Acknowledgements

- **Credits**
 - *Part of the course material is based on slides provided by the following authors*
 - **Pig/Pig Latin** → Pietro Michiardi, Jimmy Lin
 - **Hive** → Dhruba Borthakur, Zheng Shao, Liyin Tang
Need for High-Level Languages

- Hadoop is great for large-data processing!
 - But writing Java programs for everything is verbose and slow
 - Custom code required even for basic operations
 - Projection and Filtering need to be “rewritten” for each job
 - Code is difficult to reuse and maintain
 - Optimizations are difficult due to opacity of Map and Reduce
 - Data scientists don’t want to write Java

Solution: develop higher-level data processing languages

- Pig: Pig Latin is a bit like Perl
- Hive: HQL is like SQL

Pig and Hive

- Pig: large-scale data processing system
 - Scripts are written in Pig Latin, a dataflow language
 - Programmer focuses on data transformations
 - Developed by Yahoo!, now open source

- Hive: data warehousing application in Hadoop
 - Query language is HQL, variant of SQL
 - Tables stored on HDFS with different encodings
 - Developed by Facebook, now open source

Common idea:

- Provide higher-level language to facilitate large-data processing
- Higher-level language “compiles down” to Hadoop jobs
Pig: Introduction and Motivations

Use Cases: Rollup aggregates

- Compute aggregates against user activity logs, web crawls, etc.
 - Example: compute the frequency of search terms aggregated over days, weeks, month
 - Example: compute frequency of search terms aggregated over geographical location, based on IP addresses

- Requirements
 - Successive aggregations
 - Joins followed by aggregations

- Pig vs. OLAP systems
 - Datasets are too big
 - Data curation is too costly
Use Cases: Temporal Analysis

- Study how search query distributions change over time
 - Correlation of search queries from two distinct time periods (groups)
 - Custom processing of the queries in each correlation group

- Pig supports operators that minimize memory footprint
 - Instead, in a RDBMS such operations typically involve JOINS over very large datasets that do not fit in memory and thus become slow

Use Cases: Session Analysis

- Study sequences of page views and clicks

- Example of typical aggregates
 - Average length of user session
 - Number of links clicked by a user before leaving a website
 - Click pattern variations in time

- Pig supports advanced data structures, and UDFs
Pig Latin

- Pig Latin, a high-level programming language developed at Yahoo!
 - Combines the best of both declarative and imperative worlds
 - High-level declarative querying in the spirit of SQL
 - Low-level, procedural programming à la MapReduce

- Pig Latin features
 - Multi-valued, nested data structures instead of flat tables
 - Powerful data transformations primitives, including joins

- Pig Latin program
 - Made up of a series of operations (or transformations)
 - Each operation is applied to input data and produce output data
 → A Pig Latin program describes a data flow

Example - Pig Latin premiere

- Assume we have the following table:

 urls: (url, category, pagerank)

 Where:
 - url: is the url of a web page
 - category: corresponds to a pre-defined category for the web page
 - pagerank: is the numerical value of the pagerank associated to a web page

- Problem
 - Find, for each sufficiently large category, the average page rank of high-pagerank urls in that category
Example - Solution in SQL

```
SELECT category, AVG(pagerank)
FROM urls
GROUP BY category HAVING COUNT(*) > 10^6
WHERE pagerank > 0.2
```

Example - Solution in Pig Latin

```
groups = GROUP good_urls BY category;
good_groups = FILTER groups BY pagerank > 0.2;
big_groups = FILTER good_groups BY COUNT(good_urls) > 10^6;
output = FOREACH big_groups GENERATE
category, AVG(good_urls.pagerank);
```
Pig Execution environment

How do we go from Pig Latin to MapReduce?
- The Pig system is in charge of this
- Complex execution environment that interacts with Hadoop MapReduce
 → The programmer focuses on the data and analysis

Pig Compiler
- Pig Latin operators are translated into MapReduce code
- **NOTE:** in some cases, hand-written MapReduce code performs better

Pig Optimizer
- Pig Latin data flows undergo an (automatic) optimization phase
- These optimizations are borrowed from the RDBMS community
Introduction

- Not a complete reference to the Pig Latin language: refer to the Pig Latin wiki
 - Here we cover some interesting aspects

- The focus here is on some language primitives
 - Optimizations are treated separately
 - How they can be implemented is covered later

Data Model

- Supports four types
 - **Atom**: contains a simple atomic value as a string or a number
 - e.g. ‘alice’
 - **Tuple**: sequence of fields, each can be of any data type
 - e.g., (‘alice’, ‘lakers’)
 - **Bag**: collection of tuples with possible duplicates. Flexible schema, no need to have the same number and type of fields
 - Tuples can be nested
 - e.g.,
 \[
 \left\{
 \begin{array}{l}
 ('alice', 'lakers') \\
 ('alice', ('ipod', 'apple')) \\
 \end{array}
 \right\}
 \]
Data Model

- **Map**: collection of data items, where each item has an associated key for lookup. The schema, as with bags, is flexible.
 - NOTE: keys are required to be data atoms, for efficient lookup.
 - *e.g.*,
 - `'fan of' → {('lakers')}`
 - `'age' → 20`
 - The key ‘fan of’ is mapped to a bag containing two tuples
 - The key ‘age’ is mapped to an atom
- Maps are useful to model datasets in which schema may be dynamic (over time)

Structure

- **Pig latin programs are a sequence of steps**
 - Can use an interactive shell (called `grunt`)
 - Can feed them as a “script”
- **Comments**
 - In line: with double hyphens (- -)
 - C-style for longer comments (`/* ... */`)
- **Reserved keywords**
 - List of keywords that can’t be used as identifiers
 - Same old story as for any language
Expressions

- An expression is something that is evaluated to yield a value

\[t = \langle 'alice', \{('lakers', 1), ('iPod', 2) \}, ['age' \rightarrow 20] \rangle \]

Let fields of tuple \(t \) be called \(f_1, f_2, f_3 \)

<table>
<thead>
<tr>
<th>Expression Type</th>
<th>Example</th>
<th>Value for (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>'bob'</td>
<td>Independent of (t)</td>
</tr>
<tr>
<td>Field by position</td>
<td>$0'alice'</td>
<td>'alice'</td>
</tr>
<tr>
<td>Field by name</td>
<td>(f_3)</td>
<td>('age' \rightarrow 20)</td>
</tr>
<tr>
<td>Projection</td>
<td>(f_2.$0)</td>
<td>({ 'lakers' }, { 'iPod' })</td>
</tr>
<tr>
<td>Map Lookup</td>
<td>(f_3#'age')</td>
<td>20</td>
</tr>
<tr>
<td>Function Evaluation</td>
<td>(\text{SUM}(f_2.$1))</td>
<td>(1 + 2 = 3)</td>
</tr>
<tr>
<td>Conditional Expression</td>
<td>(f_3#'age'>18?) ('adult'; 'minor')</td>
<td>('adult')</td>
</tr>
<tr>
<td>Flattening</td>
<td>(\text{FLATTEN}(f_2))</td>
<td>('lakers', 1) ('iPod', 2)</td>
</tr>
</tbody>
</table>

Loading and storing data

- The first step in a Pig Latin program is to load data
 - What input files are
 - How the file contents are to be deserialized
 - An input file is assumed to contain a sequence of tuples

- Data loading is done with the **LOAD** command

```pig
queries = LOAD 'query_log.txt'
USING myLoad()
AS (userId, queryString, timestamp);
```
Loading and storing data

- The previous example specifies the following:
 - The input file is `query_log.txt`
 - The input file should be converted into tuples using the custom `myLoad` deserializer
 - The loaded tuples have three fields, specified by the schema

- Optional parts
 - USING clause is optional: if not specified, the input file is assumed to be plain text, tab-delimited
 - AS clause is optional: if not specified, must refer to fields by position instead of by name

Loading and storing data

- Return value of the LOAD command
 - Handle to a bag
 - This can be used by subsequent commands
 - bag handles are only logical
 - no file is actually read!

- The command to write output to disk is STORE
 - It has similar semantics to the LOAD command
Per-tuple processing: Filtering data

- Once you have some data loaded into a relation, the next step is to filter it
 - This is done, e.g., to remove unwanted data
 - **HINT:** By filtering early in the processing pipeline, you minimize the amount of data flowing through the system

- A basic operation is to apply some processing over every tuple of a data set
 - This is achieved with the `FOREACH` command
    ```java
    expanded_queries = FOREACH queries GENERATE
    userId, expandQuery(queryString);
    ```

Comments on the previous example:
- Each tuple of the bag queries should be processed **independently**
- The second field of the output is the result of a UDF

Semantics of the `FOREACH` command
- There can be no dependence between the processing of different input tuples
 - This allows for an efficient parallel implementation

Semantics of the `GENERATE` clause
- Followed by a list of expressions
- Also flattering is allowed
 - This is done to eliminate nesting in data
 - Allows to make output data independent for further parallel processing
 - Useful to store data on disk
Per-tuple processing: Discarding unwanted data

- A common operation is to retain a portion of the input data
 - This is done with the FILTER command

 \[
 \text{real_queries} = \text{FILTER queries BY userId neq 'bot'}; \]

- Filtering conditions involve a combination of expressions
 - Comparison operators
 - Logical connectors
 - UDF

Per-tuple processing: Streaming data

- The STREAM operator allows transforming data in a relation using an external program or script
 - This is possible because Hadoop MapReduce supports “streaming”
 - Example:

 \[
 \text{C} = \text{STREAM A THROUGH 'cut -f 2'}; \]

 which use the Unix cut command to extract the second filed of each tuple in A

- The STREAM operator uses PigStorage to serialize and deserialize relations to and from stdin/stdout
 - Can also provide a custom serializer/deserializer
 - Works well with python
Getting related data together

- It is often necessary to group together tuples from one or more data sets
 - GROUP command

- Example: Assume we have loaded two relations
 - results: (queryString, url, position)
 - revenue: (queryString, adSlot, amount)
 - results contains, for different query strings, the urls shown as search results, and the positions at which they where shown
 - revenue contains, for different query strings, and different advertisement slots, the average amount of revenue

- To find the total revenue for each query string, we can
 - grouped_revenue = GROUP revenue BY queryString;
 - query_revenue = FOREACH grouped_revenue GENERATE
 - queryString, SUM(revenue.amount) AS totalRevenue;

JOIN in Pig Latin

- In many cases, the typical operation on two or more datasets amounts to a join
 - IMPORTANT NOTE: large datasets that are suitable to be analyzed with Pig (and MapReduce) are generally not normalized
 - JOINs are used more infrequently in Pig Latin than they are in SQL

- The syntax of a JOIN
 - join_result = JOIN results BY queryString,
 - revenue BY queryString;
 - This is a classic join, where each match between the two relations corresponds to a row in the join result
MapReduce in Pig Latin

- It is trivial to express MapReduce programs in Pig Latin
 - This is achieved using GROUP and FOREACH statements
 - A map function operates on one input tuple at a time and outputs a bag of key-value pairs
 - The reduce function operates on all values for a key at a time to produce the final result

Example

```
map_result = FOREACH input GENERATE FLATTEN(map(*));
key_groups = GROUP map_results BY $0;
output = FOREACH key_groups GENERATE reduce(*);
```

- where map() and reduce() are UDF

Validation and nulls

- Pig does not have the same power to enforce constraints on schema at load time as a RDBMS
 - If a value cannot be cast to a type declared in the schema, then it will be set to a null value
 - This also happens for corrupt files

- A useful technique to partition input data to discern good and bad records
 - Use the SPLIT operator
    ```
    SPLIT records INTO good_records IF temperature is not null, bad_records IF temperature is NULL;
    ```
Statements

- As a Pig Latin program is executed, each statement is parsed
 - The interpreter builds a logical plan for every relational operation
 - The logical plan of each statement is added to that of the program so far
 - Then the interpreter moves on to the next statement

- IMPORTANT: No data processing takes place during construction of logical plan
 - When the interpreter sees the first line of a program, it confirms that it is syntactically and semantically correct
 - Then it adds it to the logical plan
 - It does not even check the existence of files, for data load operations

- It makes no sense to start any processing until the whole flow is defined
 - Indeed, there are several optimizations that could make a program more efficient (e.g., by avoiding to operate on some data that later on is going to be filtered)

- The trigger for Pig to start execution are the DUMP and STORE statements
 - It is only at this point that the logical plan is compiled into a physical plan

- How the physical plan is built
 - Pig prepares a series of MapReduce jobs
 - In Local mode, these are run locally on the JVM
 - In MapReduce mode, the jobs are sent to the Hadoop Cluster
 - IMPORTANT: The command EXPLAIN can be used to show the MapReduce plan
Statements: Multi-query execution

- There is a difference between DUMP and STORE
 - DUMP → stdout
 - Can be used for diagnosis
 - STORE → file
 - Allows for program/job optimizations

- Main optimization objective: minimize I/O
 - Consider the following example:

    ```
    A = LOAD 'input/pig/multiquery/A';
    B = FILTER A BY $1 == 'banana';
    STORE B INTO 'output/b';
    C = FILTER A BY $1 != 'banana';
    STORE C INTO 'output/c';
    ```

Statements: Multi-query execution (cont’d)

- In the example, relations B and C are both derived from A
 - Naively, this means that at the first STORE operator the input should be read
 - Then, at the second STORE operator, the input should be read again

- Pig will run this as a single MapReduce job
 - Relation A is going to be read only once
 - Then, each relation B and C will be written to the output

- If we use DUMP instead of STORE, Pig is forced to run two different MapReduce jobs
 - Waste of resources
Hadoop Hive
- Quick overview -

Motivation

- Limitation of MR
 - Have to use M/R model
 - Not Reusable
 - Error prone
 - For complex jobs:
 - Multiple stage of Map/Reduce functions
 - Just like ask developers to specify physical execution plan in the database
Overview

- Intuitive
 - Make the unstructured data looks like tables regardless how it really lay out
 - SQL based query can be directly against these tables
 - Generate specific execution plan for this query

- What’s Hive
 - A data warehousing system to store structured data on Hadoop file system
 - Provide an easy query these data by execution Hadoop MapReduce plans

Hive Components

- Shell Interface: Like the MySQL shell

- Driver:
 - Session handles, fetch, execution

- Complier:
 - Parse, plan, optimize

- Execution Engine:
 - DAG stage
 - Run map or reduce
Hive Architecture

- Web UI + Hive CLI + JDBC/ODBC
 - Browse, Query, DDL
- Metastore
 - Thrift API
- Hive QL
 - Parser
 - Planner
 - Execution
 - Optimizer
- Map Reduce
 - User-defined Map-reduce Scripts
 - UDF/UDAF
 - substr
 - sum
 - average
 - SerDe
 - CSV
 - Thrift
 - Regex
- HDFS
- FileFormats
 - TextFile
 - SequenceFile
 - RCFile

Data Model

- Tables
 - Basic type columns (int, float, boolean)
 - Complex type: List / Map (associative array)
- Partitions
- Buckets

Example

```sql
CREATE TABLE sales(
  id INT,
  items ARRAY<STRUCT<id:INT,name:STRING>>
)PARITIONED BY (ds STRING)
CLUSTERED BY (id) INTO 32 BUCKETS;
SELECT id FROM sales TABLESAMPLE (BUCKET 1 OUT OF 32)
```
Pros and Cons

- **Pros**
 - A easy way to process large scale data
 - Support SQL-based queries
 - Provide more user defined interfaces to extend
 - Programmability
 - Efficient execution plans for performance
 - Interoperability with other database tools

- **Cons**
 - No easy way to append data
 - Files in HDFS are immutable

Application

- **Log processing**
 - Daily Report
 - User Activity Measurement

- **Data/Text mining**
 - Machine learning (Training Data)

- **Business intelligence**
 - Advertising Delivery
 - Spam Detection
Hive Usage @ Facebook

- **Statistics per day:**
 - 4 TB of compressed new data added per day
 - 135TB of compressed data scanned per day
 - 7500+ Hive jobs on per day

- **Hive simplifies Hadoop:**
 - ~200 people/month run jobs on Hadoop/Hive
 - Analysts (non-engineers) use Hadoop through Hive
 - 95% of jobs are Hive Jobs