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Overview

Introduction
What is verification/validation
Why do we need it
Formal vs. simulation-based methods

Math background
BDD’s
Symbolic FSM traversal



ICS212 WQ05 (Dutt)   Verification and Validation 4

Why Verification/Validation?
Design complexity crisis

system complexity, difficult to manage
more time, effort devoted to verification than to design
need automated verification methods, integration

Examples of undetected errors
Ariane 5 rocket explosion, 1996 (exception occurred when 
converting 64-bit floating number to a 16-bit integer)
Pentium bug (multiplier table not fully verified)
many more …. 
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Functional Verification of SOC Designs

2000

Si
m

ul
at

io
n 

Ve
ct

or
s1000B

1995

2001

2007

En
gi

ne
er

 Y
ea

rs

200 10B

100M20

100M1M 10M

Logic Gates Source: Synopsys

71% of SOC re-spins are due to logic bugs
Source: G. Spirakis, keynote address at DATE 2004
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Functional Validation of Microprocessors

Functional validation is a major bottleneck
Deeply pipelined complex microarchitectures

Logic bugs increase at 3-4 times/generation
Bugs increase (exponential) is linear with design 
complexity growth.

Pre-silicon logic bugs per generation
( Source: Tom Schubert, Intel, DAC 2003 )
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Pentium Pentium Pro Pentium 4 Next ?
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Pentium 4 Bugs Breakdown
Source: Bob Bentley, HLDVT 2002

Micro-architectural complexity is a major contributor
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Verification/Validation Methods

Simulation - performed on the model

Deductive verification 

Model checking

Equivalence checking

Testing - performed on the actual product
(manufacturing test)

Emulation, prototyping
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Verification/Validation Methods

Simulation - performed on the model

Deductive verification 

Model checking

Equivalence checking

Testing - performed on the actual product
(manufacturing test)

Emulation, prototyping

ValidationValidation
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Verification/Validation Methods

Simulation - performed on the model

Deductive verification 

Model checking

Equivalence checking

Testing - performed on the actual product
(manufacturing test)

Emulation, prototyping
Formal Formal 

VerificationVerification
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Verification/Validation Methods

Simulation - performed on the model

Deductive verification 

Model checking

Equivalence checking

Testing - performed on the actual product
(manufacturing test)

Emulation, prototyping

Physical levelPhysical level
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Why Formal Verification

Need for reliable system (sw & hw) validation

Simulation, test cannot handle all possible cases
Formal verification conducts exhaustive 
exploration of all possible behaviors

compare to simulation, which explores some of possible 
behaviors
if correct, all behaviors are verified

if incorrect, a counter-example (proof) is presented
Examples of successful use of formal verification

SMV system [McMillan 1993]
verification of cache coherence protocol in IEEE Futurebus+ standard
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Verification
Design verification = ensuring correctness of the design
Typically compare against

A reference model
an implementation (at different levels)
An alternative design (at the same level)

behavior

structure

function

layout

HDL / RTL

Gate level

Logic level

Mask level

Design 1

≡ ?

≡ ?

≡ ?

model ≡ ?
≡ ?

≡ ?

RTL

Gate level

Mask level

Design 2

Logic level

≡ ?
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Overview – Formal Methods

Theorem proving 
Deductive reasoning

Model checking
Problem statement 
Explicit algorithms (on graphs)
Symbolic algorithms (using BDDs)

Equivalence checking
Combinational circuits
Sequential circuits
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Formal Verification

Deductive reasoning (theorem proving)
uses axioms, rules to prove system correctness
no guarantee that it will terminate
difficult, time consuming: for critical applications

Model checking
automatic technique to prove correctness of 
concurrent systems: digital circuits, 
communication protocols, etc.

Equivalence checking
check if two circuits are equivalent
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Part  II

BACKGROUND

BDDs, FSM traversal
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Binary Decision Diagrams

Binary Decision Diagram (BDD)
compact data structure for Boolean logic
can represent sets of objects (states) encoded as 
Boolean functions
reduced ordered BDDs (ROBDD) are canonical
canonicity - essential for verification

Construction of ROBDD
remove duplicate terminals
remove duplicate nodes (isomorphic subgraphs)
remove internal nodes with identical children
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BDD - Construction

Construction of a Reduced Ordered BDD

1 edge
0 edge

f = ac + bc

10 0 0 1 0 10

a

b

c

b

c c c

f
a  b  c    f

0  0  0   0
0  0  1   0
0  1  0   0
0  1  1   1
1  0  0   0
1  0  1   1
1  1  0   0
1  1  1   1

Truth table Decision tree
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BDD Construction – cont’d

10

a

b

c

b

c c c

f f

10

a

b

c

b

c

10

a

b

c

f = (a+b)c

2. Remove 
duplicate nodes

1. Remove 
duplicate terminals

3. Remove 
redundant nodes
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Application to Verification

Equivalence of combinational
circuits
Canonicity property of BDDs: 

if F and G are equivalent, their BDDs are 
identical (for the same ordering of variables)

10

a

b

c

10

a

b

c

G = ac +bcF = a’bc + abc +ab’c

≡
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Application to Verification, cont’d

Functional test generation
SAT, Boolean satisfiability
analysis
to test for H = 1 (0), find a path 
in the BDD to terminal 1 (0) 
the path, expressed in function 
variables, gives a satisfying 
solution (test vector)

ab

ab’c

H

0 1

a

b

c
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Logic Manipulation using BDDs

Useful operators
¬

1 00 1

F F’

– Complement ¬ F = F’
(switch the terminal nodes)

0 1

F(x,y)

x=b 0 1

F(y)
Restrict

– Restrict:   F|x=b =
F(x=b) where b = const
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Useful BDD Operators - cont’d

Apply: F    G
where       stands for any Boolean operator (AND, OR, XOR, →)

=•

F G

0 1 0 1
0 1

F G•

•

•

Any logic operation can be expressed using 
only Restrict and Apply
Efficient algorithms, work directly on BDDs
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Finite State Machines (FSM)

• FSM  M(X,S, δ, λ,O)

– Inputs: X
– Outputs: O
– States: S
– Next state function,   δ(s,x) : S × X → S
– Output function,  λ(s,x) : S × X → O

OOXX

R

δ(s,x)
λ(s,x)

s s’
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FSM Traversal
State Transition Graphs 

directed graphs with labeled nodes and arcs 
(transitions)
symbolic state traversal methods

important for symbolic verification, state reachability
analysis, FSM traversal, etc.

0/0

0/1

1/0

s0 s1

0/1s2

1/0
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Existential Quantification
Existential quantification (abstraction)

∃x f = f |x=0 + f |x=1

Example: 
∃x (x y + z) = y + z

Note: ∃x f  does not depend on x
(smoothing)
Useful in symbolic image computation (sets of 
states)
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Existential Quantification - cont’d

Function can be existentially quantified w.r.t. a 
vector:  X = x1x2…

∃X f =  ∃x1x2... f = ∃x1 ∃x2 ∃... f

Can be done efficiently directly on a BDD
Very useful in computing sets of states 

Image computation: next states
Pre-Image computation: previous states from a given set of 
initial states
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Image Computation

Computing set of next states from a given initial state 
(or set of states) 
Img( S,R ) = ∃u S(u) • R(u,v)

Img(v)

R(u,v)

S(u)

• FSM: when transitions are labeled with input predicates 
x, quantify w.r.to all inputs (primary inputs and state var)

Img( S,R ) = ∃x ∃u S(u) • R(x,u,v)
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Image Computation - example
Compute a set of next states from state s1
Encode the states: s1=00, s2=01, s3=10, s4=11

Write transition relations for the encoded states:
R = (ax’y’X’Y + a’x’y’XY’ + xy’XY + ….)

s1

s2

s3

s4
a

a’00

01

10
11

a xy XY
1 00 01
0 00 10
- 10 11
……….
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Example - cont’d
Compute Image from s1 under R

Img( s1,R )  = ∃a ∃xy s1(x,y) • R(a,x,y,X,Y)

= ∃a ∃xy (x’y’) • (ax’y’X’Y + a’x’y’XY’ + xy’XY + ….) 

= ∃axy (ax’y’X’Y + a’x’y’XY’ ) = (X’Y + XY’ )

=  {01, 10} = {s2,s3}

s1

s2

s3

s4
a

a’00

01

10
11

Result: a set of next 
states for all inputs 
s1 → {s2, s3}



ICS212 WQ05 (Dutt)   Verification and Validation 31

Pre-Image Computation

Computing a set of present states from a given 
next state (or set of states)

Pre-Img( S’,R) = ∃v R(u,v) )• S’(v)

S’(v)

R(u,v)

Pre-Img(u)

• Similar to Image computation, except that quantification is done
w.r.to next state variables

• The result: a set of states backward reachable from state set S’, 
expressed in present state variables u

• Useful in computing CTL formulas: AF, EF
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Part  IV

EQUIVALENCE CHECKING
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Equivalence Checking

Two circuits are functionally equivalent if 
they exhibit the same behavior

Combinational circuits 
for all possible input values

Sequential circuits 
for all possible 

states & input values

In OutCL

PoPoPIPI

CL

PsPs NsNs
R



ICS212 WQ05 (Dutt)   Verification and Validation 34

Combinational Equivalence Checking

Functional Approach
transform output functions of combinational 
circuits into a unique (canonical) representation
two circuits are equivalent if their representations 
are identical
efficient canonical representation: BDD

Structural 
identify structurally similar internal points
prove internal points (cut-points) equivalent
find implications
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Functional Equivalence

If BDD can be constructed for each circuit
represent each circuit as shared (multi-output) BDD

use the same variable ordering !

BDDs of both circuits must be identical

• If BDDs are too large
– cannot construct BDD, memory problem
– use partitioned BDD method

• decompose circuit into smaller pieces, each as BDD
• check equivalence of internal points
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Functional Decomposition

Decompose each function into functional blocks
represent each block as  a BDD (partitioned BDD 
method)
define cut-points (z)
verify equivalence of blocks at cut-points
starting at primary inputs

F

f2

f1

z

x y

G

g2

g1

z

x y
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Cut-Points Resolution Problem

If all pairs of cut-points (z1,z2) are equivalent
so are the two functions, F,G

If intermediate functions (f2,g2) are not equivalent
the functions (F,G) may still be equivalent 
this is called false negative

F

f2

f1

z

x y

G

g2

g1

z

x y

• Why do we have false negative ?
– functions are represented in terms of 

intermediate variables
– to prove/disprove equivalence must 

represent the functions in terms of 
primary inputs (BDD composition)
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Cut-Point Resolution – Theory

Let  f1(x)=g1(x) ∀x
if f2(z,y) ≡ g2(z,y),  ∀z,y then f2(f1(x),y) ≡ g2(f1(x),y)   ⇒ F ≡ G
if f2(z,y) ≠ g2(z,y),  ∀z,y ≠⇒ f2(f1(x),y) ≠ g2(f1(x),y)  ⇒ F ≠ G

F

f2

f1

z

x y

G

g2

g1

z

x y

• False negative
– two functions are equivalent, 

but the verification algorithm 
declares them as different.

We cannot say if F ≡ G  or not
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Cut-Point Resolution – cont’d

Procedure 2: create a BDD for F ⊕ G
perform satisfiability analysis (SAT) of the BDD

if BDD for F ⊕G = ∅,   problem is not satisfiable, false negative
BDD for F ⊕G ≠ ∅, problem is satisfiable, true negative 

Non-empty,   F ≠ G

∅,   F ≡ G (false negative)F ⊕G = 
=

⊕

F G

– the SAT solution, if exists, provides a test vector
(proof of non-equivalence) – as in ATPG
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Sequential Equivalence Checking

Represent each sequential circuit as an FSM
verify if two FSMs are equivalent

Approach 1: reduction to combinational circuit
unroll FSM over n time frames (flatten the design)

M(t1)

x(1)

s(1)

M(t2)

x(2)

s(2)
…… M(tn)

x(n)

s(n)

Combinational logic: F(x(1,2, …n), s(1,2, … n))

– check equivalence of the resulting combinational circuits
– problem: the resulting circuit can be too large too handle
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Sequential Verification

Approach 2: based on isomorphism of state 
transition graphs

two machines M1, M2 are equivalent if their state transition 
graphs (STGs) are isomorphic
perform state minimization of each machine
check if STG(M1) and STG(M2) are isomorphic

≡

1/0

0 1.2
0/0

1/1

0/1

M1min

1/0

0 1
0/0

1/1

0/1

M2

0/0 0/1

1/0

0 1

0/12

1/0

M1

1/1 State min.
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Sequential Verification

Approach 3: symbolic FSM traversal of the 
product machine

M1 M2
S1 S2

O2O1

X

O(M)• Given two FSMs: M1(X,S1, δ1, λ1,O1),   
M2(X,S2, δ2, λ2,O2)

• Create a product FSM: M = M1× M2
– traverse the states of M and check its 

output for each transition
– the output O(M) =1, if outputs O1= O2

– if all outputs of M are 1, M1 and M2 are 
equivalent

– otherwise, an error state is reached
– error trace is produced to show: M1 ≠ M2
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Product Machine - Construction
Define  the product machine M(X,S, δ, λ,O)

states, S = S1 × S2

next state function,   δ(s,x) : (S1 × S2) × X → (S1 × S2)
output function,  λ(s,x) : (S1 × S2) × X → {0,1}

M1 M2

δ1 δ2
λ2λ1

X

• Error trace (distinguishing sequence) 
that leads to an error state
- sequence of inputs which produces 1 

at the output of M 
- produces a state in M for which M1 

and M2 give different outputs

λ(s,x) = λ1(s1,x)      λ2(s2,x) ⊕ O ={1  if O1=O2
0 otherwise 
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FSM Traversal - Algorithm
Traverse the product machine M(X,S,δ, λ,O)

start at an initial state S0

iteratively compute symbolic image Img(S0,R) (set of next 
states):

Img( S0,R ) = ∃x ∃s S0(s) • R(x,s,t)
R = ∏i Ri = ∏i (ti ≡ δi(s,x))

until an error state is reached
transition relation Ri for each next state variable ti can be 
computed as ti = (t ⊗ δ(s,x))

(this is an alternative way to compute transition relation, 
when design is specified at gate level)
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Construction of the Product FSM

For each pair of states, s1∈ M1, s2∈ M2
create a combined state s = (s1. s2) of M
create  transitions out of this state to other states of M
label the transitions (input/output) accordingly 

1/0

0 1
0/0

1/1

0/1M1 M2

1/1

2

0 1
0/0

0/0

0/1
1/1 1/0

1.1

0/1
1⊗1

1/1
0.2

0⊗0
Output = { 1 OK

0 error
M1

1/0

0

0/1

1

M2 2

0/1
1/0

1
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FSM Traversal in Action

1/0

0 1
0/0

1/1

0/1

M1 M2

2

0 1
0/0

0/0

0/1

1/1

1/1 1/0

1.1
0/1

1/1

0/1
0.2

1/1
1.0 0/01/0

0/0 1.2

1/0

0.1

1/0

0/0Out(M)
State reached x=0  x=1

Error state

0.0
0/1 1/1M

Initiall states: s1=0, s2=0,  s=(0.0)

• New 0 = (0.0)    1   1
• New 1 = (1.1)    1   1

• New 2 = (0.2)    1   1
• New 3 = (1.0)    0   0

STOP - backtrack to initial state to get error trace: 
x={1,1,1,0}
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Part  IV

MODEL CHECKING
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Model Checking

Algorithmic method of verifying correctness of (finite 
state) concurrent systems against temporal logic 
specifications

A practical approach to formal verification

Basic idea
System is described in a formal model

derived from high level design (HDL, C), circuit 
structure, etc. 

The desired behavior is expressed as a set of 
properties

expressed as temporal logic specification
The specification is checked against the model
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Model Checking
How does it work?

System is modeled as a state transition structure (Kripke
structure)

Specification is  expressed in propositional temporal logic
(CTL formula)

asserts how system behavior evolves over time

Efficient search procedure checks the transition system to 
see if it satisifes the specification
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Model Checking

Characteristics
searches the entire solution space
always terminates with YES or NO
relatively easy, can be done by experienced designers
widely used in industry
can be automated

Challenges
state space explosion – use symbolic methods, BDDs

History
Clark, Emerson [1981] USA
Quielle, Sifakis [1980’s] France
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Model Checking - Tasks
Modeling

converts a design into a formalism: state transition system

Specification
state the properties that the design must satisfy
use logical formalism: temporal logic

asserts how system behavior evolves over time

Verification
automated procedure (algorithm)
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Model Checking - Issues
Completeness

model checking is effective for a given property
impossible to guarantee that the specification covers all 
properties the system should satisfy
writing the specification - responsibility of the user

Negative results
incorrect model
incorrect specification (false negative)
failure to complete the check (too large)
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Model Checking - Basics

State transition structure 
M(S,R,L) (Kripke structure)
S = finite set of states {s1, s2, … sn}
R = transition relation
L = set of labels assigned to states, so that
L(s) = f if state s has property f

All properties are composed of 
atomic propositions (basic 
properties), e.g. the light is green, 
the door is open, etc.

L(s) is a subset of all atomic propositions 
true in state s

Label (property)

s3

s1

s2

a

b ac
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Temporal Logic

Formalism describing sequences of transitions
Time is not mentioned explicitly
The temporal operators used to express temporal 
properties

eventually 
never
always 

Temporal logic formulas are evaluated w.r.to a 
state in the model
Temporal operators can be combined with 
Boolean expressions
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Computation Trees

a

b

a ac

ac

ac

ac

s1

s3

s1

s2

a

b ac

State transition structure
(Kripke Model)

Infinite computation tree 
for initial state s1
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CTL – Computation Tree Logic

Path quantifiers - describe branching structure of 
the tree

A   (for all computation paths)
E   (for some computation path = there exists a path)

Temporal operators - describe properties of a path 
through the tree

X  (next time, next state)
F  (eventually, finally)
G  (always, globally)
U  (until)
R  (release, dual of U)
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CTL Formulas
Temporal logic formulas are evaluated 
w.r.to a state in the model

State formulas
apply to a specific state

Path formulas
apply to all states along a specific path
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Basic CTL Formulas
E X (f) 

true in state s if  f is true in some successor of s (there 
exists a next state of s for which f  holds)

A X (f)
true in state s if  f is true for all successors of s (for all next
states of s  f  is true)

E G (f)
true in s if  f holds in every state along some path 
emanating from  s (there exists a path ….)

A G (f)
true in s if  f holds in every state along all paths emanating 
from s (for all paths ….globally )
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Basic CTL Formulas - cont ’d

E F (g)
there exists a path which eventually contains a state 
in which g is true

A F (g)
for all paths, eventually there is state in which g holds

E F, A F are special case of E [f U g], A [f U g]
E F (g) = E [ true U g ],   A F (g) = A [ true U g ]

f U g  (f  until g)
true if there is a state in the path where g holds, and 
at every previous state  f holds
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CTL Operators - examples

so |= E F g

g

so so

g

g
g

so |= A F g

so |= E G g

gso

g

g

so |= A G g

so

g

g
g

g

gg
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Basic CTL Formulas - cont ’d

Full set of operators 
Boolean: ¬, ∧, ∨, ⊕, →
temporal: E, A, X, F, G, U, R

Minimal set sufficient to express any CTL formula
Boolean: ¬, ∨
temporal: E, X, U

Examples:
f ∧ g = ¬(¬f ∨ ¬g),     F f = true U f ,     A (f ) = ¬E(¬f )
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Typical CTL Formulas

E F ( start ∧ ¬ ready )
eventually a state is reached where start
holds and ready does not hold

A G ( req → A F ack )
any time request occurs, it will be eventually 
acknowledged 

A G ( E F restart )
from any state it is possible to get to the 
restart state
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Model Checking – Explicit 
Algorithm

Problem: given a structure M(S,R,L) and a 
temporal logic formula f, find a set of states

that satisfy f
{s ∈ S: M,s |= f }

Explicit algorithm: label each state s with the set label(s)
of sub-formulas of f which are true in s.

1. i = 0;  label(s) = L(s)

2. i = i + 1; Process formulas with (i -1) nested CTL operators. 
Add the  processed formulas to the labeling of each state in 
which it is true.

3. Continue until closure.    Result: M,s |= f iff f ∈ label (s)
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Explicit Algorithm - cont’d

To check for arbitrary CTL formula f
successively apply the state labeling algorithm to the 
sub-formulas
start with the shortest, most deeply nested
work outwards

Example: E F ¬ (g ∧ h )

T1 = states in which g and h are true

T2 = complement of T1

T3 = predecessor states to T2
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Model Checking Example
Traffic light controller 
(simplified)

R1 G2

Y1 R2

G1 R2

R1 Y2

C ’+ T ’

C T

C T ’

C ’+ T

C = car sensor
T = timer

G1 R2

Y1 R2

R1 G2

G1 R2

G1 R2

Y1 R2

Y1 R2

R1 G2 R1 Y2 R1 G2

G1 R2R1 Y2 R1 G2

R1 Y2

G2
Y2
R2

G1
Y1
R1

C

C

Timer

T

sensor

Road 2

R
oa

d 
1
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Traffic light controller - Model 
Checking

Model Checking task: check 
safety condition
fairness conditions

Safety condition: no green 
lights on both roads at the 
same time

A G ¬ (G1 ∧ G2 )

Fairness condition: eventually 
one road has green light

E F (G1 ∨ G2)

R1 G2

Y1 R2

G1 R2

R1 Y2

C ’+T ’

C T

C T ’

C ’+T
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Checking the Safety Condition

A G ¬ (G1 ∧ G2) = ¬ E F (G1∧G2)

S(G1 ∧ G2 ) = S(G1) ∩ S(G2) = 
{1}∩{3} = ∅
S(EF (G1 ∧ G2 )) = ∅
S(¬ EF (G1 ∧ G2 )) = ¬∅

= {1, 2, 3, 4}

2

R1 G2

Y1 R2

G1 R2

R1 Y2

1

3

4

Each state is included in {1,2,3,4} ⇒
the safety condition is true (for each state)
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Checking the Fairness 
Condition

E F (G1 ∨ G2 ) = E(true U (G1 ∨ G2 ) )
• S(G1 ∨ G2 ) = S(G1)∪S(G2) = {1} ∪{3} = {1,3}
• S(EF (G1 ∨ G2 )) = {1,2,3,4} 

(going backward from {1,3}, find predecessors)

23 11 34

Since {1,2,3,4} contains all states, the condition is 
true for all the states
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Another Check

R1 G2

Y1 R2

G1 R2

R1 Y2

1

3

4

2

E X2 (Y1) = E X (E X (Y1))
(starting at S1=G1R2, is
there a path s.t. Y1 is true in 2 

steps ?)

S (Y1) = {2}
S (EX (Y1)) = {1} 

(predecessor of 2)
S (EX (EX(Y1)) = {1,4} 

(predecessors of 1)

Property E X2 (Y1) is true for states {1,4}, hence true



ICS212 WQ05 (Dutt)   Verification and Validation 70

Symbolic Model Checking

Symbolic
operates on entire sets rather than individual states

Uses BDD for efficient representation

represent Kripke structure 
manipulate Boolean formulas

RESTRICT and APPLY logic operators 

Quantification operators
Existential: ∃ x f = f |x=0 + f |x=1 (smoothing)
Universal: ∀x f = f |x=0 • f |x=1 (consensus)
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Symbolic Model Checking - example
Traffic Light Controller

Encode the atomic propositions (G1,R1,Y1, G2,Y2,R2): 
use [a b c d] for present state, [v x y z] for next state 

R1 G2

Y1 R2

G1 R2

R1 Y2

s1

s3

s4

s2
11 10

10 01

01 10
10 11

a b c d

G1  1 1 - -
Y1  0 1 - -
R1  1 0 - -
G2   - - 1 1
Y2   - - 0 1
R2  - - 1 0
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Example - cont’d

Represent the set of states as Boolean formula 
Q: Q = abcd’ + a’bcd’ + ab’cd + ab’c’d

R1 G2

Y1 R2

G1 R2

R1 Y2

s1

s3

s4

s2
11 10

10 01

01 10
10 11

• Store Q in a BDD
(It will be used to perform logic 
operations, such as S(G1) ∨ S(G2)
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Example - cont’d

Write a characteristic function R for the 
transition relation R =abcd’vxyz’ + 
abcd’v’xyz’ + … + ab’c’dvxyz’
(6 terms)

R1 G2

Y1 R2

G1 R2

R1 Y2

s1

s3

s4

s2
11 10

10 01

01 10
10 11

abcd vxyz

1110 1110     1
1110 0110     1
0110 1011     1
1011 1011     1
1011 1001     1
1001 1110     1

R

Store R in a BDD. It will be 
used for Pre-Image
computation for EF. 
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Example - Fairness Condition

Check fairness condition: E F (G1 ∨ G2 )

Step 1: compute S(G1), S(G2) using RESTRICT
operator

S(G1):  ab·Restrict Q(G1) = ab Q|ab = abcd’ = {s1}
S(G2):  cd·Restrict Q(G2) = cd Q|cd = ab’cd = {s3}

Step 2: compute S(G1) ∨ S(G2 ) using APPLY
operator

Construct BDD for (abcd’ + ab’cd) = {s1, s3}, set of states 
labeled with G1 or G2
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Example – cont’d

∃s’ {s1’,s3’} • R(s,s’) ) =

= ∃vxyz(vxyz’ + vx’yz) • R(a,b,c,d;v,x,y,z)

= ∃vxyz(abcd’vxyz’ + a’bcdvx’yz + ab’cdvx’yz + ab’c’dvxyz’)
= (abcd’ + a’bcd + ab’cd + ab’c’d) = {s1, s2, s3, s4}

Compare to the result of explicit algoritm √

• Step 3: compute S(EF (G1 ∨ G2 )) using Pre-Image 
computation (quanitfy w.r.to next state variables)

• Recall: R = abcd’vxyz’ + abcd’v’xyz’+ … + ab’c’dvxyz’
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Example – Interpretation

Pre-Img(s1’,s3’,R) eliminates those 
transitions which do not reach {s1,s3}

R1 G2

Y1 R2

G1 R2

R1 Y2

s1

s3

s4

s2
11 10

10 01

01 10
10 11

abcd vxyz

1110 1110     1
1110 0110     1
0110 1011     1
1011 1011     1
1011 1001     1
1001 1110     1

R

X

X

Quantification w.r.to next state
variables (v,x,y,z) gives the encoded 
present states {s1,s2,s3,s4}
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Overview – Functional Validation

Simulation-based & Formal methods
Functional test generation
SAT-based methods, Boolean verification

Boolean satisfiability
RTL verification

Arithmetic/Boolean satisfiability
ATPG-based methods

Emulation-based methods
Hardware-assisted  simulation
System prototyping
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