Verification and Validation of Embedded Systems

Nikil Dutt

UC Irvine
ICS 212 Winter 2005

+ Material adapted from Sandeep Shukla Templates from Prabhat Mishra

Acknowledgements

- Maciej Ciesielski (Umass, Amherst)
- Kenneth McMillan (Cadence Berkeley Labs)

Overview

Introduction

- ♦ What is verification/validation
- ♦ Why do we need it
- ◆ Formal vs. simulation-based methods

Math background

- ◆ BDD's
- Symbolic FSM traversal

Why Verification/Validation?

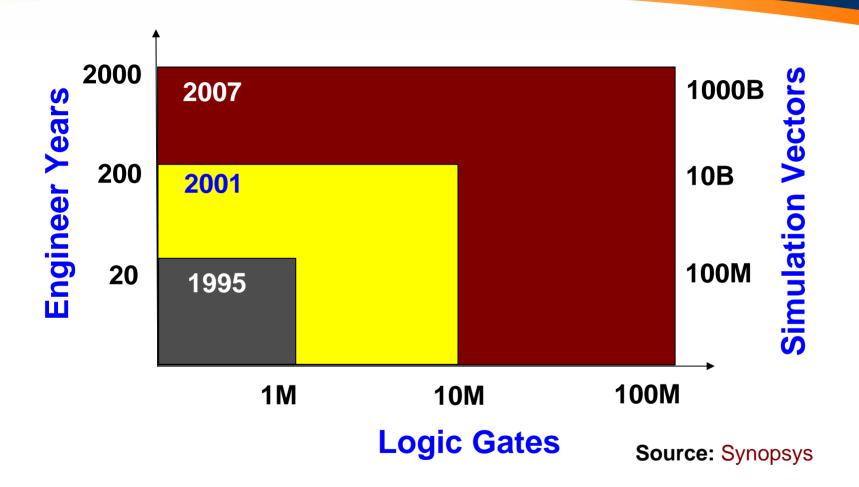
Design complexity crisis

- system complexity, difficult to manage
- more time, effort devoted to verification than to design
- need automated verification methods, integration

Examples of undetected errors

- Ariane 5 rocket explosion, 1996 (exception occurred when converting 64-bit floating number to a 16-bit integer)
- Pentium bug (multiplier table not fully verified)
- many more

Functional Verification of SOC Designs

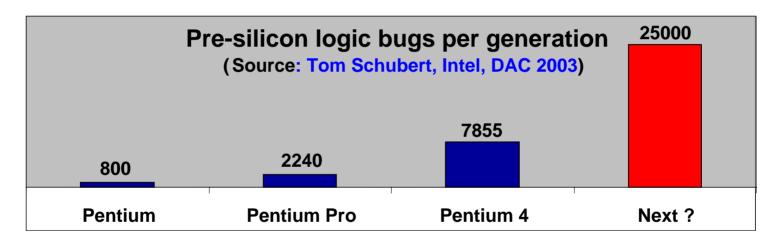


71% of SOC re-spins are due to logic bugs

Source: G. Spirakis, keynote address at DATE 2004

Functional Validation of Microprocessors

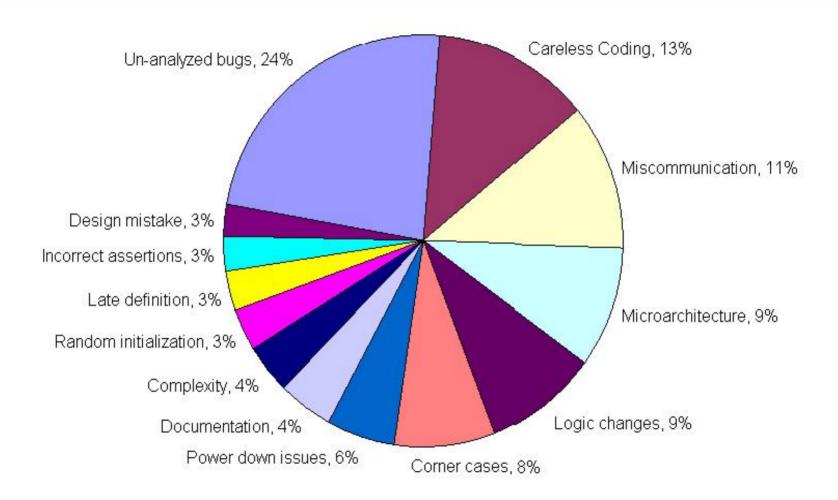
- Functional validation is a major bottleneck
 - ◆ Deeply pipelined complex microarchitectures



- Logic bugs increase at 3-4 times/generation
 - Bugs increase (exponential) is linear with design complexity growth.

Pentium 4 Bugs Breakdown

Source: Bob Bentley, HLDVT 2002



Micro-architectural complexity is a major contributor

- Simulation performed on the model
- Deductive verification
- Model checking
- Equivalence checking
- Testing performed on the actual product (manufacturing test)
- Emulation, prototyping

- Simulation performed on the model
- Deductive verification
- Model checking

Validation

- Equivalence checking
- Testing performed on the actual product (manufacturing test)
- Emulation, prototyping

- Simulation performed on the model
- Deductive verification
- Model checking
- Equivalence checking
- Testing performed on the actual product (manufacturing test)
- Emulation, prototyping

Formal Verification

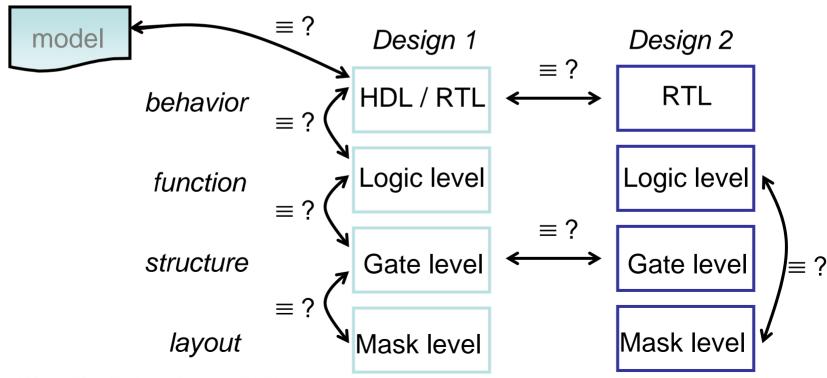
- Simulation performed on the model
- Deductive verification Physical level
- Model checking
- Equivalence checking
- Testing performed on the actual product (manufacturing test)
- Emulation, prototyping

Why Formal Verification

- Need for reliable system (sw & hw) validation
- Simulation, test cannot handle all possible cases
- Formal verification conducts exhaustive exploration of all possible behaviors
 - compare to simulation, which explores some of possible behaviors
 - ♦ if correct, all behaviors are verified
 - ◆ if incorrect, a counter-example (proof) is presented
- Examples of successful use of formal verification
 - SMV system [McMillan 1993]
 - verification of cache coherence protocol in IEEE Futurebus+ standard

Verification

- Design verification = ensuring correctness of the design
- Typically compare against
 - A reference model
 - an implementation (at different levels)
 - An alternative design (at the same level)



Overview – Formal Methods

Theorem proving

Deductive reasoning

Model checking

- Problem statement
- ◆ Explicit algorithms (on graphs)
- Symbolic algorithms (using BDDs)

Equivalence checking

- Combinational circuits
- Sequential circuits

Formal Verification

Deductive reasoning (theorem proving)

- uses axioms, rules to prove system correctness
- no guarantee that it will terminate
- difficult, time consuming: for critical applications

Model checking

•automatic technique to prove correctness of concurrent systems: digital circuits, communication protocols, etc.

Equivalence checking

check if two circuits are equivalent

BACKGROUND

BDDs, FSM traversal

Binary Decision Diagrams

Binary Decision Diagram (BDD)

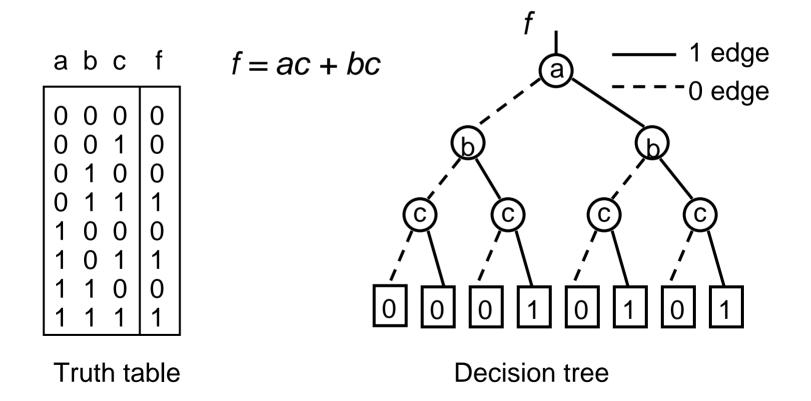
- compact data structure for Boolean logic
- can represent sets of objects (states) encoded as Boolean functions
- reduced ordered BDDs (ROBDD) are canonical
- canonicity essential for verification

Construction of ROBDD

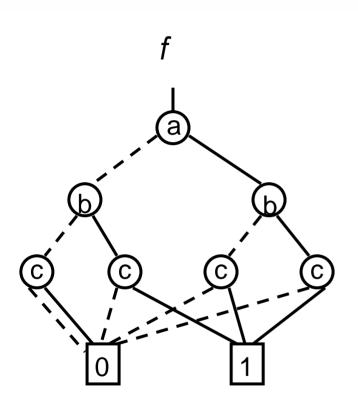
- remove duplicate terminals
- remove duplicate nodes (isomorphic subgraphs)
- remove internal nodes with identical children

BDD - Construction

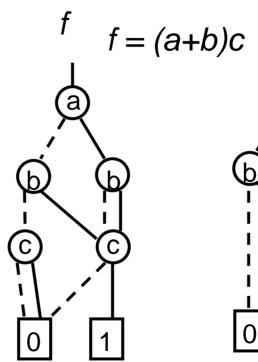
Construction of a Reduced Ordered BDD



BDD Construction – cont'd



1. Remove duplicate terminals



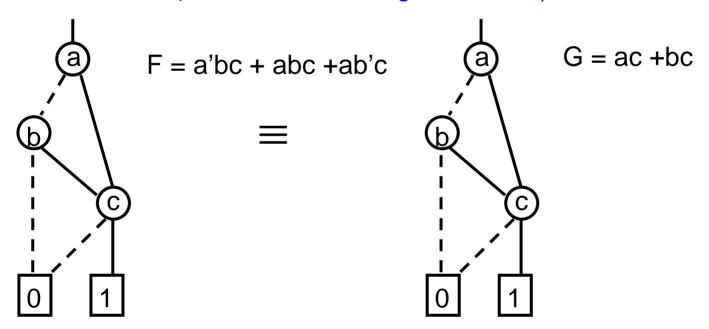
2. Remove duplicate nodes

(a) (b) (c) (d) (d)

3. Remove redundant nodes

Application to Verification

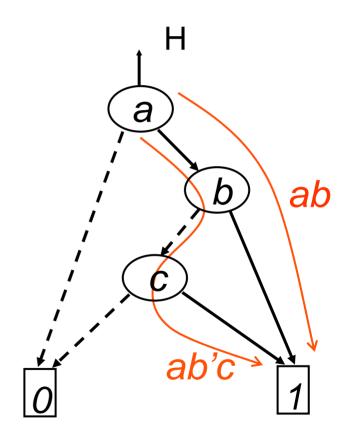
- Equivalence of combinational circuits
- Canonicity property of BDDs:
 - if F and G are equivalent, their BDDs are identical (for the same ordering of variables)



Application to Verification, cont'd

Functional test generation

- ◆ SAT, Boolean *satisfiability* analysis
- ◆ to test for H = 1 (0), find a path in the BDD to terminal 1 (0)
- the path, expressed in function variables, gives a satisfying solution (test vector)

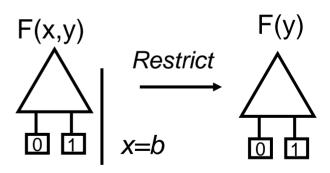


Logic Manipulation using BDDs

Useful operators

Complement ¬ F = F'(switch the terminal nodes)

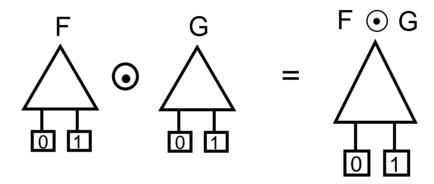
- Restrict:
$$F|_{x=b}$$
 = $F(x=b)$ where $b = \text{const}$



Useful BDD Operators - cont'd

Apply: F ⊙ G

where \odot stands for any Boolean operator (AND, OR, XOR, \rightarrow)



- Any logic operation can be expressed using only Restrict and Apply
- Efficient algorithms, work directly on BDDs

Finite State Machines (FSM)

• FSM M(X,S, δ, λ,O)

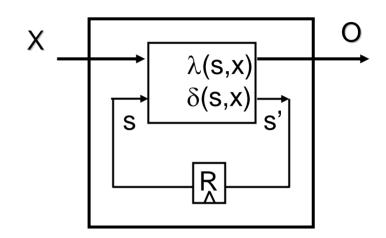
– Inputs: X

– Outputs: O

– States: S

- Next state function, $\delta(s,x): S \times X \rightarrow S$

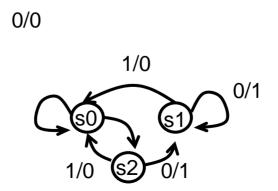
- Output function, $\lambda(s,x): S \times X \rightarrow O$



FSM Traversal

State Transition Graphs

- directed graphs with labeled nodes and arcs (transitions)
- symbolic state traversal methods
 - □ important for symbolic verification, state reachability analysis, FSM traversal, etc.



Existential Quantification

Existential quantification (abstraction)

$$\exists_{x} f = f \big|_{x=0} + f \big|_{x=1}$$

Example:

$$\exists_x (x y + z) = y + z$$

- Note: ∃_x f does not depend on x (smoothing)
- Useful in symbolic image computation (sets of states)

Existential Quantification - cont'd

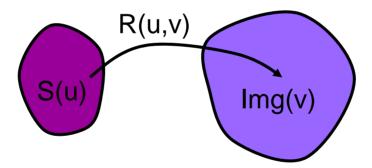
• Function can be existentially quantified w.r.t. a vector: $X = x_1x_2...$

$$\exists_{\mathsf{X}} f = \exists_{\mathsf{x}1\mathsf{x}2...} f = \exists_{\mathsf{x}1} \exists_{\mathsf{x}2} \exists_{...} f$$

- Can be done efficiently directly on a BDD
- Very useful in computing sets of states
 - ◆ Image computation: next states
 - ◆ Pre-Image computation: *previous* states from a given *set* of initial states

Image Computation

- Computing set of next states from a given initial state (or set of states)
- Img(S,R) = \exists_u S(u) R(u,v)



FSM: when transitions are labeled with input predicates
 x, quantify w.r.to all inputs (primary inputs and state var)

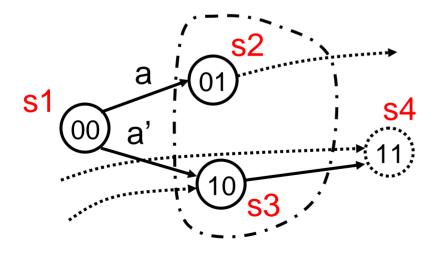
Img(S,R) =
$$\exists_{\mathbf{x}} \exists_{\mathbf{u}} S(\mathbf{u}) \bullet R(\mathbf{x},\mathbf{u},\mathbf{v})$$

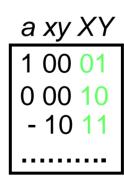
Image Computation - example

Compute a set of next states from state s1

- Encode the states: s1=00, s2=01, s3=10, s4=11
- Write transition relations for the encoded states:

$$R = (ax'y'X'Y + a'x'y'XY' + xy'XY +)$$





Example - cont'd

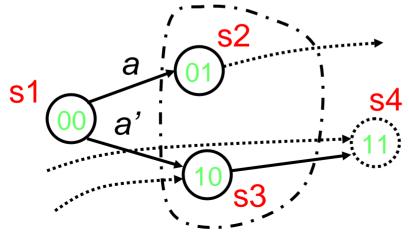
Compute Image from s1 under R

Img(s1,R) =
$$\exists_a \exists_{xy} s1(x,y) \cdot R(a,x,y,X,Y)$$

$$= \exists_{a} \exists_{xy} (x'y') \bullet (ax'y'X'Y + a'x'y'XY' + xy'XY +)$$

$$= \exists_{axy} (ax'y'X'Y + a'x'y'XY') = (X'Y + XY')$$

$$= \{01, 10\} = \{\$2,\$3\}$$

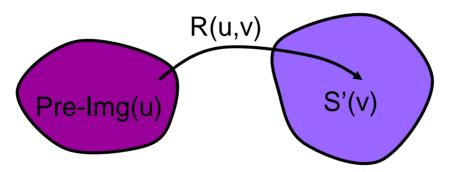


Result: a set of next states for *all* inputs $s1 \rightarrow \{s2, s3\}$

Pre-Image Computation

 Computing a set of present states from a given next state (or set of states)

Pre-Img(S',R) =
$$\exists_v$$
 R(u,v))• S'(v)



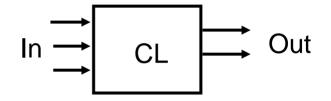
- Similar to Image computation, except that quantification is done w.r.to next state variables
- The result: a set of states backward reachable from state set S', expressed in present state variables u
- Useful in computing CTL formulas: AF, EF

EQUIVALENCE CHECKING

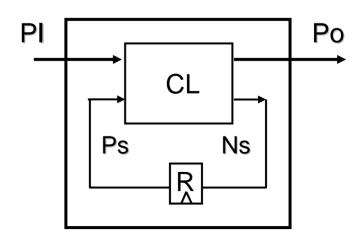
Equivalence Checking

 Two circuits are functionally equivalent if they exhibit the same behavior

- Combinational circuits
 - for all possible input values



- Sequential circuits
 - for all possible
 - □ states & input values



Combinational Equivalence Checking

Functional Approach

- transform output functions of combinational circuits into a unique (canonical) representation
- two circuits are equivalent if their representations are identical
- efficient canonical representation: BDD

Structural

- ◆ identify structurally similar internal points
- prove internal points (cut-points) equivalent
- find implications

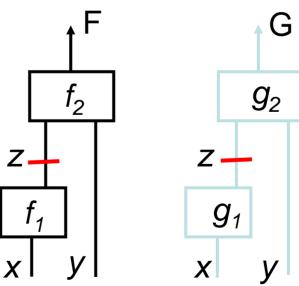
Functional Equivalence

- If BDD can be constructed for each circuit
 - ◆ represent each circuit as shared (multi-output) BDD
 □ use the same variable ordering!
 - BDDs of both circuits must be identical

- If BDDs are too large
 - cannot construct BDD, memory problem
 - use partitioned BDD method
 - decompose circuit into smaller pieces, each as BDD
 - check equivalence of internal points

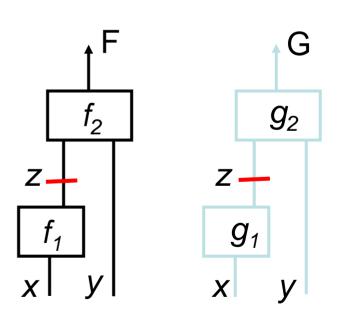
Functional Decomposition

- Decompose each function into functional blocks
 - represent each block as a BDD (partitioned BDD method)
 - ◆ define cut-points (z)
 - verify equivalence of blocks at cut-points starting at primary inputs



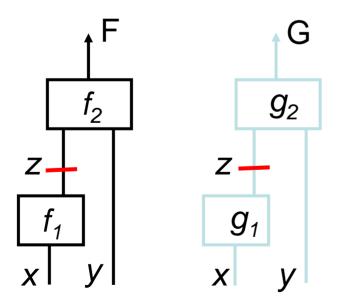
Cut-Points Resolution Problem

- If all pairs of cut-points (z_1, z_2) are equivalent
 - so are the two functions, F,G
- If *intermediate* functions (f_2, g_2) are not equivalent
 - ♦ the functions (F,G) may still be equivalent
 - ◆ this is called false negative
- Why do we have false negative?
 - functions are represented in terms of intermediate variables
 - to prove/disprove equivalence must represent the functions in terms of primary inputs (BDD composition)



Cut-Point Resolution – Theory

- Let $f_1(x)=g_1(x) \forall x$
 - lacklash if $f_2(z,y) \equiv g_2(z,y), \ \forall z,y$ then $f_2(f_1(x),y) \equiv g_2(f_1(x),y) \Rightarrow F \equiv G$
 - lacklet if $f_2(z,y) \neq g_2(z,y), \ \forall z,y \ \neq \Rightarrow \ f_2(f_1(x),y) \neq g_2(f_1(x),y) \not \Rightarrow \mathsf{F} \neq \mathsf{G}$



We *cannot* say if $F \equiv G$ or not

- False negative
 - two functions are equivalent,
 but the verification algorithm
 declares them as different.

Cut-Point Resolution – cont'd

Procedure 2: create a BDD for F ⊕ G

- perform satisfiability analysis (SAT) of the BDD
 - \square if BDD for $F \oplus G = \emptyset$, problem is *not* satisfiable, *false* negative
 - \square BDD for $F \oplus G \neq \emptyset$, problem is satisfiable, *true* negative

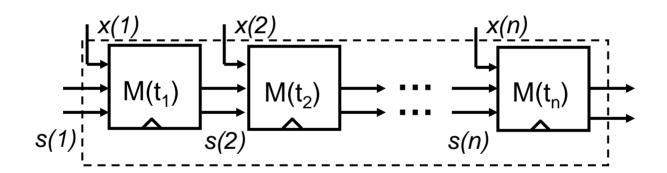
$$F = G \text{ (false negative)}$$

$$O(G) = O(G)$$

 the SAT solution, if exists, provides a test vector (proof of non-equivalence) – as in ATPG

Sequential Equivalence Checking

- Represent each sequential circuit as an FSM
 - verify if two FSMs are equivalent
- Approach 1: reduction to combinational circuit
 - unroll FSM over n time frames (flatten the design)

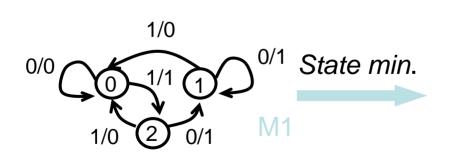


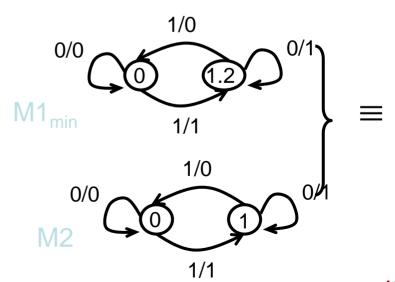
Combinational logic: F(x(1,2,...n), s(1,2,...n))

- check equivalence of the resulting combinational circuits
- problem: the resulting circuit can be too large too handle

Sequential Verification

- Approach 2: based on isomorphism of state transition graphs
 - two machines M1, M2 are equivalent if their state transition graphs (STGs) are isomorphic
 - perform state minimization of each machine
 - ◆ check if STG(M1) and STG(M2) are isomorphic

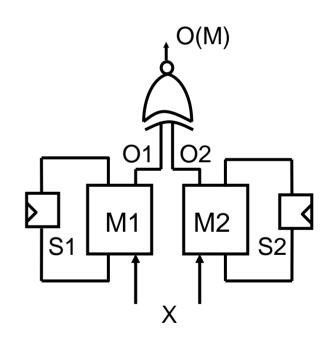




Sequential Verification

Approach 3: symbolic FSM traversal of the product machine

- Given two FSMs: $M_1(X,S_1, \delta_1, \lambda_1,O_1)$, $M_2(X,S_2, \delta_2, \lambda_2,O_2)$
- Create a product FSM: M = M₁× M₂
 - traverse the states of M and check its output for each transition
 - the output O(M) = 1, if outputs $O_1 = O_2$
 - if all outputs of M are 1, M₁ and M₂ are equivalent
 - otherwise, an error state is reached
 - error trace is produced to show: M₁ ≠ M₂



Product Machine - Construction

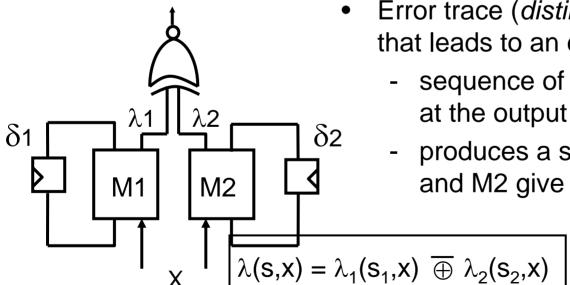
Define the product machine M(X,S, δ , λ ,O)

states,

$$S = S_1 \times S_2$$

- output function,
- lacktriangle next state function, $\delta(s,x): (S_1 \times S_2) \times X \rightarrow (S_1 \times S_2)$

$$\lambda(s,x): (S_1 \times S_2) \times X \rightarrow \{0,1\}$$



- Error trace (distinguishing sequence) that leads to an error state
 - sequence of inputs which produces 1 at the output of M
 - produces a state in M for which M1 and M2 give different outputs

$$O = \begin{cases} 1 & \text{if } O_1 = O_2 \\ 0 & \text{otherwise} \end{cases}$$

FSM Traversal - Algorithm

- Traverse the product machine M(X,S,δ, λ,O)
 - lacktriangle start at an initial state S_0
 - ◆ iteratively compute symbolic image Img(S₀,R) (set of next states):

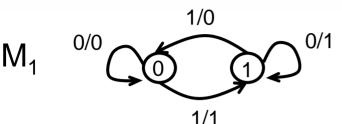
$$Img(S_0,R) = \exists_x \exists_s S_0(s) \bullet R(x,s,t)$$
$$R = \prod_i R_i = \prod_i (t_i \equiv \delta_i(s,x))$$

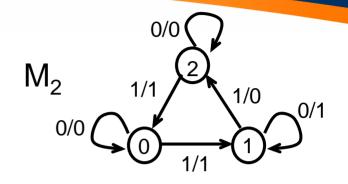
until an error state is reached

lacktriangle transition relation R_i for each next state variable t_i can be computed as $t_i = (t \otimes \delta(s,x))$

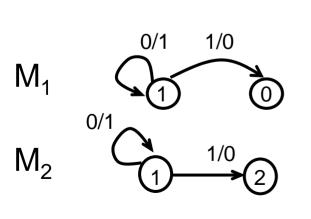
(this is an alternative way to compute transition relation, when design is specified at gate level)

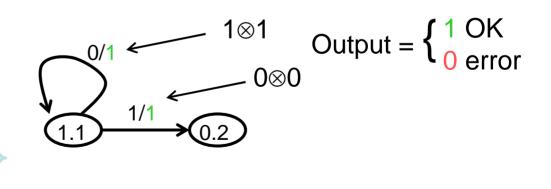
Construction of the Product FSM



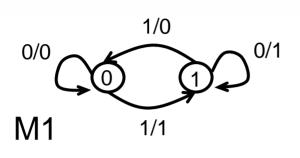


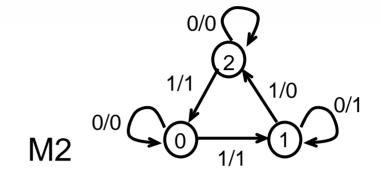
- For each pair of states, $s_1 \in M_1$, $s_2 \in M_2$
 - lacktriangle create a combined state $s = (s_1, s_2)$ of M
 - create transitions out of this state to other states of M
 - ◆ label the transitions (input/output) accordingly





FSM Traversal in Action

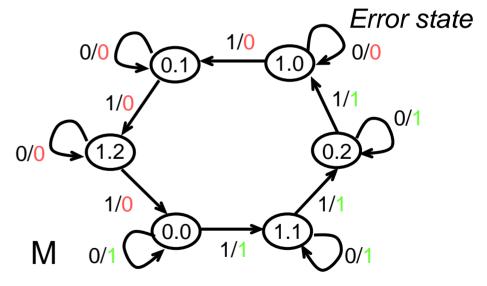




Initiall states: $s_1=0$, $s_2=0$, s=(0.0)

	<u>, </u>
	Out(M)
State reached	x=0 x=1

- $New^0 = (0.0)$ 1 1
- $New^1 = (1.1)$ 1 1
- $New^2 = (0.2)$ 1 1
- New $^3 = (1.0)$ 0



STOP - backtrack to initial state to get error trace:
 x={1,1,1,0}

MODEL CHECKING

Model Checking

- Algorithmic method of verifying correctness of (finite state) concurrent systems against temporal logic specifications
 - ◆ A practical approach to formal verification

Basic idea

- ◆ System is described in a formal model
 □ derived from high level design (HDL, C), circuit structure, etc.
- The desired behavior is expressed as a set of properties
 - expressed as temporal logic specification
- The specification is checked against the model

Model Checking

How does it work?

- System is modeled as a state transition structure (Kripke structure)
- Specification is expressed in propositional temporal logic (CTL formula)
 - □asserts how system behavior evolves over time
- ◆ Efficient search procedure checks the transition system to see if it satisifes the specification

Model Checking

Characteristics

- searches the entire solution space
- always terminates with YES or NO
- relatively easy, can be done by experienced designers
- widely used in industry
- can be automated

Challenges

state space explosion – use symbolic methods, BDDs

History

- ◆ Clark, Emerson [1981] USA
- Quielle, Sifakis [1980's] France

Model Checking - Tasks

Modeling

converts a design into a formalism: state transition system

Specification

- state the properties that the design must satisfy
- ◆ use logical formalism: temporal logic
 □ asserts how system behavior evolves over time

Verification

automated procedure (algorithm)

Model Checking - Issues

Completeness

- model checking is effective for a given property
- impossible to guarantee that the specification covers all properties the system should satisfy
- writing the specification responsibility of the user

Negative results

- incorrect model
- ◆ incorrect specification (false negative)
- failure to complete the check (too large)

Model Checking - Basics

State transition structure
 M(S,R,L) (Kripke structure)

```
S = finite set of states \{s_1, s_2, ... s_n\}

R = transition relation

L = set of labels assigned to states, so that

L(s) = f if state s has property f
```

- All properties are composed of atomic propositions (basic properties), e.g. the light is green, the door is open, etc.
 - L(s) is a subset of all atomic propositions true in state s

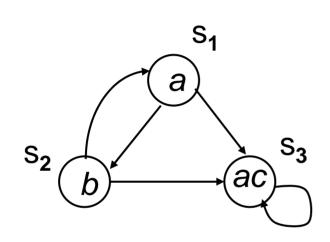


Label (property)

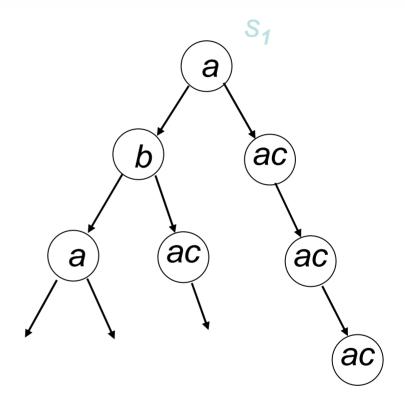
Temporal Logic

- Formalism describing sequences of transitions
- Time is not mentioned explicitly
- The temporal operators used to express temporal properties
 - eventually
 - never
 - ◆ always
- Temporal logic formulas are evaluated w.r.to a state in the model
- Temporal operators can be combined with Boolean expressions

Computation Trees



State transition structure (*Kripke Model*)



Infinite computation tree for initial state s₁

CTL – Computation Tree Logic

- Path quantifiers describe branching structure of the tree
 - ◆ A (for *all* computation paths)
 - ◆ E (for *some* computation path = there *exists* a path)
- Temporal operators describe properties of a path through the tree
 - ◆ X (next time, next state)
 - ◆ F (eventually, finally)
 - ◆ G (always, globally)
 - ♦ U (until)
 - ◆ R (release, dual of U)

CTL Formulas

 Temporal logic formulas are evaluated w.r.to a state in the model

- State formulas
 - apply to a specific state

- Path formulas
 - apply to all states along a specific path

Basic CTL Formulas

E X (f)

• true in state s if f is true in some successor of s (there exists a next state of s for which f holds)

A X (f)

◆ true in state s if f is true for all successors of s (for all next states of s f is true)

E G (f)

◆ true in s if f holds in every state along some path emanating from s (there exists a path)

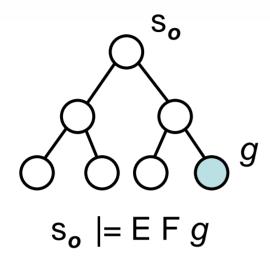
A G (f)

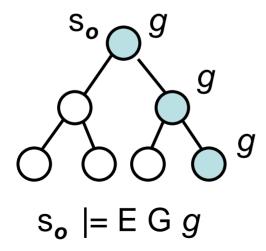
• true in s if f holds in every state along all paths emanating from s (for all pathsglobally)

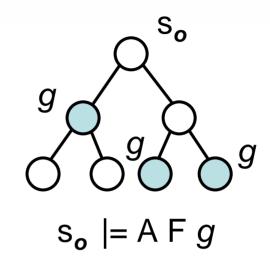
Basic CTL Formulas - cont 'd

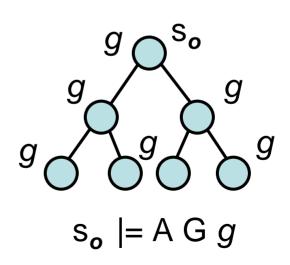
- E F (g)
 - there exists a path which eventually contains a state in which g is true
- A F (g)
 - ◆ for all paths, eventually there is state in which g holds
- E F, A F are special case of E [f U g], A [f U g]
 - ◆ E F (g) = E [true U g], A F (g) = A [true U g]
- f U g (f until g)
 - ◆ true if there is a state in the path where g holds, and at every previous state f holds

CTL Operators - examples









Basic CTL Formulas - cont 'd

Full set of operators

lacktriangle Boolean: \neg , \land , \lor , \oplus , \rightarrow

◆ temporal:
E, A, X, F, G, U, R

Minimal set sufficient to express any CTL formula

◆ Boolean: ¬, ∨

◆ temporal: E, X, U

Examples:

 $f \wedge g = \neg(\neg f \vee \neg g), \quad F f = true \cup f, \quad A(f) = \neg E(\neg f)$

Typical CTL Formulas

- E F (start ∧ ¬ ready)
 - eventually a state is reached where start holds and ready does not hold
- ullet A G ($req \rightarrow$ A F ack)
 - any time request occurs, it will be eventually acknowledged
- A G (E F restart)
 - from any state it is possible to get to the restart state

Model Checking – Explicit

 Problem: given a structure M(S,R,L) and a temporal logic formula f, find a set of states that satisfy f

$$\{s \in S: M, s \mid = f\}$$

- Explicit algorithm: label each state s with the set label(s)
 of sub-formulas of f which are true in s.
 - 1. i = 0; label(s) = L(s)
 - 2. i = i + 1; Process formulas with (i 1) nested CTL operators. Add the processed formulas to the labeling of each state in which it is true.
 - 3. Continue until closure. Result: M,s = f iff $f \in label$ (s)

Explicit Algorithm - cont'd

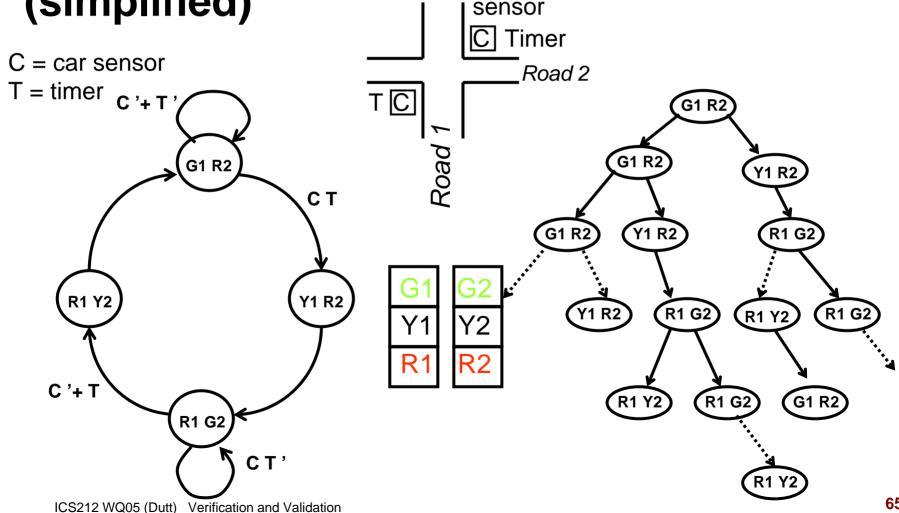
- To check for arbitrary CTL formula f
 - successively apply the state labeling algorithm to the sub-formulas
 - start with the shortest, most deeply nested
 - work outwards
- Example: E F ¬ (g ∧ h)

T1 = states in which
$$g$$
 and h are true
$$T2 = complement of T1$$

T3 = predecessor states to T2

Model Checking Example

Traffic light controller (simplified)



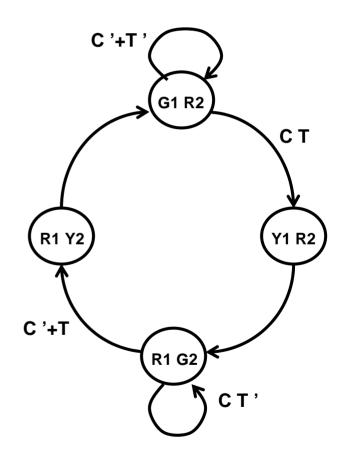
Traffic light controller - Model

- Model Checking task: check
 - safety condition
 - fairness conditions
- Safety condition: no green lights on both roads at the same time

$$AG \neg (G1 \wedge G2)$$

Fairness condition: eventually one road has green light

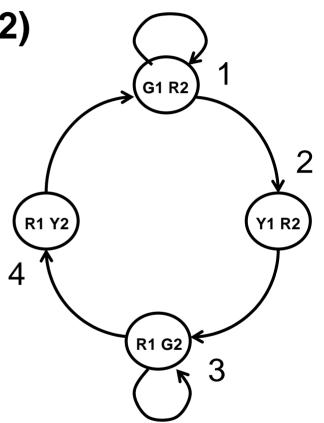
$$E F (G1 \vee G2)$$



Checking the Safety Condition

A G ¬ (G1 \wedge G2) = ¬ E F (G1 \wedge G2)

- S(G1 ∧ G2) = S(G1) \cap S(G2) = {1} \cap {3} = \emptyset
- S(EF (G1 ∧ G2)) = Ø
- S(¬ EF (G1 ∧ G2)) = ¬∅
 = {1, 2, 3, 4}

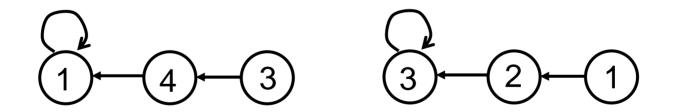


Each state is included in $\{1,2,3,4\} \Rightarrow$ the safety condition is true (for each state)

Checking the Fairness

$$E F (G1 \lor G2) = E(true U (G1 \lor G2))$$

- $S(G1 \lor G2) = S(G1) \cup S(G2) = \{1\} \cup \{3\} = \{1,3\}$
- S(EF (G1 v G2)) = {1,2,3,4}
 (going backward from {1,3}, find predecessors)



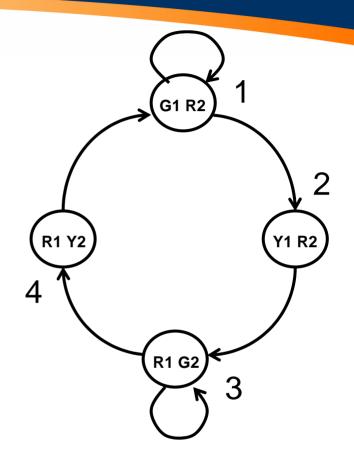
Since {1,2,3,4} contains all states, the condition is true for all the states

Another Check

$$E X^{2} (Y1) = E X (E X (Y1))$$

(starting at S₁=G1R2, is there a path s.t. Y1 is true in 2 steps ?)

- $S(Y1) = \{2\}$
- S (EX (Y1)) = {1} (predecessor of 2)
- S (EX (EX(Y1)) = {1,4} (predecessors of 1)



Symbolic Model Checking

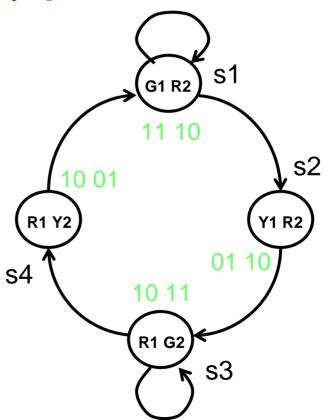
- Symbolic
 - operates on entire sets rather than individual states
- Uses BDD for efficient representation
 - represent Kripke structure
 - manipulate Boolean formulas
 - □ RESTRICT and APPLY logic operators
- Quantification operators
 - ♦ Existential: $\exists_x f = f|_{x=0} + f|_{x=1}$ (smoothing)
 - ♦ Universal: $\forall_x f = f|_{x=0} \bullet f|_{x=1}$ (consensus)

Symbolic Model Checking - example Traffic Light Controller

Encode the atomic propositions (G1,R1,Y1, G2,Y2,R2):

use [a b c d] for present state, [v x y z] for next state

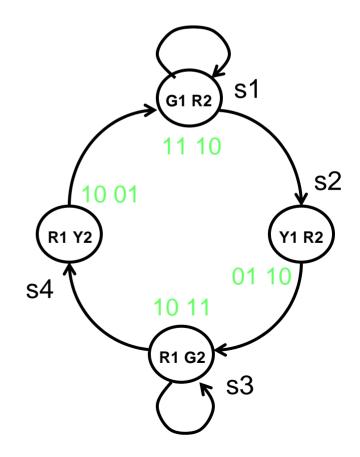




Example - cont'd

Represent the set of states as Boolean formula
 Q: Q = abcd' + a'bcd' + ab'cd + ab'c'd

Store Q in a BDD
 (It will be used to perform logic operations, such as S(G1) v S(G2)



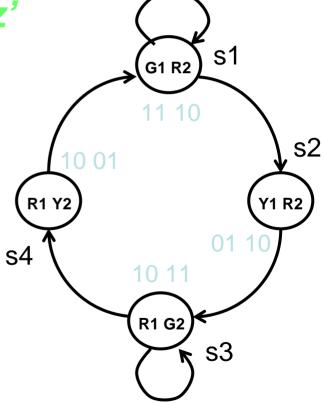
Example - cont'd

• Write a characteristic function R for the transition relation R =abcd'vxyz' + abcd'v'xyz' + ... + ab'c'dvxyz'

(6 terms)

abcd	vxyz	R
1110 1110 0110 1011 1011	1110 0110 1011 1011 1001	1 1 1 1 1
1001	1110	1

 Store R in a BDD. It will be used for Pre-Image computation for EF.



Example - Fairness Condition

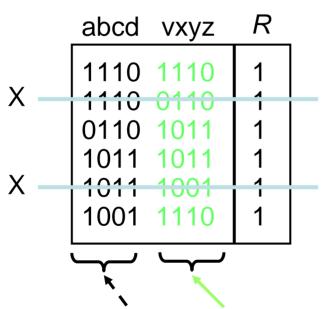
- Check fairness condition: E F (G1 v G2)
- Step 1: compute S(G1), S(G2) using RESTRICT operator
 - ♦ S(G1): ab-Restrict $Q(G1) = ab Q|_{ab} = abcd' = {s1}$
 - \bullet S(G2): cd-Restrict $Q(G2) = cd Q|_{cd} = ab'cd = \{s3\}$
- Step 2: compute S(G1) V S(G2) using APPLY operator
 - ◆ Construct BDD for (abcd' + ab'cd) = {s1, s3}, set of states labeled with G1 or G2

Example – cont'd

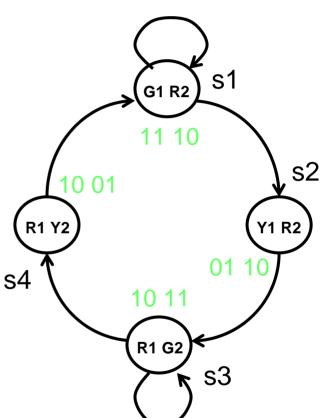
- Step 3: compute S(EF (G1 v G2)) using Pre-Image computation (quanitfy w.r.to next state variables)
- Recall: R = abcd'vxyz' + abcd'v'xyz' + ... + ab'c'dvxyz'
 - $\exists_{s'} \{s1',s3'\} \bullet R(s,s') \} =$ $= \exists_{vxyz} (vxyz' + vx'yz) \bullet R(a,b,c,d;v,x,y,z)$ $= \exists_{vxyz} (abcd'vxyz' + a'bcdvx'yz + ab'cdvx'yz + ab'c'dvxyz')$ $= (abcd' + a'bcd + ab'cd + ab'c'd) = \{s1, s2, s3, s4\}$
 - ullet Compare to the result of explicit algoritm $ec{}$

Example – Interpretation

 Pre-Img(s1',s3',R) eliminates those transitions which do not reach {s1,s3}



Quantification \(\omega_r\).r.to next state
 variables (v,x,y,z) gives the encoded present states {s1,s2,s3,s4}



Overview – Functional Validation

Simulation-based & Formal methods

- Functional test generation
- ◆ SAT-based methods, Boolean verification

 □Boolean satisfiability
- ◆ RTL verification□ Arithmetic/Boolean satisfiability
- ATPG-based methods

Emulation-based methods

- Hardware-assisted simulation
- System prototyping