
ICS212 WQ05 (Dutt) Verification and Validation 1

Verification and Validation of
Embedded Systems

Nikil Dutt
UC Irvine

ICS 212 Winter 2005

+ Material adapted from Sandeep Shukla
Templates from Prabhat Mishra

ICS212 WQ05 (Dutt) Verification and Validation 2

Acknowledgements
Maciej Ciesielski (Umass, Amherst)
Kenneth McMillan (Cadence Berkeley Labs)

ICS212 WQ05 (Dutt) Verification and Validation 3

Overview

Introduction
What is verification/validation
Why do we need it
Formal vs. simulation-based methods

Math background
BDD’s
Symbolic FSM traversal

ICS212 WQ05 (Dutt) Verification and Validation 4

Why Verification/Validation?
Design complexity crisis

system complexity, difficult to manage
more time, effort devoted to verification than to design
need automated verification methods, integration

Examples of undetected errors
Ariane 5 rocket explosion, 1996 (exception occurred when
converting 64-bit floating number to a 16-bit integer)
Pentium bug (multiplier table not fully verified)
many more ….

ICS212 WQ05 (Dutt) Verification and Validation 5

Functional Verification of SOC Designs

2000

Si
m

ul
at

io
n

Ve
ct

or
s1000B

1995

2001

2007

En
gi

ne
er

 Y
ea

rs

200 10B

100M20

100M1M 10M

Logic Gates Source: Synopsys

71% of SOC re-spins are due to logic bugs
Source: G. Spirakis, keynote address at DATE 2004

ICS212 WQ05 (Dutt) Verification and Validation 6

Functional Validation of Microprocessors

Functional validation is a major bottleneck
Deeply pipelined complex microarchitectures

Logic bugs increase at 3-4 times/generation
Bugs increase (exponential) is linear with design
complexity growth.

Pre-silicon logic bugs per generation
(Source: Tom Schubert, Intel, DAC 2003)

7855
2240800

25000

Pentium Pentium Pro Pentium 4 Next ?

ICS212 WQ05 (Dutt) Verification and Validation 7

Pentium 4 Bugs Breakdown
Source: Bob Bentley, HLDVT 2002

Micro-architectural complexity is a major contributor

ICS212 WQ05 (Dutt) Verification and Validation 8

Verification/Validation Methods

Simulation - performed on the model

Deductive verification

Model checking

Equivalence checking

Testing - performed on the actual product
(manufacturing test)

Emulation, prototyping

ICS212 WQ05 (Dutt) Verification and Validation 9

Verification/Validation Methods

Simulation - performed on the model

Deductive verification

Model checking

Equivalence checking

Testing - performed on the actual product
(manufacturing test)

Emulation, prototyping

ValidationValidation

ICS212 WQ05 (Dutt) Verification and Validation 10

Verification/Validation Methods

Simulation - performed on the model

Deductive verification

Model checking

Equivalence checking

Testing - performed on the actual product
(manufacturing test)

Emulation, prototyping
Formal Formal

VerificationVerification

ICS212 WQ05 (Dutt) Verification and Validation 11

Verification/Validation Methods

Simulation - performed on the model

Deductive verification

Model checking

Equivalence checking

Testing - performed on the actual product
(manufacturing test)

Emulation, prototyping

Physical levelPhysical level

ICS212 WQ05 (Dutt) Verification and Validation 12

Why Formal Verification

Need for reliable system (sw & hw) validation

Simulation, test cannot handle all possible cases
Formal verification conducts exhaustive
exploration of all possible behaviors

compare to simulation, which explores some of possible
behaviors
if correct, all behaviors are verified

if incorrect, a counter-example (proof) is presented
Examples of successful use of formal verification

SMV system [McMillan 1993]
verification of cache coherence protocol in IEEE Futurebus+ standard

ICS212 WQ05 (Dutt) Verification and Validation 13

Verification
Design verification = ensuring correctness of the design
Typically compare against

A reference model
an implementation (at different levels)
An alternative design (at the same level)

behavior

structure

function

layout

HDL / RTL

Gate level

Logic level

Mask level

Design 1

≡ ?

≡ ?

≡ ?

model ≡ ?
≡ ?

≡ ?

RTL

Gate level

Mask level

Design 2

Logic level

≡ ?

ICS212 WQ05 (Dutt) Verification and Validation 14

Overview – Formal Methods

Theorem proving
Deductive reasoning

Model checking
Problem statement
Explicit algorithms (on graphs)
Symbolic algorithms (using BDDs)

Equivalence checking
Combinational circuits
Sequential circuits

ICS212 WQ05 (Dutt) Verification and Validation 15

Formal Verification

Deductive reasoning (theorem proving)
uses axioms, rules to prove system correctness
no guarantee that it will terminate
difficult, time consuming: for critical applications

Model checking
automatic technique to prove correctness of
concurrent systems: digital circuits,
communication protocols, etc.

Equivalence checking
check if two circuits are equivalent

ICS212 WQ05 (Dutt) Verification and Validation 16

Part II

BACKGROUND

BDDs, FSM traversal

ICS212 WQ05 (Dutt) Verification and Validation 17

Binary Decision Diagrams

Binary Decision Diagram (BDD)
compact data structure for Boolean logic
can represent sets of objects (states) encoded as
Boolean functions
reduced ordered BDDs (ROBDD) are canonical
canonicity - essential for verification

Construction of ROBDD
remove duplicate terminals
remove duplicate nodes (isomorphic subgraphs)
remove internal nodes with identical children

ICS212 WQ05 (Dutt) Verification and Validation 18

BDD - Construction

Construction of a Reduced Ordered BDD

1 edge
0 edge

f = ac + bc

10 0 0 1 0 10

a

b

c

b

c c c

f
a b c f

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Truth table Decision tree

ICS212 WQ05 (Dutt) Verification and Validation 19

BDD Construction – cont’d

10

a

b

c

b

c c c

f f

10

a

b

c

b

c

10

a

b

c

f = (a+b)c

2. Remove
duplicate nodes

1. Remove
duplicate terminals

3. Remove
redundant nodes

ICS212 WQ05 (Dutt) Verification and Validation 20

Application to Verification

Equivalence of combinational
circuits
Canonicity property of BDDs:

if F and G are equivalent, their BDDs are
identical (for the same ordering of variables)

10

a

b

c

10

a

b

c

G = ac +bcF = a’bc + abc +ab’c

≡

ICS212 WQ05 (Dutt) Verification and Validation 21

Application to Verification, cont’d

Functional test generation
SAT, Boolean satisfiability
analysis
to test for H = 1 (0), find a path
in the BDD to terminal 1 (0)
the path, expressed in function
variables, gives a satisfying
solution (test vector)

ab

ab’c

H

0 1

a

b

c

ICS212 WQ05 (Dutt) Verification and Validation 22

Logic Manipulation using BDDs

Useful operators
¬

1 00 1

F F’

– Complement ¬ F = F’
(switch the terminal nodes)

0 1

F(x,y)

x=b 0 1

F(y)
Restrict

– Restrict: F|x=b =
F(x=b) where b = const

ICS212 WQ05 (Dutt) Verification and Validation 23

Useful BDD Operators - cont’d

Apply: F G
where stands for any Boolean operator (AND, OR, XOR, →)

=•

F G

0 1 0 1
0 1

F G•

•

•

Any logic operation can be expressed using
only Restrict and Apply
Efficient algorithms, work directly on BDDs

ICS212 WQ05 (Dutt) Verification and Validation 24

Finite State Machines (FSM)

• FSM M(X,S, δ, λ,O)

– Inputs: X
– Outputs: O
– States: S
– Next state function, δ(s,x) : S × X → S
– Output function, λ(s,x) : S × X → O

OOXX

R

δ(s,x)
λ(s,x)

s s’

ICS212 WQ05 (Dutt) Verification and Validation 25

FSM Traversal
State Transition Graphs

directed graphs with labeled nodes and arcs
(transitions)
symbolic state traversal methods

important for symbolic verification, state reachability
analysis, FSM traversal, etc.

0/0

0/1

1/0

s0 s1

0/1s2

1/0

ICS212 WQ05 (Dutt) Verification and Validation 26

Existential Quantification
Existential quantification (abstraction)

∃x f = f |x=0 + f |x=1

Example:
∃x (x y + z) = y + z

Note: ∃x f does not depend on x
(smoothing)
Useful in symbolic image computation (sets of
states)

ICS212 WQ05 (Dutt) Verification and Validation 27

Existential Quantification - cont’d

Function can be existentially quantified w.r.t. a
vector: X = x1x2…

∃X f = ∃x1x2... f = ∃x1 ∃x2 ∃... f

Can be done efficiently directly on a BDD
Very useful in computing sets of states

Image computation: next states
Pre-Image computation: previous states from a given set of
initial states

ICS212 WQ05 (Dutt) Verification and Validation 28

Image Computation

Computing set of next states from a given initial state
(or set of states)
Img(S,R) = ∃u S(u) • R(u,v)

Img(v)

R(u,v)

S(u)

• FSM: when transitions are labeled with input predicates
x, quantify w.r.to all inputs (primary inputs and state var)

Img(S,R) = ∃x ∃u S(u) • R(x,u,v)

ICS212 WQ05 (Dutt) Verification and Validation 29

Image Computation - example
Compute a set of next states from state s1
Encode the states: s1=00, s2=01, s3=10, s4=11

Write transition relations for the encoded states:
R = (ax’y’X’Y + a’x’y’XY’ + xy’XY + ….)

s1

s2

s3

s4
a

a’00

01

10
11

a xy XY
1 00 01
0 00 10
- 10 11
……….

ICS212 WQ05 (Dutt) Verification and Validation 30

Example - cont’d
Compute Image from s1 under R

Img(s1,R) = ∃a ∃xy s1(x,y) • R(a,x,y,X,Y)

= ∃a ∃xy (x’y’) • (ax’y’X’Y + a’x’y’XY’ + xy’XY + ….)

= ∃axy (ax’y’X’Y + a’x’y’XY’) = (X’Y + XY’)

= {01, 10} = {s2,s3}

s1

s2

s3

s4
a

a’00

01

10
11

Result: a set of next
states for all inputs
s1 → {s2, s3}

ICS212 WQ05 (Dutt) Verification and Validation 31

Pre-Image Computation

Computing a set of present states from a given
next state (or set of states)

Pre-Img(S’,R) = ∃v R(u,v))• S’(v)

S’(v)

R(u,v)

Pre-Img(u)

• Similar to Image computation, except that quantification is done
w.r.to next state variables

• The result: a set of states backward reachable from state set S’,
expressed in present state variables u

• Useful in computing CTL formulas: AF, EF

ICS212 WQ05 (Dutt) Verification and Validation 32

Part IV

EQUIVALENCE CHECKING

ICS212 WQ05 (Dutt) Verification and Validation 33

Equivalence Checking

Two circuits are functionally equivalent if
they exhibit the same behavior

Combinational circuits
for all possible input values

Sequential circuits
for all possible

states & input values

In OutCL

PoPoPIPI

CL

PsPs NsNs
R

ICS212 WQ05 (Dutt) Verification and Validation 34

Combinational Equivalence Checking

Functional Approach
transform output functions of combinational
circuits into a unique (canonical) representation
two circuits are equivalent if their representations
are identical
efficient canonical representation: BDD

Structural
identify structurally similar internal points
prove internal points (cut-points) equivalent
find implications

ICS212 WQ05 (Dutt) Verification and Validation 35

Functional Equivalence

If BDD can be constructed for each circuit
represent each circuit as shared (multi-output) BDD

use the same variable ordering !

BDDs of both circuits must be identical

• If BDDs are too large
– cannot construct BDD, memory problem
– use partitioned BDD method

• decompose circuit into smaller pieces, each as BDD
• check equivalence of internal points

ICS212 WQ05 (Dutt) Verification and Validation 36

Functional Decomposition

Decompose each function into functional blocks
represent each block as a BDD (partitioned BDD
method)
define cut-points (z)
verify equivalence of blocks at cut-points
starting at primary inputs

F

f2

f1

z

x y

G

g2

g1

z

x y

ICS212 WQ05 (Dutt) Verification and Validation 37

Cut-Points Resolution Problem

If all pairs of cut-points (z1,z2) are equivalent
so are the two functions, F,G

If intermediate functions (f2,g2) are not equivalent
the functions (F,G) may still be equivalent
this is called false negative

F

f2

f1

z

x y

G

g2

g1

z

x y

• Why do we have false negative ?
– functions are represented in terms of

intermediate variables
– to prove/disprove equivalence must

represent the functions in terms of
primary inputs (BDD composition)

ICS212 WQ05 (Dutt) Verification and Validation 38

Cut-Point Resolution – Theory

Let f1(x)=g1(x) ∀x
if f2(z,y) ≡ g2(z,y), ∀z,y then f2(f1(x),y) ≡ g2(f1(x),y) ⇒ F ≡ G
if f2(z,y) ≠ g2(z,y), ∀z,y ≠⇒ f2(f1(x),y) ≠ g2(f1(x),y) ⇒ F ≠ G

F

f2

f1

z

x y

G

g2

g1

z

x y

• False negative
– two functions are equivalent,

but the verification algorithm
declares them as different.

We cannot say if F ≡ G or not

ICS212 WQ05 (Dutt) Verification and Validation 39

Cut-Point Resolution – cont’d

Procedure 2: create a BDD for F ⊕ G
perform satisfiability analysis (SAT) of the BDD

if BDD for F ⊕G = ∅, problem is not satisfiable, false negative
BDD for F ⊕G ≠ ∅, problem is satisfiable, true negative

Non-empty, F ≠ G

∅, F ≡ G (false negative)F ⊕G =
=

⊕

F G

– the SAT solution, if exists, provides a test vector
(proof of non-equivalence) – as in ATPG

ICS212 WQ05 (Dutt) Verification and Validation 40

Sequential Equivalence Checking

Represent each sequential circuit as an FSM
verify if two FSMs are equivalent

Approach 1: reduction to combinational circuit
unroll FSM over n time frames (flatten the design)

M(t1)

x(1)

s(1)

M(t2)

x(2)

s(2)
…… M(tn)

x(n)

s(n)

Combinational logic: F(x(1,2, …n), s(1,2, … n))

– check equivalence of the resulting combinational circuits
– problem: the resulting circuit can be too large too handle

ICS212 WQ05 (Dutt) Verification and Validation 41

Sequential Verification

Approach 2: based on isomorphism of state
transition graphs

two machines M1, M2 are equivalent if their state transition
graphs (STGs) are isomorphic
perform state minimization of each machine
check if STG(M1) and STG(M2) are isomorphic

≡

1/0

0 1.2
0/0

1/1

0/1

M1min

1/0

0 1
0/0

1/1

0/1

M2

0/0 0/1

1/0

0 1

0/12

1/0

M1

1/1 State min.

ICS212 WQ05 (Dutt) Verification and Validation 42

Sequential Verification

Approach 3: symbolic FSM traversal of the
product machine

M1 M2
S1 S2

O2O1

X

O(M)• Given two FSMs: M1(X,S1, δ1, λ1,O1),
M2(X,S2, δ2, λ2,O2)

• Create a product FSM: M = M1× M2
– traverse the states of M and check its

output for each transition
– the output O(M) =1, if outputs O1= O2

– if all outputs of M are 1, M1 and M2 are
equivalent

– otherwise, an error state is reached
– error trace is produced to show: M1 ≠ M2

ICS212 WQ05 (Dutt) Verification and Validation 43

Product Machine - Construction
Define the product machine M(X,S, δ, λ,O)

states, S = S1 × S2

next state function, δ(s,x) : (S1 × S2) × X → (S1 × S2)
output function, λ(s,x) : (S1 × S2) × X → {0,1}

M1 M2

δ1 δ2
λ2λ1

X

• Error trace (distinguishing sequence)
that leads to an error state
- sequence of inputs which produces 1

at the output of M
- produces a state in M for which M1

and M2 give different outputs

λ(s,x) = λ1(s1,x) λ2(s2,x) ⊕ O ={1 if O1=O2
0 otherwise

ICS212 WQ05 (Dutt) Verification and Validation 44

FSM Traversal - Algorithm
Traverse the product machine M(X,S,δ, λ,O)

start at an initial state S0

iteratively compute symbolic image Img(S0,R) (set of next
states):

Img(S0,R) = ∃x ∃s S0(s) • R(x,s,t)
R = ∏i Ri = ∏i (ti ≡ δi(s,x))

until an error state is reached
transition relation Ri for each next state variable ti can be
computed as ti = (t ⊗ δ(s,x))

(this is an alternative way to compute transition relation,
when design is specified at gate level)

ICS212 WQ05 (Dutt) Verification and Validation 45

Construction of the Product FSM

For each pair of states, s1∈ M1, s2∈ M2
create a combined state s = (s1. s2) of M
create transitions out of this state to other states of M
label the transitions (input/output) accordingly

1/0

0 1
0/0

1/1

0/1M1 M2

1/1

2

0 1
0/0

0/0

0/1
1/1 1/0

1.1

0/1
1⊗1

1/1
0.2

0⊗0
Output = { 1 OK

0 error
M1

1/0

0

0/1

1

M2 2

0/1
1/0

1

ICS212 WQ05 (Dutt) Verification and Validation 46

FSM Traversal in Action

1/0

0 1
0/0

1/1

0/1

M1 M2

2

0 1
0/0

0/0

0/1

1/1

1/1 1/0

1.1
0/1

1/1

0/1
0.2

1/1
1.0 0/01/0

0/0 1.2

1/0

0.1

1/0

0/0Out(M)
State reached x=0 x=1

Error state

0.0
0/1 1/1M

Initiall states: s1=0, s2=0, s=(0.0)

• New 0 = (0.0) 1 1
• New 1 = (1.1) 1 1

• New 2 = (0.2) 1 1
• New 3 = (1.0) 0 0

STOP - backtrack to initial state to get error trace:
x={1,1,1,0}

ICS212 WQ05 (Dutt) Verification and Validation 47

Part IV

MODEL CHECKING

ICS212 WQ05 (Dutt) Verification and Validation 48

Model Checking

Algorithmic method of verifying correctness of (finite
state) concurrent systems against temporal logic
specifications

A practical approach to formal verification

Basic idea
System is described in a formal model

derived from high level design (HDL, C), circuit
structure, etc.

The desired behavior is expressed as a set of
properties

expressed as temporal logic specification
The specification is checked against the model

ICS212 WQ05 (Dutt) Verification and Validation 49

Model Checking
How does it work?

System is modeled as a state transition structure (Kripke
structure)

Specification is expressed in propositional temporal logic
(CTL formula)

asserts how system behavior evolves over time

Efficient search procedure checks the transition system to
see if it satisifes the specification

ICS212 WQ05 (Dutt) Verification and Validation 50

Model Checking

Characteristics
searches the entire solution space
always terminates with YES or NO
relatively easy, can be done by experienced designers
widely used in industry
can be automated

Challenges
state space explosion – use symbolic methods, BDDs

History
Clark, Emerson [1981] USA
Quielle, Sifakis [1980’s] France

ICS212 WQ05 (Dutt) Verification and Validation 51

Model Checking - Tasks
Modeling

converts a design into a formalism: state transition system

Specification
state the properties that the design must satisfy
use logical formalism: temporal logic

asserts how system behavior evolves over time

Verification
automated procedure (algorithm)

ICS212 WQ05 (Dutt) Verification and Validation 52

Model Checking - Issues
Completeness

model checking is effective for a given property
impossible to guarantee that the specification covers all
properties the system should satisfy
writing the specification - responsibility of the user

Negative results
incorrect model
incorrect specification (false negative)
failure to complete the check (too large)

ICS212 WQ05 (Dutt) Verification and Validation 53

Model Checking - Basics

State transition structure
M(S,R,L) (Kripke structure)
S = finite set of states {s1, s2, … sn}
R = transition relation
L = set of labels assigned to states, so that
L(s) = f if state s has property f

All properties are composed of
atomic propositions (basic
properties), e.g. the light is green,
the door is open, etc.

L(s) is a subset of all atomic propositions
true in state s

Label (property)

s3

s1

s2

a

b ac

ICS212 WQ05 (Dutt) Verification and Validation 54

Temporal Logic

Formalism describing sequences of transitions
Time is not mentioned explicitly
The temporal operators used to express temporal
properties

eventually
never
always

Temporal logic formulas are evaluated w.r.to a
state in the model
Temporal operators can be combined with
Boolean expressions

ICS212 WQ05 (Dutt) Verification and Validation 55

Computation Trees

a

b

a ac

ac

ac

ac

s1

s3

s1

s2

a

b ac

State transition structure
(Kripke Model)

Infinite computation tree
for initial state s1

ICS212 WQ05 (Dutt) Verification and Validation 56

CTL – Computation Tree Logic

Path quantifiers - describe branching structure of
the tree

A (for all computation paths)
E (for some computation path = there exists a path)

Temporal operators - describe properties of a path
through the tree

X (next time, next state)
F (eventually, finally)
G (always, globally)
U (until)
R (release, dual of U)

ICS212 WQ05 (Dutt) Verification and Validation 57

CTL Formulas
Temporal logic formulas are evaluated
w.r.to a state in the model

State formulas
apply to a specific state

Path formulas
apply to all states along a specific path

ICS212 WQ05 (Dutt) Verification and Validation 58

Basic CTL Formulas
E X (f)

true in state s if f is true in some successor of s (there
exists a next state of s for which f holds)

A X (f)
true in state s if f is true for all successors of s (for all next
states of s f is true)

E G (f)
true in s if f holds in every state along some path
emanating from s (there exists a path ….)

A G (f)
true in s if f holds in every state along all paths emanating
from s (for all paths ….globally)

ICS212 WQ05 (Dutt) Verification and Validation 59

Basic CTL Formulas - cont ’d

E F (g)
there exists a path which eventually contains a state
in which g is true

A F (g)
for all paths, eventually there is state in which g holds

E F, A F are special case of E [f U g], A [f U g]
E F (g) = E [true U g], A F (g) = A [true U g]

f U g (f until g)
true if there is a state in the path where g holds, and
at every previous state f holds

ICS212 WQ05 (Dutt) Verification and Validation 60

CTL Operators - examples

so |= E F g

g

so so

g

g
g

so |= A F g

so |= E G g

gso

g

g

so |= A G g

so

g

g
g

g

gg

ICS212 WQ05 (Dutt) Verification and Validation 61

Basic CTL Formulas - cont ’d

Full set of operators
Boolean: ¬, ∧, ∨, ⊕, →
temporal: E, A, X, F, G, U, R

Minimal set sufficient to express any CTL formula
Boolean: ¬, ∨
temporal: E, X, U

Examples:
f ∧ g = ¬(¬f ∨ ¬g), F f = true U f , A (f) = ¬E(¬f)

ICS212 WQ05 (Dutt) Verification and Validation 62

Typical CTL Formulas

E F (start ∧ ¬ ready)
eventually a state is reached where start
holds and ready does not hold

A G (req → A F ack)
any time request occurs, it will be eventually
acknowledged

A G (E F restart)
from any state it is possible to get to the
restart state

ICS212 WQ05 (Dutt) Verification and Validation 63

Model Checking – Explicit
Algorithm

Problem: given a structure M(S,R,L) and a
temporal logic formula f, find a set of states

that satisfy f
{s ∈ S: M,s |= f }

Explicit algorithm: label each state s with the set label(s)
of sub-formulas of f which are true in s.

1. i = 0; label(s) = L(s)

2. i = i + 1; Process formulas with (i -1) nested CTL operators.
Add the processed formulas to the labeling of each state in
which it is true.

3. Continue until closure. Result: M,s |= f iff f ∈ label (s)

ICS212 WQ05 (Dutt) Verification and Validation 64

Explicit Algorithm - cont’d

To check for arbitrary CTL formula f
successively apply the state labeling algorithm to the
sub-formulas
start with the shortest, most deeply nested
work outwards

Example: E F ¬ (g ∧ h)

T1 = states in which g and h are true

T2 = complement of T1

T3 = predecessor states to T2

ICS212 WQ05 (Dutt) Verification and Validation 65

Model Checking Example
Traffic light controller
(simplified)

R1 G2

Y1 R2

G1 R2

R1 Y2

C ’+ T ’

C T

C T ’

C ’+ T

C = car sensor
T = timer

G1 R2

Y1 R2

R1 G2

G1 R2

G1 R2

Y1 R2

Y1 R2

R1 G2 R1 Y2 R1 G2

G1 R2R1 Y2 R1 G2

R1 Y2

G2
Y2
R2

G1
Y1
R1

C

C

Timer

T

sensor

Road 2

R
oa

d
1

ICS212 WQ05 (Dutt) Verification and Validation 66

Traffic light controller - Model
Checking

Model Checking task: check
safety condition
fairness conditions

Safety condition: no green
lights on both roads at the
same time

A G ¬ (G1 ∧ G2)

Fairness condition: eventually
one road has green light

E F (G1 ∨ G2)

R1 G2

Y1 R2

G1 R2

R1 Y2

C ’+T ’

C T

C T ’

C ’+T

ICS212 WQ05 (Dutt) Verification and Validation 67

Checking the Safety Condition

A G ¬ (G1 ∧ G2) = ¬ E F (G1∧G2)

S(G1 ∧ G2) = S(G1) ∩ S(G2) =
{1}∩{3} = ∅
S(EF (G1 ∧ G2)) = ∅
S(¬ EF (G1 ∧ G2)) = ¬∅

= {1, 2, 3, 4}

2

R1 G2

Y1 R2

G1 R2

R1 Y2

1

3

4

Each state is included in {1,2,3,4} ⇒
the safety condition is true (for each state)

ICS212 WQ05 (Dutt) Verification and Validation 68

Checking the Fairness
Condition

E F (G1 ∨ G2) = E(true U (G1 ∨ G2))
• S(G1 ∨ G2) = S(G1)∪S(G2) = {1} ∪{3} = {1,3}
• S(EF (G1 ∨ G2)) = {1,2,3,4}

(going backward from {1,3}, find predecessors)

23 11 34

Since {1,2,3,4} contains all states, the condition is
true for all the states

ICS212 WQ05 (Dutt) Verification and Validation 69

Another Check

R1 G2

Y1 R2

G1 R2

R1 Y2

1

3

4

2

E X2 (Y1) = E X (E X (Y1))
(starting at S1=G1R2, is
there a path s.t. Y1 is true in 2

steps ?)

S (Y1) = {2}
S (EX (Y1)) = {1}

(predecessor of 2)
S (EX (EX(Y1)) = {1,4}

(predecessors of 1)

Property E X2 (Y1) is true for states {1,4}, hence true

ICS212 WQ05 (Dutt) Verification and Validation 70

Symbolic Model Checking

Symbolic
operates on entire sets rather than individual states

Uses BDD for efficient representation

represent Kripke structure
manipulate Boolean formulas

RESTRICT and APPLY logic operators

Quantification operators
Existential: ∃ x f = f |x=0 + f |x=1 (smoothing)
Universal: ∀x f = f |x=0 • f |x=1 (consensus)

ICS212 WQ05 (Dutt) Verification and Validation 71

Symbolic Model Checking - example
Traffic Light Controller

Encode the atomic propositions (G1,R1,Y1, G2,Y2,R2):
use [a b c d] for present state, [v x y z] for next state

R1 G2

Y1 R2

G1 R2

R1 Y2

s1

s3

s4

s2
11 10

10 01

01 10
10 11

a b c d

G1 1 1 - -
Y1 0 1 - -
R1 1 0 - -
G2 - - 1 1
Y2 - - 0 1
R2 - - 1 0

ICS212 WQ05 (Dutt) Verification and Validation 72

Example - cont’d

Represent the set of states as Boolean formula
Q: Q = abcd’ + a’bcd’ + ab’cd + ab’c’d

R1 G2

Y1 R2

G1 R2

R1 Y2

s1

s3

s4

s2
11 10

10 01

01 10
10 11

• Store Q in a BDD
(It will be used to perform logic
operations, such as S(G1) ∨ S(G2)

ICS212 WQ05 (Dutt) Verification and Validation 73

Example - cont’d

Write a characteristic function R for the
transition relation R =abcd’vxyz’ +
abcd’v’xyz’ + … + ab’c’dvxyz’
(6 terms)

R1 G2

Y1 R2

G1 R2

R1 Y2

s1

s3

s4

s2
11 10

10 01

01 10
10 11

abcd vxyz

1110 1110 1
1110 0110 1
0110 1011 1
1011 1011 1
1011 1001 1
1001 1110 1

R

Store R in a BDD. It will be
used for Pre-Image
computation for EF.

ICS212 WQ05 (Dutt) Verification and Validation 74

Example - Fairness Condition

Check fairness condition: E F (G1 ∨ G2)

Step 1: compute S(G1), S(G2) using RESTRICT
operator

S(G1): ab·Restrict Q(G1) = ab Q|ab = abcd’ = {s1}
S(G2): cd·Restrict Q(G2) = cd Q|cd = ab’cd = {s3}

Step 2: compute S(G1) ∨ S(G2) using APPLY
operator

Construct BDD for (abcd’ + ab’cd) = {s1, s3}, set of states
labeled with G1 or G2

ICS212 WQ05 (Dutt) Verification and Validation 75

Example – cont’d

∃s’ {s1’,s3’} • R(s,s’)) =

= ∃vxyz(vxyz’ + vx’yz) • R(a,b,c,d;v,x,y,z)

= ∃vxyz(abcd’vxyz’ + a’bcdvx’yz + ab’cdvx’yz + ab’c’dvxyz’)
= (abcd’ + a’bcd + ab’cd + ab’c’d) = {s1, s2, s3, s4}

Compare to the result of explicit algoritm √

• Step 3: compute S(EF (G1 ∨ G2)) using Pre-Image
computation (quanitfy w.r.to next state variables)

• Recall: R = abcd’vxyz’ + abcd’v’xyz’+ … + ab’c’dvxyz’

ICS212 WQ05 (Dutt) Verification and Validation 76

Example – Interpretation

Pre-Img(s1’,s3’,R) eliminates those
transitions which do not reach {s1,s3}

R1 G2

Y1 R2

G1 R2

R1 Y2

s1

s3

s4

s2
11 10

10 01

01 10
10 11

abcd vxyz

1110 1110 1
1110 0110 1
0110 1011 1
1011 1011 1
1011 1001 1
1001 1110 1

R

X

X

Quantification w.r.to next state
variables (v,x,y,z) gives the encoded
present states {s1,s2,s3,s4}

ICS212 WQ05 (Dutt) Verification and Validation 77

Overview – Functional Validation

Simulation-based & Formal methods
Functional test generation
SAT-based methods, Boolean verification

Boolean satisfiability
RTL verification

Arithmetic/Boolean satisfiability
ATPG-based methods

Emulation-based methods
Hardware-assisted simulation
System prototyping

	Verification and Validation of Embedded Systems
	Acknowledgements
	Overview
	Why Verification/Validation?
	Functional Verification of SOC Designs
	Functional Validation of Microprocessors
	Pentium 4 Bugs Breakdown
	Verification/Validation Methods
	Verification/Validation Methods
	Verification/Validation Methods
	Verification/Validation Methods
	Why Formal Verification
	Verification
	Overview – Formal Methods
	Formal Verification
	Part II
	Binary Decision Diagrams
	BDD - Construction
	BDD Construction – cont’d
	Application to Verification
	Application to Verification, cont’d
	Logic Manipulation using BDDs
	Useful BDD Operators - cont’d
	Finite State Machines (FSM)
	FSM Traversal
	Existential Quantification
	Existential Quantification - cont’d
	Image Computation
	Image Computation - example
	Example - cont’d
	Pre-Image Computation
	Part IV
	Equivalence Checking
	Combinational Equivalence Checking
	Functional Equivalence
	Functional Decomposition
	Cut-Points Resolution Problem
	Cut-Point Resolution – Theory
	Cut-Point Resolution – cont’d
	Sequential Equivalence Checking
	Sequential Verification
	Sequential Verification
	Product Machine - Construction
	FSM Traversal - Algorithm
	Construction of the Product FSM
	FSM Traversal in Action
	Part IV
	Model Checking
	Model Checking
	Model Checking
	Model Checking - Tasks
	Model Checking - Issues
	Model Checking - Basics
	Temporal Logic
	Computation Trees
	CTL – Computation Tree Logic
	CTL Formulas
	Basic CTL Formulas
	Basic CTL Formulas - cont ’d
	CTL Operators - examples
	Basic CTL Formulas - cont ’d
	Typical CTL Formulas
	Model Checking – Explicit Algorithm
	Explicit Algorithm - cont’d
	Model Checking Example
	Traffic light controller - Model Checking
	Checking the Safety Condition
	Checking the Fairness Condition
	Another Check
	Symbolic Model Checking
	Symbolic Model Checking - exampleTraffic Light Controller
	Example - cont’d
	Example - cont’d
	Example - Fairness Condition
	Example – cont’d
	Example – Interpretation
	Overview – Functional Validation

