Predicate Logic (first order logic)

formula	intuitive meanings
ЭхР (x)	there is an x with property P
∀yP(y)	?
$\forall x \exists y (x = 2y)$?
∀ε(ε>0→∃n(1< ε))	?
$x < y \rightarrow \exists z(x < z \land z < y)$?
∀x∃y(x.y = 1)	?

formula	intuitive meanings
ЭхР(х)	there is an x with property P
∀yP(y)	for all y P holds (all y have the property P)
$\forall x \exists y (x = 2y)$	for all x there is a y such that x is two times y
∀ε(ε>0→∃n(1< ε))	for all positive ϵ there is an n such that 1< ϵ
$x < y \rightarrow \exists z(x < z \land z < y)$	if $x < y$, then there is a z such that $x < z$ and $z < y$
∀x∃y(x.y = 1)	for each x there exists an inverse y

The semantics of predicate logics

$\langle \mathsf{A}\,, \mathsf{R}_{1}, \ldots, \mathsf{R}_{\mathsf{n}}\,, \,\,\mathsf{F}_{1}, \ldots, \mathsf{F}_{\mathsf{m}}\,, \,\{\mathsf{c}_{\mathsf{i}} \big| \mathsf{i} \in \mathsf{I} \} \rangle$

 $\langle R, +, \cdot, -1, 0, 1 \rangle$ – the field of real numbers, $\langle N, < \rangle$ – the ordered set of natural numbers. **Definition 2.2.2** The similarity type of a structure $\mathfrak{A} = \langle A, R_1, \ldots, R_n, F_1, \ldots, F_m, \{c_i | i \in I\} \rangle$ is a sequence, $\langle r_1, \ldots, r_n; a_1, \ldots, a_m; \kappa \rangle$, where $R_i \subseteq A^{r_i}$, $F_j: A^{a_j} \to A, \kappa = |\{c_i | i \in I\}|$ (cardinality of I).

what is A⁰ ?

what is f: $A^0 \rightarrow A$?

Write down the similarity type for the following structures:

Give structures with type $\langle 1, 1; -; 3 \rangle, \langle 4; -; 0 \rangle$.

alphabet

 $\langle \mathbf{r}_1,...,\mathbf{r}_n; \mathbf{a}_1,...,\mathbf{a}_m; \kappa \rangle$, with $\mathbf{r}_i \ge 0, \mathbf{a}_j > 0$.

1.Predicate symbols: sequence P_1, \ldots, P_n , plus = 2.Function symbols: sequence f_1, \ldots, f_m 3.Constant symbols c_i for $i \in I$ with $|I| = \kappa$ 4.Variables: x_0, x_1, x_2, \ldots (countably many) 5. Connectives: $v, \Lambda, \rightarrow, \neg, \leftrightarrow, \bot \forall, \exists$ 6. auxiliary symbols: (,),

we write also $\langle <\!P_1,\ldots,P_n;f_1,\ldots,f_m,\{\bm{c}_i\,\}_{i\in I}\rangle$ to relate with

 $\langle \mathbf{r}_1, \ldots, \mathbf{r}_n; \mathbf{a}_1, \ldots, \mathbf{a}_m; \kappa \rangle$

$\langle \mathbf{r}_1,...,\mathbf{r}_n; \mathbf{a}_1,...,\mathbf{a}_m; \kappa \rangle$, with $\mathbf{r}_i \ge 0, \mathbf{a}_j > 0$.

Definition $(i) \ \overline{c}_i \in X (i \in I) \ and \ x_i \in X (i \in N),$ $(ii) \ t_1, \dots, t_{a_i} \in X \Rightarrow f_i(t_1, \dots, t_{a_i}) \in X, \ for \ 1 \le i \le m$

TERM is our set of terms.

Definition FORM is the smallest set X with the properties: (i) $\perp \in X; P_i \in X \text{ if } r_i = 0; t_1, \ldots, t_{r_i} \in TERM \Rightarrow$ $P_i(t_1, \ldots, t_{r_i}) \in X; t_1, t_2 \in TERM \Rightarrow t_1 = t_2 \in X,$ (ii) $\varphi, \psi \in X \Rightarrow (\varphi \Box \psi) \in X, \text{ where } \Box \in \{\land, \lor, \rightarrow, \leftrightarrow\},$ (iii) $\varphi \in X \Rightarrow (\neg \varphi) \in X,$ (iv) $\varphi \in X \Rightarrow ((\forall x_i)\varphi), ((\exists x_i)\varphi) \in X.$

proof by induction

Let A(t) be a property of terms. If A(t) holds for t a variable or Lemma a constant, and if $A(t_1), A(t_2), \ldots, A(t_n) \Rightarrow A(f(t_1, \ldots, t_n))$, for all function symbols f, then A(t) holds for all $t \in TERM$.

Lemma

Let $A(\varphi)$ be a property of formulas. If (i) $A(\varphi)$ for atomic φ , (*ii*) $A(\varphi), A(\psi) \Rightarrow A(\varphi \Box \psi),$ (*iii*) $A(\varphi) \Rightarrow A(\neg \varphi),$ (iv) $A(\varphi) \Rightarrow A((\forall x_i)\varphi), A((\exists x_i)\varphi)$ for all *i*, then $A(\varphi)$ holds for all $\varphi \in FORM.$

Example of a language of type $\langle 2; 2, 1; 1 \rangle$.

```
predicate symbols: L, =
function symbols: p, i
constant symbol: e
```

Definition by Recursion on TERM: Let $H_0: Var \cup Const \to A$ (i.e. H_0 is defined on variables and constants), $H_i: A^{a_i} \to A$, then there is a unique mapping $H: TERM \to A$ such that

 $\begin{cases} H(t) = H_0(t) \text{ for } t \text{ a variable or a constant,} \\ H(f_i(t_1, \dots, t_{a_i})) = H_i(H(t_1), \dots, H(t_{a_i})). \end{cases}$

Definition by Recursion on FORM:

Let $H_{at} : At \to A$ (i.e. H_{at} is defined on atoms), $H_{\Box} : A^2 \to A$, $(\Box \in \{\lor, \land, \to, \leftrightarrow\})$ $H_{\neg} : A \to A$, $H_{\forall} : A \times N \to A$, $H_{\exists} : A \times N \to A$.

then there is a unique mapping $H: FORM \to A$ such that

$$\begin{cases} H(\varphi) &= H_{at}(\varphi) \text{ for atomice } \varphi, \\ H(\varphi \Box \psi) &= H_{\Box}(H(\varphi), H(\psi)), \\ H(\neg \varphi) &= H_{\neg}(H(\varphi)), \\ H(\forall x_i \varphi) &= H_{\forall}(H(\varphi), i), \\ H(\exists x_i(\varphi) &= H_{\exists}(H(\varphi), i). \end{cases}$$

free variables

- t or ϕ is called closed if FV(t) = \emptyset , resp. FV(ϕ) = \emptyset .
- a closed formula is also called a sentence.
- a formula without quantifiers is called open.
- TERM_c denotes the set of closed terms;
- SENT denotes the set of sentences.

Exercise:

- define the set $\mathsf{BV}(\phi)$ of bound variables of ϕ
- $FV(\phi) \cap BV(\phi) = \emptyset$?

The notion of SUBFORMULa

- Sub(ϕ) = { ϕ } for atomic ϕ
- Sub($\phi_1 \Box \phi_2$) = Sub(ϕ_1) \cup Sub(ϕ_2) \cup { $\phi_1 \Box \phi_2$ } for $\Box \in \{\land, \lor, \rightarrow\}$
- Sub₊($\neg \phi$) = Sub(ϕ) \cup { $\neg \phi$ }
- Sub $(Qx.\phi) = Sub(\phi) \cup \{Qx.\phi\} \text{ for } Q \in \{\forall, \exists\}$

Free and Bound occurrences of variables

- an occurrence of a variable x in δ is BOUND, if x occurs in $\phi \in SUB\{\delta\}$ and $\phi \equiv \{Qx.\theta\}$ for $Q \in \{\forall, \exists\}$
- an occurrence of a variable x in δ is FREE, if x does not occur in any $\phi \in SUB\{\delta\}$ with $\phi \equiv \{Qx.\theta\}$ for $Q \in \{\forall, \exists\}$

SUBSTITUTION

φ[t/x]?

SUBSTITUTION

Definition Let s and t be terms, then s[t/x] is defined by: $:= \begin{cases} y & if \ y \not\equiv x \\ t & if \ y \equiv x \end{cases}$ (i) y[t/x] $c[t/x] \qquad \qquad := c$ (*ii*) $f(t_1, \ldots, t_p)[t/x] := f(t_1[t/x], \ldots, t_p[t/x]).$ **Definition** $\varphi[t/x]$ is defined by: $(i) \perp [t/x] \qquad \qquad := \bot,$ P[t/x] := P for propositions P, $P(t_1, \ldots, t_p)[t/x] := P(t_1[t/x], \ldots, t_p[t/x]),$ $(t_1 = t_2)[t/x] := t_1[t/x] = t_2[t/x],$ (*ii*) $(\varphi \Box \psi)[t/x] := \varphi[t/x] \Box \psi[t/x],$

$$(\neg \varphi)[t/x] := \neg \varphi[t/x] (iii) (\forall y \varphi)[t/x] := \begin{cases} \forall y \varphi[t/x] & \text{if } x \neq y \\ \forall y \varphi & \text{if } x \equiv y \end{cases} \\ \exists y \varphi[t/x] & \text{if } x \neq y \\ \exists y \varphi & \text{if } x \equiv y \end{cases}$$

Define symultaneous substitution $\delta[t_1,...,t_n/x_1,...,x_n]$

We must forbid dangerous substitutions

$$t = (..., y...) \qquad \varphi = (..., (\exists y..., x...)...)$$
$$\varphi[t/x] = (..., (\exists y..., y...)...)$$
$$y \text{ is now bound!}$$

Definition

t is free for x in ϕ if

(i) ϕ is atomic,

(ii) $\varphi := \varphi_1 \Box \varphi_2$ (or $\varphi := \neg \varphi_1$) and t is free for x in φ_1 and φ_2 (resp. φ_1),

(iii) $\phi := \exists y \psi$ (or $\phi := \forall y \psi$) and if $x \in FV(\phi)$, then $y \notin FV(t)$ and t is free for x in ψ .

proposition

t is free for x in $\varphi \Leftrightarrow$ the variables of t in $\varphi[t/x]$ are not

bound by a quantifier.

proof by induction (exercise!)

SUBSTITUTION

Define symultaneus substitution $\delta[t_1,...,t_n/x_1,...,x_n]$

Check which terms are free in the following cases, and carry out the substitution:

(a) x for x in x = x, (b) y for x in x = x, (c) x + y for y in $z = \overline{0}$, (d) $\overline{0} + y$ for y in $\exists x(y = x)$, (e) x + y for z in $\exists w(w + x = \overline{0})$, $\exists w(w + x = \overline{0})$, (f) x + w for z in $\forall w(x + z = \overline{0})$, $\exists y(z = x)$, $\exists y(z = x)$, $\forall z(z = y)$.

Notation

in the same context $\phi(x)$ and $\phi(t)$ denote respectively ϕ and $\phi[t/x]$

hpD

$$\begin{aligned} \frac{[x=0]}{\forall x(x=0)} \\ \hline x = 0 \to \forall x(x=0) \\ \forall x(x=0 \to \forall x(x=0)) \\ \hline 0 = 0 \to \forall x(x=0) \end{aligned}$$

$$\frac{[x=0]}{\forall x(x=0)} \text{ NO!}$$

$$\frac{x=0 \rightarrow \forall x(x=0)}{\forall x(x=0 \rightarrow \forall x(x=0))}$$

$$0 = 0 \rightarrow \forall x(x=0)$$

$$\frac{\left[\forall x \neg \forall y (x = y)\right]}{\neg \forall y (y = y)}$$
$$\overline{\forall x \neg \forall y (x = y) \rightarrow \neg \forall y (y = y)}$$

$$\frac{\left[\forall x \neg \forall y (x = y)\right]}{\neg \forall y (y = y)} \text{NO!}$$
$$\forall x \neg \forall y (x = y) \rightarrow \neg \forall y (y = y)$$

$\forall x \forall y \varphi(x, y) \to \forall y \forall x \varphi(x, y)$

 $\frac{[\forall x \forall y \varphi(x, y)]}{\forall y \varphi(x, y)} \forall E$

 $\frac{[\forall x \forall y \varphi(x, y)]}{\forall y \varphi(x, y)} \forall E$ $\frac{\forall y \varphi(x, y)}{\varphi(x, y)} \forall E$
$\frac{\left[\forall x \forall y \varphi(x, y)\right]}{\forall y \varphi(x, y)} \forall E$ $\frac{\forall y \varphi(x, y)}{\varphi(x, y)} \forall E$ $\frac{\varphi(x, y)}{\forall x \varphi(x, y)} \forall I$

 $\frac{\left[\forall x \forall y \varphi(x, y)\right]}{\forall y \varphi(x, y)} \forall E$ $\frac{\forall y \varphi(x, y)}{\varphi(x, y)} \forall E$ $\frac{\varphi(x, y)}{\forall x \varphi(x, y)} \forall I$ $\frac{\forall y \forall x (\varphi(x, y))}{\forall y \forall x (\varphi(x, y))} \forall I$

 $\frac{\left[\forall x \forall y \varphi(x, y)\right]}{\forall y \varphi(x, y)} \forall E \\
\frac{\forall y \varphi(x, y)}{\varphi(x, y)} \forall E \\
\frac{\varphi(x, y)}{\forall x \varphi(x, y)} \forall I \\
\frac{\forall y \forall x (\varphi(x, y))}{\forall y \forall x (\varphi(x, y))} \forall I$ $\forall x \forall y \varphi(x, y) \to \forall y \forall x \varphi(x, y)$

 $\forall x(\varphi \land \psi) \to \forall x\varphi \land \forall x\psi$

Let $x \notin FV(\varphi)$

 $\forall x(\varphi \to \psi(x)) \to (\varphi \to \forall x(\psi(x)))$

Let
$$x \notin FV(\varphi)$$

$$\frac{\left[\forall x(\varphi \to \psi(x))\right]}{\varphi \to \psi(x)} \forall E \qquad [\varphi] \\ \frac{\psi(x)}{\forall x\psi(x)} \forall I \\ \frac{\psi(x)}{\forall x\psi(x)} \forall I \\ \frac{\forall x\psi(x)}{\varphi \to \forall x\psi(x)} \to I \\ \forall x(\varphi \to \psi(x)) \to (\varphi \to \forall x(\psi(x)))$$

$\Gamma \vdash \varphi(x) \Rightarrow \Gamma \vdash \forall x \varphi(x) \text{ if } x \notin FV(\psi) \text{ for all } \psi \in \Gamma$ $\Gamma \vdash \forall x \varphi(x) \Rightarrow \Gamma \vdash \varphi(t) \text{ if } t \text{ is free for } x \text{ in } \varphi.$

1. Show: (i)
$$\vdash \forall x(\varphi(x) \to \psi(x)) \to (\forall x\varphi(x) \to \forall x\psi(x)),$$

(ii) $\vdash \forall x\varphi(x) \to \neg \forall x \neg \varphi(x),$
(iii) $\vdash \forall x\varphi(x) \to \forall z\varphi(z)$ if z does not occur in $\varphi(x),$

$\langle r_1, \ldots, r_n; a_1, \ldots, a_m; \kappa \rangle$

$$\langle P1, \ldots, Pn; f1, \ldots, fm, \{C_i\}_{i < k} \rangle$$

 $\mathfrak{U} = \langle A, P1, \ldots, Pn; f1, \ldots, fm, \{C_i\}_{i < k} \rangle$

Bijective mapping I between the alphabet and the elements of a mathematical structure

$$I(\mathbf{P_i}) = P_i$$
$$I(\mathbf{f_i}) = f_i$$
$$I(\mathbf{C_i}) = C_i$$

Given \mathfrak{U} . and a corresponding assignment I an environment, is a function $\rho: VAR \rightarrow A$ ENV={ $\rho \mid \rho: VAR \rightarrow A$ }

an interpretation of the terms of L in \mathfrak{U} , is a mapping [-]: TERM x ENV \rightarrow | \mathfrak{U} | satisfying: (i)[\mathbf{c}]_{ρ} = I(c) (ii)[\mathbf{x}]_{ρ} = $\rho(\mathbf{x})$, (iii)[$\mathbf{f}(t_1,...,t_k)$]_{ρ} = I(f)([t_1]_{ρ},...,[t_k]_{ρ}) The relation \models

- 1. **U**, $\rho \models P(t_1,...,t_n) \Leftrightarrow (\llbracket t_1 \rrbracket_{\rho},...,\llbracket t_n \rrbracket_{\rho})$
- 2. \mathfrak{U} , $\rho \models \phi \land \psi \Leftrightarrow \mathfrak{U}$, $\rho \models \phi$ and \mathfrak{U} , $\rho \models \psi$,
- 3. \mathfrak{U} , $\rho \models \phi \lor \psi \Leftrightarrow \mathfrak{U}$, $\rho \models \phi$ or \mathfrak{U} , $\rho \models \psi$
- 4. $\mathfrak{U}, \rho \vDash \neg \phi \Leftrightarrow \mathfrak{U}, \rho \nvDash \phi$,

5.
$$\mathfrak{U}$$
, $\rho \models \phi \rightarrow \psi \Leftrightarrow (\mathfrak{U}, \rho \models \phi \Rightarrow \mathfrak{U}, \rho \models \psi)$,

- 6. $\mathfrak{U}, \rho \models \forall x \phi \Leftrightarrow \mathfrak{U}, \rho[\mathbf{a} \mapsto x] \models \phi$, for each $a \in |\mathfrak{U}|$.
- 7. $\mathfrak{U}, \rho \models \exists x \phi \Leftrightarrow \mathfrak{U}, \rho[a \mapsto x] \models \phi$, for some $a \in |\mathfrak{U}|$.

where

 $\rho[\mathbf{a} \mapsto \mathbf{x}](\mathbf{y}) = (\mathbf{if } \mathbf{y} = \mathbf{x} \mathbf{ then } \mathbf{a} \mathbf{ else } \rho(\mathbf{y}))$

 $\mathfrak{U} \models \varphi (\mathfrak{U} \text{ is a model of } \varphi) \Leftrightarrow \mathbf{for each } \rho, \mathfrak{U}, \rho \models \varphi,$

 $= \phi (\phi \text{ is valid/true}) \Leftrightarrow$

 $\mathfrak{U} \models \phi$ for all \mathfrak{U} (of the appropriate type),

- - $\mathfrak{U}, \rho \models \psi$ for all $\psi \in \Gamma$,
- Solution $\Gamma \models \varphi (\varphi \text{ is consequence of } \Gamma) \Leftrightarrow$

for each $\rho \mathfrak{U}$ and for each $\rho(\mathfrak{U}, \rho \models \Gamma \Rightarrow \mathfrak{U}, \rho \models \phi)$,

exercises (i) $\models \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$ $(ii) \models \neg \exists x \varphi \leftrightarrow \forall x \neg \varphi$ $(iii) \models \forall x \varphi \leftrightarrow \neg \exists x \neg \varphi$ $(iv) \models \exists x \varphi \leftrightarrow \neg \forall x \neg \varphi$

exercises

 $\begin{array}{ll} (i) \models \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi \\ (ii) \models \neg \exists x \varphi \leftrightarrow \forall x \neg \varphi \\ (iii) \models \forall x \varphi \leftrightarrow \neg \exists x \neg \varphi \\ (iv) \models \exists x \varphi \leftrightarrow \neg \forall x \neg \varphi \end{array}$

exercises

(i)
$$\models \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$$

(ii) $\models \neg \exists x \varphi \leftrightarrow \forall x \neg \varphi$
(iii) $\models \forall x \varphi \leftrightarrow \neg \exists x \neg \varphi$
(iv) $\models \exists x \varphi \leftrightarrow \neg \forall x \neg \varphi$
 $i-1$) $\models \neg \forall x \varphi \rightarrow \exists x \neg \varphi$
 $\forall 2i, \forall e. (2i, p \models \neg \forall x \varphi \Rightarrow 2i, p \models \exists x \neg \varphi)$
 $2i, p \models \neg \forall x \varphi \Leftrightarrow 2i, e \neq \forall x \varphi \Leftrightarrow$
 $i \Rightarrow \exists e \in |2i| 2i, e[x \mapsto e] \neq \varphi \Leftrightarrow$
 $i \Rightarrow \exists e \in |2i| 2i, e[x \mapsto e] \models \neg \varphi \notin$
 $i \Rightarrow \exists e \in |2i| 2i, e[x \mapsto e] \models \neg \varphi \notin$

4× Q(x)) JN 21 # 4x(p(x)

4× Q(x)) JN 21 # 4x(p(x)

Change of Bound Variables

If x, y are free for z in φ and x,y \notin FV(φ)), (or simply: if x and y does not occur in φ) then $\vDash \exists x(\varphi[x/z]) \leftrightarrow \exists y(\varphi[y/z]),$ $\vDash \forall x(\varphi[x/z]) \leftrightarrow \forall y(\varphi[y/z]).$

Every formula is equivalent to one in which no variable occurs both free and bound.

IDENTITY

1.
$$\forall x(x = x),$$

2. $\forall xy(x=y \rightarrow y=x),$
3. $\forall xyz(x=y \wedge y=z \rightarrow x=z),$
4. $\forall x_1 \dots x_n y_1 \dots y_n(\bigwedge_{i=1,n} x_i = y_i \rightarrow t(x_1, \dots, x_n) = t(y_1, \dots, y_n)))$
5. $\forall x_1 \dots x_n y_1 \dots y_n(\bigwedge_{i=1,n} x_i = y_i \rightarrow (\phi(x_1, \dots, x_n) \rightarrow \phi(y_1, \dots, y_n))))$

exercise:

$$\models \forall x \exists y(x = y)$$

$\Gamma \vdash \sigma \Rightarrow \Gamma \vDash \sigma$

hp \mathcal{D} ⊆ Γ x∉FV(**hp** \mathcal{D})

hp⊅)

$$\begin{array}{c} (\forall E) \quad \mathcal{D} \\ \frac{\forall x \varphi(x)}{\varphi(t)} \end{array}$$

 $\llbracket s[t/x] \rrbracket_{\rho} = \llbracket s \rrbracket_{\rho[x \mapsto \llbracket t \rrbracket_{\rho}]}$

$$\mathfrak{U}, \rho \vDash \varphi[t/x] \text{ iff } \mathfrak{U}, \rho[x \mapsto [[t]]\rho] \vDash \varphi$$

t free for x in φ

by IH: $\Gamma \models \forall x.\phi$ i.e. $\forall \mathfrak{U} \forall \rho, \mathfrak{U}, \rho \models \Gamma \Rightarrow \mathfrak{U}, \rho \models \forall x.\phi$

 $\mathfrak{U}, \rho \vDash \forall x. \phi \Rightarrow \forall a \ \mathfrak{U}, \rho[x \mapsto a] \vDash \phi \Rightarrow$

 $\forall t \ \mathfrak{U}, \rho[x \mapsto \llbracket t \rrbracket] \models \phi \Leftrightarrow \forall t \ \mathfrak{U}, \rho \models \phi[t/x]$

and therefore $\forall t(\mathfrak{U}, \rho \models \forall x. \phi(\rho) \Rightarrow \mathfrak{U}, \rho \models \phi[t/x])$

Adding the Existential Quantifier

$$\frac{ \begin{bmatrix} \forall x(\varphi(x) \to \psi) \end{bmatrix}^3}{\varphi(x) \to \psi} \forall E \\ \frac{[\exists x \varphi(x)]^2}{\psi} \exists E_1 \\ \frac{\psi}{\exists x \varphi(x) \to \psi} \to I_2 \\ \forall x(\varphi(x) \to \psi) \to (\exists x \varphi(x) \to \psi) \to I_3 \end{bmatrix}$$

$\exists x(\varphi(x) \lor \psi(x)) \to \exists x\varphi(x) \lor \exists x\psi(x)$

 $\vdash \exists x \varphi(x) \leftrightarrow \neg \forall x \neg \varphi(x).$

 $\forall E \ \frac{\forall x\varphi}{\varphi[t/x]}$ $\forall I \ \frac{\varphi}{\forall x\varphi}$ [arphi] \bullet $\frac{\cdot}{\psi}$ $\exists E \ \underline{\exists x\varphi}$ $\exists I \; \frac{\varphi[t/x]}{\exists x\varphi}$

$$\frac{\forall x(x=x)}{x=x} \forall E$$
$$\exists y(x=y))$$

$$\frac{\forall x(x=x)}{x=x} \forall E$$
$$\frac{\forall E}{\exists y(x=y)} \exists I$$

<u>∀x.φ</u> φ[t/x] ≡ψ[u/y]

$$\frac{\forall x(x=x)}{(x=x)[x/x]} \forall E$$

<u>∀x.φ</u> φ[t/x] ≡ψ[u/y]

$$\frac{\forall x(x = x)}{(x=x)[x/x]} \equiv (x=y)[x/y]$$
∀x.φ ψ[u/y] ∃y.ψ

$$\frac{\forall x(x = x)}{(x=y)[x/y]} \forall E$$
$$\frac{(x=y)[x/y]}{\exists y(x = y))} \exists I$$

1.
$$\vdash \exists x(\varphi(x) \land \psi) \leftrightarrow \exists x\varphi(x) \land \psi \text{ if } x \notin FV(\psi),$$

2. $\vdash \forall x(\varphi(x) \lor \psi) \leftrightarrow \forall x\varphi(x) \lor \psi \text{ if } x \notin FV(\psi),$
3. $\vdash \forall x\varphi(x) \leftrightarrow \neg \exists x \neg \varphi(x),$
4. $\vdash \neg \forall x\varphi(x) \leftrightarrow \exists x \neg \varphi(x),$
5. $\vdash \neg \exists x\varphi(x) \leftrightarrow \forall x \neg \varphi(x),$
6. $\vdash \exists x(\varphi(x) \rightarrow \psi) \leftrightarrow (\forall x\varphi(x) \rightarrow \psi) \text{ if } x \notin FV(\psi),$
7. $\vdash \exists x(\varphi \rightarrow \psi(x)) \leftrightarrow (\varphi \rightarrow \exists x\psi(x)) \text{ if } x \notin FV(\varphi),$
8. $\vdash \exists x \exists y\varphi \leftrightarrow \exists y \exists x\varphi,$
9. $\vdash \exists x\varphi \leftrightarrow \varphi \text{ if } x \notin FV(\varphi).$

Natural Deduction and Identity

$$\frac{x=y}{y=x} \operatorname{RI}_2 \qquad \qquad \overline{x=x} \quad \operatorname{RI}_1$$

$$\frac{x = y \quad y = z}{x = z} \operatorname{RI}_3$$

$$\frac{x_1 = y_1, \dots, x_n = y_n}{t(x_1, \dots, x_n) = t(y_1, \dots, y_n)} \operatorname{RI}_4 \qquad \frac{x_1 = y_1, \dots, x_n = y_n}{t[x_1, \dots, x_n/z_1, \dots, z_n] = t[y_1, \dots, y_n/z_1, \dots, z_n]}$$
$$\frac{x_1 = y_1, \dots, x_n = y_n \quad \varphi(x_1, \dots, x_n)}{\varphi(y_1, \dots, y_n)} \operatorname{RI}_4 \qquad \frac{x_1 = y_1, \dots, x_n = y_n \quad \varphi[x_1, \dots, x_n/z_1, \dots, z_n]}{\varphi[y_1, \dots, y_n/z_1, \dots, z_n]}$$

$$\frac{x = y \quad x^2 + y^2 > 12x}{2y^2 > 12x} \qquad \frac{x = y \quad x^2 + y^2 > 12x}{x^2 + y^2 > 12y} \qquad \frac{x = y \quad x^2 + y^2 > 12x}{2y^2 > 12y}$$

Lemma 2.10.2 Let L be of type
$$\langle r_1, \ldots, r_n; a_1, \ldots, a_m; k \rangle$$
. If the rules

$$\frac{x_1 = y_1, \ldots, x_{r_i} = y_{r_i} \quad P_i(x_1, \ldots, x_{r_i})}{P_i(y_1, \ldots, y_{r_i})} \text{ for all } i \leq n$$

and

$$\frac{x_1 = y_1, \dots, x_{a_j} = y_{a_j}}{f_j(x_1, \dots, x_{a_j}) = f_j(y_1, \dots, y_{a_j})} \text{ for all } j \le m$$

are given, then the rules RI_4 are derivable.