICS212 WQO5 (Dutt) Verification and Validation 15

BACKGROUND

BDDs, FSM traversal

ICS212 WQO5 (Dutt) Verification and Validation 16

Binary Decision Diagrams

® Binary Decision Diagram (BDD)
¢ compact data structure for Boolean logic

¢ can represent sets of objects (states) encoded as
Boolean functions

¢ reduced ordered BDDs (ROBDD) are canonical
¢ canonicity - essential for verification

® Construction of ROBDD
¢ remove duplicate terminals
¢ remove duplicate nodes (isomorphic subgraphs)
¢ remove internal nodes with identical children

ICS212 WQO5 (Dutt) Verification and Validation 17

BDD - Construction

® Construction of a Reduced Ordered BDD

—— 1 edge
- = =-0edge

Q

RPFFRPRPRPPOOOO

PFRPOORLPEFROO (@)
@
-
—h
I
Q
@)
+
o
O

RPOPFRPOPRFRPOPRFRO
RPORFRPOPFRPLROOO

Truth table Decision tree

ICS212 WQO5 (Dutt) Verification and Validation 18

BDD Construction — cont’d

RN
1y,
0

1. Remove 2. Remove 3. Remove
duplicate terminals duplicate nodes redundant nodes

ICS212 WQO5 (Dutt) Verification and Validation 19

Application to Verification

® Equivalence of combinational
circuits

® Canonicity property of BDDs:

¢ if F and G are equivalent, their BDDs are
identical (for the same ordering of variables)

G = ac +hc

ICS212 WQO5 (Dutt) Verification and Validation 20

Application to Verification, cont’d

® Functional test generation

¢ SAT, Boolean satisfiability
analysis

¢ to test for H =1 (0), find a path
In the BDD to terminal 1 (0)

¢ the path, expressed in function
variables, gives a satisfying
solution (test vector)

ICS212 WQO5 (Dutt) Verification and Validation 21

Logic Manipulation using BDDs

® Useful operators F

-
— Complement = F =F’ /\ :_./\
(switch the terminal nodes) Lo L] [[
F(x,y) F(y)
- Restrict: F|,_, = /\ Restrict
F(x=b) where b = const i N TT

ICS212 WQO5 (Dutt) Verification and Validation 22

Useful BDD Operators - cont’d

® Apply: F oG
where @ stands for any Boolean operator (AND, OR, XOR, —)
= G F®G
ANe /N = /\
[o] [1] [o] [1]
o] [1

® Any logic operation can be expressed using
only Restrict and Apply

® Efficient algorithms, work directly on BDDs

ICS212 WQO5 (Dutt) Verification and Validation 23

Finite State Machines (FSM)

X O
—1 | A(s,X) >
« FSM M(X,S, 9, A,0) < 5(s,x) -
— Inputs: X A
— Qutputs: O
— States: S
— Next state function, 06(s,X): Sx X —> S
— Output function, AS,X):Sx X—>O0

ICS212 WQO5 (Dutt) Verification and Validation 24

® State Transition Graphs

¢ directed graphs with labeled nodes and arcs
(transitions)

¢ symbolic state traversal methods

Q important for symbolic verification, state reachability
analysis, FSM traversal, etc.

0/0
1/0

O~ &

1/0 0/1

0/1

ICS212 WQO5 (Dutt) Verification and Validation 25

Existential Quantification

® Existential quantification (abstraction)

EIx f=f |x:0+f |x:1

® Example:
3, (Xy+2)=y +2

® Note: 3, f does not depend on X
(smoothing)

® Useful in symbolic image computation (sets of
states)

ICS212 WQO5 (Dutt) Verification and Validation 26

Existential Quantification - cont’d

® Function can be existentially quantified w.r.t. a
vector: X = X;X,...

EIX f = EIx1x2... f = EIxl EIx2 EI... f

® Can be done efficiently directly on a BDD

® Very useful in computing sets of states

¢ Image computation: next states

¢ Pre-Image computation: previous states from a given set of
initial states

ICS212 WQO5 (Dutt) Verification and Validation 27

Image Computation

® Computing set of next states from a given initial state
(or set of states)

® Img(S,R) =4, S(u) * R(u,v)

R(u,v)

« FSM: when transitions are labeled with input predicates
X, quantify w.r.to all inputs (primary inputs and state var)

Img(S,R) =3, 3, S(u) * R(x,u,v)

ICS212 WQO5 (Dutt) Verification and Validation 28

Image Computation - example

Compute a set of next states from state sl
® Encode the states: s1=00, s2=01, s3=10, s4=11

® \Write transition relations for the encoded states:

R =(ax’y’ +a'x’'y + XYy O+ L)

ICS212 WQO5 (Dutt) Verification and Validation 29

Example - cont’d

® Compute Image from sl under R
Img(s1,R) =3, 3,,s1xy)*R@x)y, ")

= d, 3,y (XY) ¢ (XY’ + a'x'y + XY O+ L)

=y @XY 1 FaxXy o) = ()
= { } ={s2,s3}

Result: a set of next
states for all inputs
sl — {s2, s3}

ICS212 WQO5 (Dutt) Verification and Validation 30

Pre-Image Computation

® Computing a set of present states from a given
next state (or set of states)

Pre-Img(S’,R) = 3, R(u,v))* S’(v)

R(u,v)

e Similar to Image computation, except that quantification is done
w.r.to next state variables

e The result: a set of states backward reachable from state set S’,
expressed in present state variables u

o Useful in computing CTL formulas: AF, EF

ICS212 WQO5 (Dutt) Verification and Validation 31

EQUIVALENCE CHECKING

Equivalence Checking

® Two circuits are functionally equivalent if
they exhibit the same behavior

® Combinational circuits n— " Out
n CL >
¢ for all possible input values —
® Sequential circuits PI Po
o for all possible | cL '
Q states & input values
Ps Ns
R
A

ICS212 WQO5 (Dutt) Verification and Validation 33

Combinational Equivalence Checking

® Functional Approach

¢ transform output functions of combinational
circuits into a unique (canonical) representation

¢ two circuits are equivalent if their representations
are identical

¢ efficient canonical representation: BDD

® Structural
¢ identify structurally similar internal points
¢ prove internal points (cut-points) equivalent
¢ find implications

ICS212 WQO5 (Dutt) Verification and Validation 34

Functional Equivalence

® |If BDD can be constructed for each circuit

¢ represent each circuit as shared (multi-output) BDD
Q use the same variable ordering !

¢ BDDs of both circuits must be identical

« |f BDDs are too large
— cannot construct BDD, memory problem

— use partitioned BDD method
e decompose circuit into smaller pieces, each as BDD
« check equivalence of internal points

ICS212 WQO5 (Dutt) Verification and Validation 35

Functional Decomposition

® Decompose each function into functional blocks

¢ represent each block as a BDD (partitioned BDD
method)

¢ define cut-points (z)
¢ verify equivalence of blocks at cut-points
starting at primary inputs

fz g2
Z Z -—
fl gl
X | y X Yy

ICS212 WQO5 (Dutt) Verification and Validation 36

Cut-Points Resolution Problem

® If all pairs of cut-points (z,,z,) are equivalent
¢ so are the two functions, F,G

® If intermediate functions (f,,g,) are not equivalent
¢ the functions (F,G) may still be equivalent
¢ this is called false negative

 Why do we have false negative ?

— functions are represented in terms of f2 92
Intermediate variables

— to prove/disprove equivalence must
represent the functions in terms of f R
primary inputs (BDD composition) L

Z —- Z —

xly X Yy

ICS212 WQO5 (Dutt) Verification and Validation 37

Cut-Point Resolution — Theory

® Let f,(x)=g,(x) VX

4 If fZ(Z’y) = gz(z,y), VZ,y then fZ(fl(X)1y) = gZ(fl(X)iy) =>F=G

¢ iff(zy) # 9,(z.y), Vz)y

1 F G
fz g2
Z —- 7 ——
fl gl
X | y X Y

ICS212 WQO5 (Dutt) Verification and Validation

== B((X).y) # 9(fi(X)y) #F=G

We cannot say iIf F=G or not

* False negative

— two functions are equivalent,
but the verification algorithm
declares them as different.

38

Cut-Point Resolution — cont’d

® Procedure 2: create aBDD for F® G

¢ perform satisfiability analysis (SAT) of the BDD
a if BDD for F @G = &, problem is not satisfiable, false negative
Q BDD for F @G # J, problem is satisfiable, true negative

c @ = | 9. F=G (false negative)
F G =

= Non-empty, F#G
S

— the SAT solution, if exists, provides a test vector
(proof of non-equivalence) — as in ATPG

ICS212 WQO5 (Dutt) Verification and Validation 39

Sequential Equivalence Checking

® Represent each sequential circuit as an FSM
¢ verify if two FSMs are equivalent

® Approach 1: reduction to combinational circuit
¢ unroll FSM over n time frames (flatten the design)

'E@) ______ |:>:_@)_ ______________ I:):-(f')- ————— ;
M) [Me) [MG [
S s S0 i

Combinational logic: F(x(1,2, ...n), s(1,2, ... n))

— check equivalence of the resulting combinational circuits
— problem: the resulting circuit can be too large too handle

ICS212 WQO5 (Dutt) Verification and Validation 40

Sequential Verification

® Approach 2: based on isomorphism of state
transition graphs

¢ two machines M1, M2 are equivalent if their state transition
graphs (STGs) are isomorphic

¢ perform state minimization of each machine
¢ check if STG(M1) and STG(M2) are isomorphic

1/0
1/0 0/0 0/1y
0/1 -
0/0 o¥ o State min. @tg B
1/1 =
1/0 0/1 10
0/0 0/
ofic

1/1

ICS212 WQO5 (Dutt) Verification and Validation 41

Sequential Verification

® Approach 3: symbolic FSM traversal of the
product machine

M,(X,S5, 85 4,0,)
« Create a product FSM: M = M;x M,

— traverse the states of M and check its o1llo2
output for each transition | |

— the output O(M) =1, if outputs O,= O, D M1 M2 4
— if all outputs of M are 1, M, and M, are S1 S2

equivalent ‘ ‘
— otherwise, an error state is reached X

« Given two FSMs: M,(X,S,, 8,, 1,,0,), %O(M)

— error trace is produced to show: M; # M,

ICS212 WQO5 (Dutt) Verification and Validation 42

Product Machine - Construction

® Define the product machine M(X,S, 9, A,0)

¢ states, S=S5, xS,
¢ next state function, 6(sS,X) : (S; x S,) x X = (S; x S,)
¢ output function, MsS,X) 1 (S xS,) x X —{0,1}
* Error trace (distinguishing sequence)
& that leads to an error state
- sequence of inputs which produces 1
211 a2 at the output of M
01 ' ' 02 produces a state in M for which M1
p M1l [m2 < and M2 give different outputs
— 1 ifO,=0
‘ X ‘ MSX) = Aq(S1,X) @ Ap(S2.X) =0 othelrwisze

ICS212 WQO5 (Dutt) Verification and Validation 43

FSM Traversal - Algorithm

® Traverse the product machine M(X,S,9, A,0)
¢ start at an initial state S,

¢ iteratively compute symbolic image Img(S,,R) (set of next
states):

Img(Sy,R) =3, A, Sy(S) * R(X,S,1)
R =1L Ry = 11; (t =5,(s,x))
until an error state is reached

¢ transition relation R, for each next state variable t,can be
computed as t = (t ® 6(S,X))

(this Is an alternative way to compute transition relation,
when design is specified at gate level)

ICS212 WQO5 (Dutt) Verification and Validation 44

Construction of the Product FSM

1/0

0/0 0/1
g

1/1
® For each pair of states, s;e M, s,e M,

¢ create a combined state s = (s;. S,) of M
¢ create transitions out of this state to other states of M
¢ label the transitions (input/output) accordingly

1®1 _J 10K
01 1/0 o< OUtPUL =) orror

M, Cb/\ab T 1/1 o

1

0/
1/0
M, %_@

ICS212 WQO5 (Dutt) Verification and Validation 45

FSM Traversal in Action

1/0

0/0 0/1
o

0/1
M1 T Vo 0/0 Q Q

Initiall states: s,=0, s,=0, s=(0.0) Error state

OUt(M) 0/0 @ @ 0/0

State reached [x=0 x=1
*New?®=(0.0) 1 1
eNew!l=(1.1) 1 1
eNew?=(0.2) 1 1
eNew?3*=(1.00 0 O

® STOP - backtrack to initial state to get error trace:
x={1,1,1,0}

ICS212 WQO5 (Dutt) Verification and Validation 46

B

MODEL CHECKING

Model Checking

® Algorithmic method of verifying correctness of (finite
state) concurrent systems against temporal logic
specifications

¢ A practical approach to formal verification

® Basic idea
¢ System is described in a formal model

Qderived from high level design (HDL, C), circuit
structure, etc.

¢ The desired behavior is expressed as a set of
properties

Qexpressed as temporal logic specification
¢ The specification is checked against the model

ICS212 WQO5 (Dutt) Verification and Validation 48

Model Checking

® How does it work?

¢ System is modeled as a state transition structure (Kripke
structure)

¢ Specification iIs expressed in propositional temporal logic
(CTL formula)

Qasserts how system behavior evolves over time

¢ Efficient search procedure checks the transition system to
see If it satisifes the specification

ICS212 WQO5 (Dutt) Verification and Validation 49

Model Checking

® Characteristics
¢ searches the entire solution space
¢ always terminates with YES or NO
¢ relatively easy, can be done by experienced designers
¢ widely used in industry
¢ can be automated

® Challenges
¢ state space explosion — use symbolic methods, BDDs

® History
¢ Clark, Emerson [1981] USA
¢ Quielle, Sifakis [1980’s] France

ICS212 WQO5 (Dutt) Verification and Validation 50

Model Checking - Tasks

® Modeling
¢ converts a design into a formalism: state transition system

® Specification
¢ state the properties that the design must satisfy
¢ use logical formalism: temporal logic
Qasserts how system behavior evolves over time

® Verification
¢ automated procedure (algorithm)

ICS212 WQO5 (Dutt) Verification and Validation ol

Model Checking - Issues

® Completeness
¢ model checking is effective for a given property

¢ impossible to guarantee that the specification covers all
properties the system should satisfy

¢ writing the specification - responsibility of the user

® Negative results
¢ incorrect model
¢ incorrect specification (false negative)
¢ failure to complete the check (too large)

ICS212 WQO5 (Dutt) Verification and Validation 52

Model Checking - Basics

® State transition structure
M(S,R,L) (Kripke structure)

S = finite set of states {s,, S,, ... S,;}

R = transition relation

L = set of labels assigned to states, so that
L(s) =f Iif state s has property f

® All properties are composed of
atomic propositions (basic
properties), e.g. the light is green,
the door is open, etc.

¢ L(s) is a subset of all atomic propositions
true in state s

ICS212 WQO5 (Dutt) Verification and Validation

o

Label (property)

53

Temporal Logic

® Formalism describing sequences of transitions
® Time is not mentioned explicitly

® The temporal operators used to express temporal
properties

¢ eventually
¢ never
¢ always

® Temporal logic formulas are evaluated w.r.to a
state in the model

® Temporal operators can be combined with
Boolean expressions

ICS212 WQO5 (Dutt) Verification and Validation o4

/
/@ ac)
/@\

Infinite computation tree
for initial state s,

State transition structure
(Kripke Model)

ICS212 WQO5 (Dutt) Verification and Validation 95

CTL — Computation Tree Logic

® Path quantifiers - describe branching structure of
the tree

¢ A (for all computation paths)
¢ E (for some computation path = there exists a path)

® Temporal operators - describe properties of a path
through the tree

¢ X (next time, next state)
¢ F (eventually, finally)

¢ G (always, globally)

¢ U (until)

¢ R (release, dual of U)

ICS212 WQO5 (Dutt) Verification and Validation 56

® Temporal logic formulas are evaluated
w.r.to a state in the model

® State formulas
¢ apply to a specific state

® Path formulas
¢ apply to all states along a specific path

ICS212 WQO5 (Dutt) Verification and Validation o7

Basic CTL Formulas

® E X ()

¢ true in state s if f is true in some successor of s (there
exists a next state of s for which f holds)

® A X (f)

¢ true in state s if f is true for all successors of s (for all next
states of s f is true)

® EG (f)

¢ trueinsif f holds in every state along some path
emanating from s (there exists a path)

® A G(f)

¢ true in s if f holds in every state along all paths emanating
from s (for all pathsglobally)

ICS212 WQO5 (Dutt) Verification and Validation 58

Basic CTL Formulas - cont 'd

® EF(g)

¢ there exists a path which eventually contains a state
In which g Is true

® AF(Q)
¢ for all paths, eventually there is state in which g holds

® EF, A Farespecial case of E[fUg], A[fU(g]
¢EF(g=E[trueUg], AF(g)=A[trueUqg]

®@ fUg (f until g)

¢ true If there Is a state in the path where g holds, and
at every previous state f holds

ICS212 WQO5 (Dutt) Verification and Validation 59

CTL Operators - examples

S, FEGQ

ICS212 WQO5 (Dutt) Verification and Validation 60

Basic CTL Formulas - cont 'd

® Full set of operators
¢ Boolean: LAY, D, >
¢ temporal: E.A X, F,G UR

® Minimal set sufficient to express any CTL formula
¢ Boolean: A, V

¢ temporal: E, X, U

® Examples:
fag=-(-fv-g), Ff=trueUf, A({)=-E(-f)

ICS212 WQO5 (Dutt) Verification and Validation 61

Typical CTL Formulas

®E F (start A-~ready)

¢cventually a state is reached where start
holds and ready does not hold

®A G (req > A Fack)

¢ any time request occurs, it will be eventually
acknowledged

®A G (E Frestart)

¢ from any state it is possible to get to the
restart state

ICS212 WQO5 (Dutt) Verification and Validation 62

Model Checking — Explicit

® Problem: given a structure M(S,R,L) and a
temporal logic formulaf, find a set of states
that satisfy f

{seS: Ms|=f1}

¢ Explicit algorithm: label each state s with the set label(s)
of sub-formulas of f which are true in s.

; label(s) = L(s)

; Process formulas with (i -1) nested CTL operators.
Add the processed formulas to the labeling of each state in
which it is true.

3. Continue until closure. Result: M,s |=f iff f € label (s)

ICS212 WQO5 (Dutt) Verification and Validation 63

Explicit Algorithm - cont’d

® To check for arbitrary CTL formula f

& successively apply the state labeling algorithm to the
sub-formulas

& start with the shortest, most deeply nested
¢ work outwards

® Example:EF-(gAh)
H_J

\ J
Y

T2 = Comjplement of T1

%
T3 = predecessor states to T2

ICS212 WQO5 (Dutt) Verification and Validation 64

Model Checking Example

raffic light controller

(Slmpllfled) sensor
C| Timer

C = car sensor
T:tlmerc,+T, TIC

Road 2

Road 1

Y1
R1

ICS212 WQO5 (Dutt) Verification and Validation

Traffic light controller - Model

® Model Checking task: check
¢ safety condition
¢ fairness conditions

® Safety condition: no green
lights on both roads at the
same time

AG-(GLAG2)

® Fairness condition: eventually
one road has green light

EF(GlvG2)

ICS212 WQO5 (Dutt) Verification and Validation 66

Checking the Safety Condition

A G - (Gl AG2)=-EF (GLAG2)

® S(G1LAG2)=5(G1) nS(G2) =
{1}n{3} = &
® SEF(G1ILAG2)=0
® SHEF(G1AG2)) =Y 4
={1, 2, 3, 4}

Each state is included in {1,2,3,4} =
the safety condition is true (for each state)

ICS212 WQO5 (Dutt) Verification and Validation 67

Checking the Fairness

EF(G1lvG2)=E({trueU (Gl1vG2))
e S(GlvG2)=S(GLUS(G2) = {1} U{3} = {1,3}

e S(EF(G1vG2) ={1,234}
(going backward from {1,3}, find predecessors)

S—-@

Since {1,2,3,4} contains all states, the condition is
true for all the states

ICS212 WQO5 (Dutt) Verification and Validation 68

Another Check

E X2 (Y1) = E X (E X (Y1))

(starting at S;,=G1R2, is
there a path s.t. Ylis truein 2
steps ?)

® S (Y1) ={2}

® S (EX (Y1) ={1}
(predecessor of 2)

® S (EX (EX(Y1)) ={1,4}
(predecessors of 1)

Property E X2 (Y1) is true for states {1,4}, hence true

ICS212 WQO5 (Dutt) Verification and Validation 69

Symbolic Model Checking

® Symbolic
¢ operates on entire sets rather than individual states

® Uses BDD for efficient representation

¢ represent Kripke structure

¢ manipulate Boolean formulas
ARESTRICT and APPLY logic operators

® Quantification operators
¢ Existential: 3, f=f|_,+f|,.; (Smoothing)
¢ Universal: V. f=f|g°fl,c; (consensus)

ICS212 WQO5 (Dutt) Verification and Validation 70

Symbolic Model Checking - example

® Encode the atomic propositions (G1,R1,Y1, G2,Y2,R2).
use [a b c d] for present state, [v X y z] for next state

Gl - -
Y1 - -
R1 - -
G2| - -
Y2 | --
R2 |- -

ICS212 WQO5 (Dutt) Verification and Validation 71

Example - cont’d

® Represent the set of states as Boolean formula
Q: Q =abcd’ +a’bcd’ + ab’cd + ab’c’d

e Store Q ina BDD

(It will be used to perform logic
operations, such as S(G1) v S(G2)

ICS212 WQO5 (Dutt) Verification and Validation 72

Example - cont’'d

® \Write a characteristic function R for the
transition relation R =abcd’ +
abcd’ + ... +ab’'c’d

(6 terms) abcd vxyz R

1110
1110
0110
1011
1011
1001

® Store Rin a BDD. It will be
used for Pre-Image
computation for EF.

ICS212 WQO5 (Dutt) Verification and Validation 73

Example - Fairness Condition

® Check fairness condition: EF (G1 v G2)

® Step 1. compute S(G1), S(G2) using RESTRICT
operator
¢ 5(G1): ab-Restrict Q(G1) = ab Q|,, = abcd’ = {s1}
¢ 5(G2): cd-Restrict Q(G2) = cd Q|.4= ab’cd = {s3}

® Step 2: compute S(G1) v S(G2) using APPLY
operator

¢ Construct BDD for (abcd’ + ab’cd) = {s1, s3}, set of states
labeled with G1 or G2

ICS212 WQO5 (Dutt) Verification and Validation 74

Example — cont’'d

o Step 3: compute S(EF (G1 v G2)) using Pre-Image

computation (quanitfy w.r.to variables)
 Recall: R = abcd’ + abcd’ + ... +ab’c’d
— _/
® 3 ¢ }eR(s,5))=
=3 (+) *R(a,b,c,d;)
=3 (abcd’ +a’'bcd +ab’cd +ab’c’d)

= (abcd’ + a’bcd + ab’cd + ab’c’'d) = {s1, s2, s3, s4}

® Compare to the result of explicit algoritm

ICS212 WQO5 (Dutt) Verification and Validation 75

Example — Interpretation

® Pre-Img(,R) eliminates those
transitions which do not reach {s1,s3}

Py

abcd vxyz
1110

X 1130
0110
1011
X 1011

1001

\ J \ J
A § A 4

X
\
® Quantification W.r.to
variables () gives the encoded
present states {sl1,s2,53,s4}

N e

ICS212 WQO5 (Dutt) Verification and Validation 76

Overview — Functional Validation

® Simulation-based & Formal methods
¢ Functional test generation
& SAT-based methods, Boolean verification
QBoolean satisfiability
& RTL verification
QArithmetic/Boolean satisfiability
& ATPG-based methods

® Emulation-based methods
& Hardware-assisted simulation
¢ System prototyping

ICS212 WQO5 (Dutt) Verification and Validation 7

	Verification and Validation of Embedded Systems
	Acknowledgements
	Overview
	Why Verification/Validation?
	Functional Verification of SOC Designs
	Functional Validation of Microprocessors
	Pentium 4 Bugs Breakdown
	Verification/Validation Methods
	Verification/Validation Methods
	Verification/Validation Methods
	Verification/Validation Methods
	Why Formal Verification
	Verification
	Overview – Formal Methods
	Formal Verification
	Part II
	Binary Decision Diagrams
	BDD - Construction
	BDD Construction – cont’d
	Application to Verification
	Application to Verification, cont’d
	Logic Manipulation using BDDs
	Useful BDD Operators - cont’d
	Finite State Machines (FSM)
	FSM Traversal
	Existential Quantification
	Existential Quantification - cont’d
	Image Computation
	Image Computation - example
	Example - cont’d
	Pre-Image Computation
	Part IV
	Equivalence Checking
	Combinational Equivalence Checking
	Functional Equivalence
	Functional Decomposition
	Cut-Points Resolution Problem
	Cut-Point Resolution – Theory
	Cut-Point Resolution – cont’d
	Sequential Equivalence Checking
	Sequential Verification
	Sequential Verification
	Product Machine - Construction
	FSM Traversal - Algorithm
	Construction of the Product FSM
	FSM Traversal in Action
	Part IV
	Model Checking
	Model Checking
	Model Checking
	Model Checking - Tasks
	Model Checking - Issues
	Model Checking - Basics
	Temporal Logic
	Computation Trees
	CTL – Computation Tree Logic
	CTL Formulas
	Basic CTL Formulas
	Basic CTL Formulas - cont ’d
	CTL Operators - examples
	Basic CTL Formulas - cont ’d
	Typical CTL Formulas
	Model Checking – Explicit Algorithm
	Explicit Algorithm - cont’d
	Model Checking Example
	Traffic light controller - Model Checking
	Checking the Safety Condition
	Checking the Fairness Condition
	Another Check
	Symbolic Model Checking
	Symbolic Model Checking - exampleTraffic Light Controller
	Example - cont’d
	Example - cont’d
	Example - Fairness Condition
	Example – cont’d
	Example – Interpretation
	Overview – Functional Validation

