
Predicate
Logic

(first order logic)

formula intuitive meanings

∃xP (x) there is an x with property P

∀yP(y) ?

∀x∃y(x = 2y) ?

∀ε(ε>0→∃n(1< ε)) ?

x < y → ∃z(x < z ∧ z < y) ?

∀x∃y(x.y = 1) ?

formula intuitive meanings

∃xP (x) there is an x with property P

∀yP(y) for all y P holds (all y have the property P)

∀x∃y(x = 2y) for all x there is a y such that x is two times y

∀ε(ε>0→∃n(1< ε)) for all positive ε there is an n such that 1< ε

x < y → ∃z(x < z ∧ z < y) if x < y, then there is a z such that x < z and z < y

∀x∃y(x.y = 1) for each x there exists an inverse y

The semantics of predicate logics

 ⟨A , R1,…,Rn , F1,…,Fm , {ci|i ∈ I}⟩

Structure

 𝖀=⟨A , R1,…,Rn , F1,…,Fm , {ci|i ∈ I}⟩

Structure

A non-empty set
relations on A functions on A

elements of A

⟨R, +, ·,−1 , 0, 1⟩ – the field of real numbers,
⟨N, <⟩ – the ordered set of natural numbers.

notation |𝖀 | =A

2.2 Structures 59

We denote structures by Gothic capitals: A, B, C, D, The script letters
are shown on page 56.

If we overlook for a moment the special properties of the relations and
operations (e.g. commutativity of addition on the reals), then what remains
is the type of a structure, which is given by the number of relations, functions
(or operations), and their respective arguments, plus the number (cardinality)
of constants.

Definition 2.2.2 The similarity type of a structure A = ⟨A, R1, . . . , Rn, F1,
. . . , Fm, {ci|i ∈ I}⟩ is a sequence, ⟨r1, . . . , rn; a1, . . . , am; κ⟩, where Ri ⊆ Ari ,
Fj : Aaj → A, κ = |{ci |i ∈ I}| (cardinality of I).

The two structures in our example have (similarity) type ⟨−; 2, 2, 1; 2⟩
and ⟨2;−; 0⟩. The absence of relations, functions is indicated by −. There
is no objection to extending the notion of structure to contain arbitrarily
many relations or functions, but the most common structures have finite types
(including finitely many constants).

It would, of course, have been better to use similar notations for our struc-
tures, i.e. ⟨A; R1, . . . , Rn; F1, . . . , Fm; ci|i ∈ I⟩, but that would be too pedantic.

If R ⊆ A, then we call R a property (or unary relation), if R ⊆ A2, then
we call R a binary relation, if R ⊆ An, then we call R an n-ary relation.

The set A is called universe of A. Notation. A = |A|. A is called (in)finite
if its universe is (in)finite. We will mostly commit a slight abuse of language
by writing down the constants instead of the set of constants, in the example
of the field of real numbers we should have written: ⟨R, +, ·,−1 , {0, 1}⟩, but
⟨R, +, ·,−1 , 0, 1⟩ is more traditional. Among the relations one finds in struc-
tures, there is a very special one: the identity (or equality) relation.

Since mathematical structures, as a rule, are equipped with the identity
relation, we do not list the relation separately. It does, therefore, not occur in
the similarity type. We henceforth assume all structures to possess an iden-
tity relation and we will explicitly mention any exceptions. For purely logical
investigations it makes, of course, perfect sense to consider a logic without
identity, but the present book caters for readers from the mathematics or
computer science community.

One also considers the “limiting cases” of relations and functions, i.e. 0-ary
relations and functions. An 0-ary relation is a subset of A∅. Since A∅ = {∅}
there are two such relations: ∅ and {∅} (considered as ordinals: 0 and 1). 0-ary
relations can thus be seen as truth values, which makes them play the role
of the interpretations of propositions. In practice 0-ary relations do not crop
up, e.g. they have no role to play in ordinary algebra. Most of the time the
reader can joyfully forget about them, nonetheless we will allow them in our
definition because they simplify certain considerations. A 0-ary function is a

what is A0 ?

what is f: A0 →A ?

what is A0 ?

what is f: A0 →A ?

what is An ?

what is f: ∅ →A ?

60 2 Predicate Logic

mapping from A∅ into A, i.e. a mapping from {∅} into A. Since the mapping
has a singleton as domain, we can identify it with its range.

In this way 0-ary functions can play the role of constants. The advantage
of the procedure is, however, negligible in the present context, so we will keep
our constants.

Exercises

1. Write down the similarity type for the following structures:
(i) ⟨Q, <, 0⟩
(ii) ⟨N, +, ·, S, 0, 1, 2, 3, 4, . . . , n, . . .⟩,whereS(x) = x + 1,
(iii) ⟨P(N),⊆,∪,∩,c , ∅⟩,
(iv) ⟨Z/(5), +, ·,−,−1 , 0, 1, 2, 3, 4⟩,
(v) ⟨{0, 1},∧,∨,→,¬, 0, 1⟩ , where ∧,∨,→,¬ operate according to

the ordinary truth tables,
(vi) ⟨R, 1⟩,
(vii) ⟨R⟩,
(viii) ⟨R, N, <, T, 2, | |,−⟩, where T (a, b, c) is the relation‘b is between

a and c’,2is the square function, − is the subtraction function
and | | the absolute value.

2. Give structures with type ⟨1, 1;−; 3⟩, ⟨4;−; 0⟩.

2.3 The Language of a Similarity Type

The considerations of this section are generalizations of those in section 1.1.1.
Since the arguments are rather similar, we will leave a number of details
to the reader. For convenience we fix the similarity type in this section:
⟨r1, . . . , rn; a1, . . . , am; κ⟩, where we assume ri ≥ 0, aj > 0.
The alphabet consists of the following symbols:

1. Predicate symbols: P1, . . . , Pn,
.=

2. Function symbols: f1, . . . , fm

3. Constant symbols: ci for i ∈ I
4. Variables: x0, x1, x2, . . .(countably many)
5. Connectives: ∨,∧,→,¬,↔,⊥ ∀, ∃
6. Auxiliary symbols: (,),

∀ and ∃ are called the universal and existential quantifier. The curiously look-
ing equality symbol has been chosen to avoid possible confusion, there are in
fact a number of equality symbols in use: one to indicate the identity in the
models, one to indicate the equality in the meta language and the syntactic
one introduced above. We will, however, practice the usual abuse of language,
and use these distinctions only if it is really necessary . As a rule the reader
will have no difficulty in recognising the kind of identity involved.

60 2 Predicate Logic

mapping from A∅ into A, i.e. a mapping from {∅} into A. Since the mapping
has a singleton as domain, we can identify it with its range.

In this way 0-ary functions can play the role of constants. The advantage
of the procedure is, however, negligible in the present context, so we will keep
our constants.

Exercises

1. Write down the similarity type for the following structures:
(i) ⟨Q, <, 0⟩
(ii) ⟨N, +, ·, S, 0, 1, 2, 3, 4, . . . , n, . . .⟩,whereS(x) = x + 1,
(iii) ⟨P(N),⊆,∪,∩,c , ∅⟩,
(iv) ⟨Z/(5), +, ·,−,−1 , 0, 1, 2, 3, 4⟩,
(v) ⟨{0, 1},∧,∨,→,¬, 0, 1⟩ , where ∧,∨,→,¬ operate according to

the ordinary truth tables,
(vi) ⟨R, 1⟩,
(vii) ⟨R⟩,
(viii) ⟨R, N, <, T, 2, | |,−⟩, where T (a, b, c) is the relation‘b is between

a and c’,2is the square function, − is the subtraction function
and | | the absolute value.

2. Give structures with type ⟨1, 1;−; 3⟩, ⟨4;−; 0⟩.

2.3 The Language of a Similarity Type

The considerations of this section are generalizations of those in section 1.1.1.
Since the arguments are rather similar, we will leave a number of details
to the reader. For convenience we fix the similarity type in this section:
⟨r1, . . . , rn; a1, . . . , am; κ⟩, where we assume ri ≥ 0, aj > 0.
The alphabet consists of the following symbols:

1. Predicate symbols: P1, . . . , Pn,
.=

2. Function symbols: f1, . . . , fm

3. Constant symbols: ci for i ∈ I
4. Variables: x0, x1, x2, . . .(countably many)
5. Connectives: ∨,∧,→,¬,↔,⊥ ∀, ∃
6. Auxiliary symbols: (,),

∀ and ∃ are called the universal and existential quantifier. The curiously look-
ing equality symbol has been chosen to avoid possible confusion, there are in
fact a number of equality symbols in use: one to indicate the identity in the
models, one to indicate the equality in the meta language and the syntactic
one introduced above. We will, however, practice the usual abuse of language,
and use these distinctions only if it is really necessary . As a rule the reader
will have no difficulty in recognising the kind of identity involved.

alphabet
⟨r1,...,rn ; a1,...,am;κ⟩, with ri ≥ 0,aj > 0.

1.Predicate symbols: sequence P1, . . . , Pn, plus =.

2.Function symbols: sequence f1,…,fm
3.Constant symbols ci for i ∈ I with |I|=κ

4.Variables: x0,x1,x2,...(countably many)

5. Connectives: ∨,∧,→,¬,↔,⊥ ∀,∃

6. auxiliary symbols: (,),

we write also ⟨<P1, . . . , Pn; f1,…,fm,{ci }i∈I⟩ to relate with

 ⟨r1,. . . ,rn ;a1,…,am;κ⟩

2.3 The Language of a Similarity Type 61

Next we define the two syntactical categories.

Definition 2.3.1 TERM is the smallest set X with the properties
(i) ci ∈ X(i ∈ I) and xi ∈ X(i ∈ N),
(ii) t1, . . . , tai ∈ X ⇒ fi(t1, . . . , tai) ∈ X, for 1 ≤ i ≤ m

TERM is our set of terms.

Definition 2.3.2 FORM is the smallest set X with the properties:
(i) ⊥∈ X ; Pi ∈ X if ri = 0; t1, . . . , tri ∈ TERM ⇒

Pi(t1, . . . , tri) ∈ X ; t1, t2 ∈ TERM ⇒ t1 = t2 ∈ X,
(ii) ϕ, ψ ∈ X ⇒ (ϕ!ψ) ∈ X, where ! ∈ {∧,∨,→,↔},
(iii) ϕ ∈ X ⇒ (¬ϕ) ∈ X,
(iv) ϕ ∈ X ⇒ ((∀xi)ϕ), ((∃xi)ϕ) ∈ X.

FORM is our set of formulas. We have introduced t1 = t2 separately, but
we could have subsumed it under the first clause. If convenient, we will not
treat equality separately. The formulas introduced in (i) are called atoms. We
point out that(i) includes the case of 0-ary predicate symbols, conveniently
called proposition symbols.

A proposition symbol is interpreted as a 0-ary relation, i.e. as 0 or 1 (cf.
2.2.2). This is in accordance with the practice of propositional logic to in-
terpret propositions as true or false. For our present purpose propositions
are a luxury. In dealing with concrete mathematical situations (e.g. groups
or posets) one has no reason to introduce propositions (things with a fixed
truth value). However, propositions are convenient (and even important) in
the context of Boolean-valued logic or Heyting-valued logic, and in syntactical
considerations.

We will, however, allow a special proposition: ⊥, the symbol for the false
proposition (cf. 1.2).

The logical connectives have, what one could call ‘a domain of action’,
e.g. in ϕ → ψ the connective → yields the new formula ϕ → ψ from formu-
las ϕ and ψ, and so → bears on ϕ, ψ and all their parts. For propositional
connectives this is not terribly interesting, but for quantifiers (and variable-
binding operators in general) it is. The notion goes by the name of scope .
So in ((∀x)ϕ) and ((∃x)ϕ), ϕ is the scope of the quantifier. By locating the
matching brackets one can easily effectively find the scope of a quantifier. If
a variable, term or formula occurs in ϕ, we say that it is in the scope of the
quantifier in ∀xϕ or ∃xϕ.

Just as in the case of PROP, we have induction principles for TERM and
FORM.

Lemma 2.3.3 Let A(t) be a property of terms. If A(t) holds for t a variable or
a constant, and if A(t1), A(t2), . . . , A(tn) ⇒ A(f(t1, . . . , tn)), for all function
symbols f , then A(t) holds for all t ∈ TERM.
Proof. cf. 1.1.3. !

⟨r1,...,rn ; a1,...,am;κ⟩, with ri ≥ 0,aj > 0.

2.3 The Language of a Similarity Type 61

Next we define the two syntactical categories.

Definition 2.3.1 TERM is the smallest set X with the properties
(i) ci ∈ X(i ∈ I) and xi ∈ X(i ∈ N),
(ii) t1, . . . , tai ∈ X ⇒ fi(t1, . . . , tai) ∈ X, for 1 ≤ i ≤ m

TERM is our set of terms.

Definition 2.3.2 FORM is the smallest set X with the properties:
(i) ⊥∈ X ; Pi ∈ X if ri = 0; t1, . . . , tri ∈ TERM ⇒

Pi(t1, . . . , tri) ∈ X ; t1, t2 ∈ TERM ⇒ t1 = t2 ∈ X,
(ii) ϕ, ψ ∈ X ⇒ (ϕ!ψ) ∈ X, where ! ∈ {∧,∨,→,↔},
(iii) ϕ ∈ X ⇒ (¬ϕ) ∈ X,
(iv) ϕ ∈ X ⇒ ((∀xi)ϕ), ((∃xi)ϕ) ∈ X.

FORM is our set of formulas. We have introduced t1 = t2 separately, but
we could have subsumed it under the first clause. If convenient, we will not
treat equality separately. The formulas introduced in (i) are called atoms. We
point out that(i) includes the case of 0-ary predicate symbols, conveniently
called proposition symbols.

A proposition symbol is interpreted as a 0-ary relation, i.e. as 0 or 1 (cf.
2.2.2). This is in accordance with the practice of propositional logic to in-
terpret propositions as true or false. For our present purpose propositions
are a luxury. In dealing with concrete mathematical situations (e.g. groups
or posets) one has no reason to introduce propositions (things with a fixed
truth value). However, propositions are convenient (and even important) in
the context of Boolean-valued logic or Heyting-valued logic, and in syntactical
considerations.

We will, however, allow a special proposition: ⊥, the symbol for the false
proposition (cf. 1.2).

The logical connectives have, what one could call ‘a domain of action’,
e.g. in ϕ → ψ the connective → yields the new formula ϕ → ψ from formu-
las ϕ and ψ, and so → bears on ϕ, ψ and all their parts. For propositional
connectives this is not terribly interesting, but for quantifiers (and variable-
binding operators in general) it is. The notion goes by the name of scope .
So in ((∀x)ϕ) and ((∃x)ϕ), ϕ is the scope of the quantifier. By locating the
matching brackets one can easily effectively find the scope of a quantifier. If
a variable, term or formula occurs in ϕ, we say that it is in the scope of the
quantifier in ∀xϕ or ∃xϕ.

Just as in the case of PROP, we have induction principles for TERM and
FORM.

Lemma 2.3.3 Let A(t) be a property of terms. If A(t) holds for t a variable or
a constant, and if A(t1), A(t2), . . . , A(tn) ⇒ A(f(t1, . . . , tn)), for all function
symbols f , then A(t) holds for all t ∈ TERM.
Proof. cf. 1.1.3. !

62 2 Predicate Logic

Lemma 2.3.4 Let A(ϕ) be a property of formulas. If
(i) A(ϕ) for atomic ϕ,
(ii) A(ϕ), A(ψ) ⇒ A(ϕ!ψ),
(iii) A(ϕ) ⇒ A(¬ϕ),
(iv) A(ϕ) ⇒ A((∀xi)ϕ), A((∃xi)ϕ) for all i, then A(ϕ) holds for all

ϕ ∈ FORM.

Proof. cf. 1.1.3. !
We will straight away introduce a number of abbreviations. In the first

place we adopt the bracket conventions of propositional logic. Furthermore
we delete the outer brackets and the brackets round ∀x and ∃x, whenever
possible. We agree that quantifiers bind more strongly than binary connec-
tives. Furthermore we join strings of quantifiers, e.g. ∀x1x2∃x3x4ϕ stands
for ∀x1∀x2∃x3∃x4ϕ. For better readability we will sometimes separate the
quantifier and the formula by a dot: ∀x · ϕ. We will also assume that n in
f(t1, . . . , tn), P (t1, . . . , tn) always indicates the correct number of arguments.

A word of warning: the use of = might confuse a careless reader. The sym-
bol ‘=’ is used in the language L, where it is a proper syntactic object. It
occurs in formulas such as x0 = x7, but it also occurs in the meta-language,
e.g. in the form x = y, which must be read “x and y are one and the same
variable”. However, the identity symbol in x = y can just as well be the le-
gitimate symbol from the alphabet, i.e. x = y is a meta-atom, which can be
converted into a proper atom by substituting genuine variable symbols for x
and y. Some authors use ≡ for “syntactically identical”, as in “x and y are the
same variable”. We will opt for “=” for the equality in structures (sets) and
“ .=” for the identity predicate symbol in the language. We will use .= a few
times, butweprefer to stick to a simple “ = ” trusting the alertness of the reader.

Example 2.3.5 Example of a language of type ⟨2; 2, 1; 1⟩.
predicate symbols: L,

.=
function symbols: p, i
constant symbol: e

Some terms: t1 := x0; t2 := p(x1, x2); t3 := p(e, e); t4 := i(x7); t5 :=
p(i(p(x2, e)), i(x1)).

Some formulas:

ϕ1 := x0
.= x2, ϕ4 := (x0

.= x1 → x1
.= x0),

ϕ2 := t3
.= t4, ϕ5 := (∀x0)(∀x1)(x0

.= x1

ϕ3 := L(i(x5), e), ϕ6 := (∀x0)(∃x1)(p(x0, x1)
.= e),

ϕ7 := (∃x1)(¬x1
.= e ∧ p(x1, x1)

.= e).

(We have chosen a suggestive notation; think of the language of ordered
groups: L for “less than”, p, i for “product” and “inverse”). Note that the
order in which the various symbols are listed is important. In our example p
has 2 arguments and i has 1.

proof by induction

Example.of a language of type ⟨2;2,1;1⟩.

predicate symbols: L, =  
function symbols: p, i 
constant symbol: e

2.3 The Language of a Similarity Type 63

In mathematics there are a number of variable binding operations, such
as summation,integration, abstraction: consider, for example, integration, in∫ 1
0 sinxdx the variable plays an unusual role for a variable. For x cannot

“vary”; we cannot (without writing nonsense) substitute any number we like
for x. In the integral the variable x is reduced to a tag. We say that the vari-
able x is bound by the integration symbol. Analogously we distinguish in logic
between free and bound variables.

A variable may occur in a formula more than once. It is quite often useful
to look at a specific instance at a certain place in the string that makes up
the formula. We call these occurrences of the variable, and we use expressions
like ‘x occurs in the subformula ψ of ϕ.’ In general we consider occurrences
of formulas, terms, quantifiers, and the like.

In defining various syntactical notions we again freely use the principle of
definition by recursion (cf. 1.1.6). The justification is immediate: the value of
a term (formula) is uniquely determined by the values of its parts. This allows
us to find the value of H(t) in finitely many steps.

Definition by Recursion on TERM: Let H0 : V ar ∪ Const → A (i.e.H0

is defined on variables and constants), Hi : Aai → A, then there is a unique
mapping H : TERM → A such that

{
H(t) = H0(t) for t a variable or a constant,
H(fi(t1, . . . , tai)) = Hi(H(t1), . . . , H(tai)).

Definition by Recursion on FORM:
Let Hat : At → A (i.e.Hat is defined on atoms),

H! : A2 → A, (! ∈ {∨,∧,→,↔})
H¬ : A → A,
H∀ : A × N → A,
H∃ : A × N → A.

then there is a unique mapping H : FORM → A such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H(ϕ) = Hat(ϕ) for atomice ϕ,
H(ϕ!ψ) = H!(H(ϕ), H(ψ)),
H(¬ϕ) = H¬(H(ϕ)),
H(∀xiϕ) = H∀(H(ϕ), i),
H(∃xi(ϕ) = H∃(H(ϕ), i).

Definition 2.3.6 The set FV (t) of free variables of t is defined by
(i) FV (xi) := {xi},

FV (ci) := ∅
(ii) FV (f(t1, . . . , tn)) := FV (t1) ∪ . . . ∪ FV (tn).

Remark. To avoid messy notation we will usually drop the indices and
tacitly assume that the number of arguments is correct. The reader can easily

2.3 The Language of a Similarity Type 63

In mathematics there are a number of variable binding operations, such
as summation,integration, abstraction: consider, for example, integration, in∫ 1
0 sinxdx the variable plays an unusual role for a variable. For x cannot

“vary”; we cannot (without writing nonsense) substitute any number we like
for x. In the integral the variable x is reduced to a tag. We say that the vari-
able x is bound by the integration symbol. Analogously we distinguish in logic
between free and bound variables.

A variable may occur in a formula more than once. It is quite often useful
to look at a specific instance at a certain place in the string that makes up
the formula. We call these occurrences of the variable, and we use expressions
like ‘x occurs in the subformula ψ of ϕ.’ In general we consider occurrences
of formulas, terms, quantifiers, and the like.

In defining various syntactical notions we again freely use the principle of
definition by recursion (cf. 1.1.6). The justification is immediate: the value of
a term (formula) is uniquely determined by the values of its parts. This allows
us to find the value of H(t) in finitely many steps.

Definition by Recursion on TERM: Let H0 : V ar ∪ Const → A (i.e.H0

is defined on variables and constants), Hi : Aai → A, then there is a unique
mapping H : TERM → A such that

{
H(t) = H0(t) for t a variable or a constant,
H(fi(t1, . . . , tai)) = Hi(H(t1), . . . , H(tai)).

Definition by Recursion on FORM:
Let Hat : At → A (i.e.Hat is defined on atoms),

H! : A2 → A, (! ∈ {∨,∧,→,↔})
H¬ : A → A,
H∀ : A × N → A,
H∃ : A × N → A.

then there is a unique mapping H : FORM → A such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H(ϕ) = Hat(ϕ) for atomice ϕ,
H(ϕ!ψ) = H!(H(ϕ), H(ψ)),
H(¬ϕ) = H¬(H(ϕ)),
H(∀xiϕ) = H∀(H(ϕ), i),
H(∃xi(ϕ) = H∃(H(ϕ), i).

Definition 2.3.6 The set FV (t) of free variables of t is defined by
(i) FV (xi) := {xi},

FV (ci) := ∅
(ii) FV (f(t1, . . . , tn)) := FV (t1) ∪ . . . ∪ FV (tn).

Remark. To avoid messy notation we will usually drop the indices and
tacitly assume that the number of arguments is correct. The reader can easily

64 2 Predicate Logic

provide the correct details, should he wish to do so.

Definition 2.3.7 The set FV (ϕ) of free variables of ϕ is defined by
(i) FV (P (t1, . . . , tp)) := FV (t1) ∪ . . . ∪ FV (tp),

FV (t1 = t2) := FV (t1) ∪ FV (t2),
FV (⊥) = FV (P) := ∅ for P a proposition symbol,

(ii) FV (ϕ!ψ) := FV (ϕ) ∪ FV (ψ),
FV (¬ϕ) := FV (ϕ),

(iii) FV (∀xiϕ) := FV (∃xiϕ) := FV (ϕ) − {xi}.
.

Definition 2.3.8 t or ϕ is called closed if FV (t) = ∅, resp. FV (ϕ) = ∅.
A closed formula is also called a sentence. A formula without quantifiers is
called open. TERMc denotes the set of closed terms; SENT denotes the set
of sentences.

It is left to the reader to define the set BV (ϕ) of bound variables of ϕ.
Continuation of Example 2.3.5.
FV (t2) = {x1, x2}; FV (t3) = ∅; FV (ϕ2) = FV (t3) ∪ FV (t4) = {x7};
FV (ϕ7) = ∅; BV (ϕ4) = ∅; BV (ϕ6) = {x0, x1}. ϕ5, ϕ6, ϕ7 are sentences.
Warning. FV (ϕ) ∩ BV (ϕ) need not be empty, in other words, the same
variable may occur free and bound. To handle such situations one considers
free (resp. bound) occurrences of variables. When necessary we will make in-
formally use of occurrences of variables; see also p. 63
Example. ∀x1(x1 = x2) → P (x1) contains x1 both free and bound, for the
occurrence of x1 in P (x1) is not within the scope of the quantifier

In predicate calculus we have substitution operators for terms and for for-
mulas.

Definition 2.3.9 Let s and t be terms, then s[t/x] is defined by:

(i) y[t/x] :=
{

y if y ̸≡ x
t if y ≡ x

c[t/x] := c
(ii) f(t1, . . . , tp)[t/x] := f(t1[t/x], . . . , tp[t/x]).

Note that in the clause (i) y ≡ x means “x and y are the same variables”.

Definition 2.3.10 ϕ[t/x] is defined by:
(i) ⊥ [t/x] := ⊥,

P [t/x] := P for propositions P,
P (t1, . . . , tp)[t/x] := P (t1[t/x], . . . , tp[t/x]),
(t1 = t2)[t/x] := t1[t/x] = t2[t/x],

free variables

t or φ is called closed if FV(t) = ∅, resp. FV(φ) = ∅.

a closed formula is also called a sentence.

a formula without quantifiers is called open.

TERMc denotes the set of closed terms;

SENT denotes the set of sentences.

Exercise:

define the set BV(φ) of bound variables of φ

FV(φ)⋂BV(φ)=∅ ?

Sub(φ) = {φ} for atomic φ

Sub(φ1☐φ2) = Sub(φ1) ∪ Sub(φ2) ∪ {φ1☐φ2} for ☐ ∈ {∧, ∨, →}

Sub+(¬φ) = Sub(φ) ∪ {¬φ}

Sub+(Qx.φ) = Sub(φ) ∪ {Qx.φ} for Q ∈ {∀, ∃}

The notion of SUBFORMULa

an occurrence of a variable x in δ is BOUND, if x occurs in
φ∈SUB{δ} and φ≡{Qx.θ} for Q ∈ {∀, ∃}

an occurrence of a variable x in δ is FREE, if x does not occur in
any φ∈SUB{δ} with φ≡{Qx.θ} for Q ∈ {∀, ∃}

Free and Bound occurrences of variables

SUBSTITUTION
φ[t/x]?

φ = (…… x …….)

free

φ[t/x]= (…… t …….)

φ = (…… x …….)

bound

φ[t/x]= (…… x …….)

64 2 Predicate Logic

provide the correct details, should he wish to do so.

Definition 2.3.7 The set FV (ϕ) of free variables of ϕ is defined by
(i) FV (P (t1, . . . , tp)) := FV (t1) ∪ . . . ∪ FV (tp),

FV (t1 = t2) := FV (t1) ∪ FV (t2),
FV (⊥) = FV (P) := ∅ for P a proposition symbol,

(ii) FV (ϕ!ψ) := FV (ϕ) ∪ FV (ψ),
FV (¬ϕ) := FV (ϕ),

(iii) FV (∀xiϕ) := FV (∃xiϕ) := FV (ϕ) − {xi}.
.

Definition 2.3.8 t or ϕ is called closed if FV (t) = ∅, resp. FV (ϕ) = ∅.
A closed formula is also called a sentence. A formula without quantifiers is
called open. TERMc denotes the set of closed terms; SENT denotes the set
of sentences.

It is left to the reader to define the set BV (ϕ) of bound variables of ϕ.
Continuation of Example 2.3.5.
FV (t2) = {x1, x2}; FV (t3) = ∅; FV (ϕ2) = FV (t3) ∪ FV (t4) = {x7};
FV (ϕ7) = ∅; BV (ϕ4) = ∅; BV (ϕ6) = {x0, x1}. ϕ5, ϕ6, ϕ7 are sentences.
Warning. FV (ϕ) ∩ BV (ϕ) need not be empty, in other words, the same
variable may occur free and bound. To handle such situations one considers
free (resp. bound) occurrences of variables. When necessary we will make in-
formally use of occurrences of variables; see also p. 63
Example. ∀x1(x1 = x2) → P (x1) contains x1 both free and bound, for the
occurrence of x1 in P (x1) is not within the scope of the quantifier

In predicate calculus we have substitution operators for terms and for for-
mulas.

Definition 2.3.9 Let s and t be terms, then s[t/x] is defined by:

(i) y[t/x] :=
{

y if y ̸≡ x
t if y ≡ x

c[t/x] := c
(ii) f(t1, . . . , tp)[t/x] := f(t1[t/x], . . . , tp[t/x]).

Note that in the clause (i) y ≡ x means “x and y are the same variables”.

Definition 2.3.10 ϕ[t/x] is defined by:
(i) ⊥ [t/x] := ⊥,

P [t/x] := P for propositions P,
P (t1, . . . , tp)[t/x] := P (t1[t/x], . . . , tp[t/x]),
(t1 = t2)[t/x] := t1[t/x] = t2[t/x],

64 2 Predicate Logic

provide the correct details, should he wish to do so.

Definition 2.3.7 The set FV (ϕ) of free variables of ϕ is defined by
(i) FV (P (t1, . . . , tp)) := FV (t1) ∪ . . . ∪ FV (tp),

FV (t1 = t2) := FV (t1) ∪ FV (t2),
FV (⊥) = FV (P) := ∅ for P a proposition symbol,

(ii) FV (ϕ!ψ) := FV (ϕ) ∪ FV (ψ),
FV (¬ϕ) := FV (ϕ),

(iii) FV (∀xiϕ) := FV (∃xiϕ) := FV (ϕ) − {xi}.
.

Definition 2.3.8 t or ϕ is called closed if FV (t) = ∅, resp. FV (ϕ) = ∅.
A closed formula is also called a sentence. A formula without quantifiers is
called open. TERMc denotes the set of closed terms; SENT denotes the set
of sentences.

It is left to the reader to define the set BV (ϕ) of bound variables of ϕ.
Continuation of Example 2.3.5.
FV (t2) = {x1, x2}; FV (t3) = ∅; FV (ϕ2) = FV (t3) ∪ FV (t4) = {x7};
FV (ϕ7) = ∅; BV (ϕ4) = ∅; BV (ϕ6) = {x0, x1}. ϕ5, ϕ6, ϕ7 are sentences.
Warning. FV (ϕ) ∩ BV (ϕ) need not be empty, in other words, the same
variable may occur free and bound. To handle such situations one considers
free (resp. bound) occurrences of variables. When necessary we will make in-
formally use of occurrences of variables; see also p. 63
Example. ∀x1(x1 = x2) → P (x1) contains x1 both free and bound, for the
occurrence of x1 in P (x1) is not within the scope of the quantifier

In predicate calculus we have substitution operators for terms and for for-
mulas.

Definition 2.3.9 Let s and t be terms, then s[t/x] is defined by:

(i) y[t/x] :=
{

y if y ̸≡ x
t if y ≡ x

c[t/x] := c
(ii) f(t1, . . . , tp)[t/x] := f(t1[t/x], . . . , tp[t/x]).

Note that in the clause (i) y ≡ x means “x and y are the same variables”.

Definition 2.3.10 ϕ[t/x] is defined by:
(i) ⊥ [t/x] := ⊥,

P [t/x] := P for propositions P,
P (t1, . . . , tp)[t/x] := P (t1[t/x], . . . , tp[t/x]),
(t1 = t2)[t/x] := t1[t/x] = t2[t/x],

2.3 The Language of a Similarity Type 65

(ii) (ϕ!ψ)[t/x] := ϕ[t/x]!ψ[t/x],
(¬ϕ)[t/x] := ¬ϕ[t/x]

(iii) (∀yϕ)[t/x] :=
{
∀yϕ[t/x] if x ̸≡ y
∀yϕ if x ≡ y

(∃yϕ)[t/x] :=
{
∃yϕ[t/x] if x ̸≡ y
∃yϕ if x ≡ y

Substitution of formulas is defined as in the case of propositions, for con-
venience we use ‘$’ as a symbol for the propositional symbol (0-ary predicate
symbol) that acts as a ‘place holder’.

Definition 2.3.11 σ[ϕ/$] is defined by:

(i) σ[ϕ/$] :=
{

σ if σ ̸≡ $
ϕ if σ ≡ $ for atomic σ,

(ii) (σ1!σ2)[ϕ/$] := σ1[ϕ/$]!σ2[ϕ/$]
(¬σ1)[σ/$] := ¬σ1[ϕ/$]
(∀yσ)[ϕ/$] := ∀y.σ[ϕ/$]
(∃yσ)[ϕ/$] := ∃y.σ[ϕ/$].

Continuation of Example 2.3.5.

t4[t2/x1] = i(x7); t4[t2/x7] = i(p(x1, x2));
t5[x2/x1] = p(i(p(x2, e), i(x2)),
ϕ1[t3/x0] = p(e, e) .= x2; ϕ5[t3/x0] = ϕ5.

We will sometimes make simultaneous substitutions, the definition is a
slight modification of definitions 2.3.9, 2.3.10 and 2.3.11. The reader is asked
to write down the formal definitions. We denote the result of a simultaneous
substitution of t1, . . . , tn for y1, . . . , yn in t by t[t1, . . . , tn/y1, . . . , yn] (similarly
for ϕ).
Note that a simultaneous substitution is not the same as its corresponding
repeated substitution.
Example. (x0

.= x1)[x1, x0/x0, x1] = (x1
.= x0),

but ((x0
.= x1)[x1/x0])[x0/x1] = (x1

.= x1)[x0/x1] = (x0
.= x0).

The quantifier clause in definition 2.3.10 forbids substitution for bound
variables. There is, however, one more case we want to forbid: a substitution,
in which some variable after the substitution becomes bound. We will give
an example of such a substitution; the reason why we forbid it is that it can
change the truth value in an absurd way. At this moment we do not have a
truth definition, so the argument is purely heuristic.
Example. ∃x(y < x)[x/y] = ∃x (x < x).

Note that the right-hand side is false in an ordered structure, whereas
∃x(y < x) may very well be true. We make our restriction precise:

SUBSTITUTION

Define symultaneus substitution δ[t1,…,tn/x1,…,xn]

∃x(y < x)[x/y] = ∃x (x < x)

?

y is now bound!

t=(…y…) φ= (…(∃y…x…)…)

φ[t/x]= (…(∃y…(…y…)…)…)

∃x(y < x)[x/y] = ∃x (x < x)

We must forbid dangerous substitutions

Definition

t is free for x in φ if
(i) φ is atomic,
(ii) φ := φ1☐φ2 (or φ := ¬φ1) and t is free for x in φ1 and φ2 (resp.φ1),
(iii) φ := ∃yψ (or φ := ∀yψ) and if x∈FV(φ), then y∉FV(t) and t is free for x
in ψ.

t is NOT free for x in φ

t=(…y…) φ= (…(∃y…x…)…)

φ[t/x]= (…(∃y…(…y…)…)…)

proposition

 t is free for x in φ ⇔ the variables of t in φ[t/x] are not

bound by a quantifier.

proof by induction (exercise!)

64 2 Predicate Logic

provide the correct details, should he wish to do so.

Definition 2.3.7 The set FV (ϕ) of free variables of ϕ is defined by
(i) FV (P (t1, . . . , tp)) := FV (t1) ∪ . . . ∪ FV (tp),

FV (t1 = t2) := FV (t1) ∪ FV (t2),
FV (⊥) = FV (P) := ∅ for P a proposition symbol,

(ii) FV (ϕ!ψ) := FV (ϕ) ∪ FV (ψ),
FV (¬ϕ) := FV (ϕ),

(iii) FV (∀xiϕ) := FV (∃xiϕ) := FV (ϕ) − {xi}.
.

Definition 2.3.8 t or ϕ is called closed if FV (t) = ∅, resp. FV (ϕ) = ∅.
A closed formula is also called a sentence. A formula without quantifiers is
called open. TERMc denotes the set of closed terms; SENT denotes the set
of sentences.

It is left to the reader to define the set BV (ϕ) of bound variables of ϕ.
Continuation of Example 2.3.5.
FV (t2) = {x1, x2}; FV (t3) = ∅; FV (ϕ2) = FV (t3) ∪ FV (t4) = {x7};
FV (ϕ7) = ∅; BV (ϕ4) = ∅; BV (ϕ6) = {x0, x1}. ϕ5, ϕ6, ϕ7 are sentences.
Warning. FV (ϕ) ∩ BV (ϕ) need not be empty, in other words, the same
variable may occur free and bound. To handle such situations one considers
free (resp. bound) occurrences of variables. When necessary we will make in-
formally use of occurrences of variables; see also p. 63
Example. ∀x1(x1 = x2) → P (x1) contains x1 both free and bound, for the
occurrence of x1 in P (x1) is not within the scope of the quantifier

In predicate calculus we have substitution operators for terms and for for-
mulas.

Definition 2.3.9 Let s and t be terms, then s[t/x] is defined by:

(i) y[t/x] :=
{

y if y ̸≡ x
t if y ≡ x

c[t/x] := c
(ii) f(t1, . . . , tp)[t/x] := f(t1[t/x], . . . , tp[t/x]).

Note that in the clause (i) y ≡ x means “x and y are the same variables”.

Definition 2.3.10 ϕ[t/x] is defined by:
(i) ⊥ [t/x] := ⊥,

P [t/x] := P for propositions P,
P (t1, . . . , tp)[t/x] := P (t1[t/x], . . . , tp[t/x]),
(t1 = t2)[t/x] := t1[t/x] = t2[t/x],

64 2 Predicate Logic

provide the correct details, should he wish to do so.

Definition 2.3.7 The set FV (ϕ) of free variables of ϕ is defined by
(i) FV (P (t1, . . . , tp)) := FV (t1) ∪ . . . ∪ FV (tp),

FV (t1 = t2) := FV (t1) ∪ FV (t2),
FV (⊥) = FV (P) := ∅ for P a proposition symbol,

(ii) FV (ϕ!ψ) := FV (ϕ) ∪ FV (ψ),
FV (¬ϕ) := FV (ϕ),

(iii) FV (∀xiϕ) := FV (∃xiϕ) := FV (ϕ) − {xi}.
.

Definition 2.3.8 t or ϕ is called closed if FV (t) = ∅, resp. FV (ϕ) = ∅.
A closed formula is also called a sentence. A formula without quantifiers is
called open. TERMc denotes the set of closed terms; SENT denotes the set
of sentences.

It is left to the reader to define the set BV (ϕ) of bound variables of ϕ.
Continuation of Example 2.3.5.
FV (t2) = {x1, x2}; FV (t3) = ∅; FV (ϕ2) = FV (t3) ∪ FV (t4) = {x7};
FV (ϕ7) = ∅; BV (ϕ4) = ∅; BV (ϕ6) = {x0, x1}. ϕ5, ϕ6, ϕ7 are sentences.
Warning. FV (ϕ) ∩ BV (ϕ) need not be empty, in other words, the same
variable may occur free and bound. To handle such situations one considers
free (resp. bound) occurrences of variables. When necessary we will make in-
formally use of occurrences of variables; see also p. 63
Example. ∀x1(x1 = x2) → P (x1) contains x1 both free and bound, for the
occurrence of x1 in P (x1) is not within the scope of the quantifier

In predicate calculus we have substitution operators for terms and for for-
mulas.

Definition 2.3.9 Let s and t be terms, then s[t/x] is defined by:

(i) y[t/x] :=
{

y if y ̸≡ x
t if y ≡ x

c[t/x] := c
(ii) f(t1, . . . , tp)[t/x] := f(t1[t/x], . . . , tp[t/x]).

Note that in the clause (i) y ≡ x means “x and y are the same variables”.

Definition 2.3.10 ϕ[t/x] is defined by:
(i) ⊥ [t/x] := ⊥,

P [t/x] := P for propositions P,
P (t1, . . . , tp)[t/x] := P (t1[t/x], . . . , tp[t/x]),
(t1 = t2)[t/x] := t1[t/x] = t2[t/x],

2.3 The Language of a Similarity Type 65

(ii) (ϕ!ψ)[t/x] := ϕ[t/x]!ψ[t/x],
(¬ϕ)[t/x] := ¬ϕ[t/x]

(iii) (∀yϕ)[t/x] :=
{
∀yϕ[t/x] if x ̸≡ y
∀yϕ if x ≡ y

(∃yϕ)[t/x] :=
{
∃yϕ[t/x] if x ̸≡ y
∃yϕ if x ≡ y

Substitution of formulas is defined as in the case of propositions, for con-
venience we use ‘$’ as a symbol for the propositional symbol (0-ary predicate
symbol) that acts as a ‘place holder’.

Definition 2.3.11 σ[ϕ/$] is defined by:

(i) σ[ϕ/$] :=
{

σ if σ ̸≡ $
ϕ if σ ≡ $ for atomic σ,

(ii) (σ1!σ2)[ϕ/$] := σ1[ϕ/$]!σ2[ϕ/$]
(¬σ1)[σ/$] := ¬σ1[ϕ/$]
(∀yσ)[ϕ/$] := ∀y.σ[ϕ/$]
(∃yσ)[ϕ/$] := ∃y.σ[ϕ/$].

Continuation of Example 2.3.5.

t4[t2/x1] = i(x7); t4[t2/x7] = i(p(x1, x2));
t5[x2/x1] = p(i(p(x2, e), i(x2)),
ϕ1[t3/x0] = p(e, e) .= x2; ϕ5[t3/x0] = ϕ5.

We will sometimes make simultaneous substitutions, the definition is a
slight modification of definitions 2.3.9, 2.3.10 and 2.3.11. The reader is asked
to write down the formal definitions. We denote the result of a simultaneous
substitution of t1, . . . , tn for y1, . . . , yn in t by t[t1, . . . , tn/y1, . . . , yn] (similarly
for ϕ).
Note that a simultaneous substitution is not the same as its corresponding
repeated substitution.
Example. (x0

.= x1)[x1, x0/x0, x1] = (x1
.= x0),

but ((x0
.= x1)[x1/x0])[x0/x1] = (x1

.= x1)[x0/x1] = (x0
.= x0).

The quantifier clause in definition 2.3.10 forbids substitution for bound
variables. There is, however, one more case we want to forbid: a substitution,
in which some variable after the substitution becomes bound. We will give
an example of such a substitution; the reason why we forbid it is that it can
change the truth value in an absurd way. At this moment we do not have a
truth definition, so the argument is purely heuristic.
Example. ∃x(y < x)[x/y] = ∃x (x < x).

Note that the right-hand side is false in an ordered structure, whereas
∃x(y < x) may very well be true. We make our restriction precise:

SUBSTITUTION

Define symultaneus substitution δ[t1,…,tn/x1,…,xn]

let t be free for x in φ

2.3 The Language of a Similarity Type 67

nor that no other ones occur free. It is merely a convenient way to handle
substitution informally: ϕ(t) is the result of replacing x by t in ϕ(x); ϕ(t) is
called a substitution instance of ϕ(x).

We use the languages introduced above to describe structures, or classes
of structures of a given type. The predicate symbols, function symbols and
constant symbols act as names for various relations, operations and constants.
In describing a structure it is a great help to be able to refer to all elements
of |A| individually, i.e. to have names for all elements (if only as an auxiliary
device). Therefore we introduce:

Definition 2.3.16 The extended language, L(A), of A is obtained from the
language L, of the type of A, by adding constant symbols for all elements of
A. We denote the constant symbol, belonging to a ∈ |A|, by a.

Example. Consider the language L of groups; then L(A), for A the additive
group of integers, has (extra) constant symbols 0, 1, 2, . . ., −1, −2, −3,
Observe that in this way 0 gets two names: the old one and one of the new
ones. This is no problem, why should not something have more than one name?

Exercises

1. Write down an alphabet for the languages of the types given in Exercise
1 of section 2.2

2. Write down five terms of the language belonging to Exercise, 1 (iii), (viii),
Write down two atomic formulas of the language belonging to Exercise 1,
(vii) and two closed atoms for Exercise 1, (iii), (vi).

3. Write down an alphabet for languages of types ⟨3; 1, 1, 2; 0⟩, ⟨−; 2; 0⟩ and
⟨1;−; 3⟩.

4. Check which terms are free in the following cases, and carry out the sub-
stitution:
(a) x for x in x = x, (f) x + w for z in ∀w(x + z = 0),
(b) y for x in x = x, (g) x + y for z in ∀w(x + z = 0) ∧
(c) x + y for y in z = 0, ∃y(z = x),
(d) 0 + y for y in ∃x(y = x), (h) x + y for z in ∀u(u = v) →
(e) x + y for z in ∀z(z = y).

∃w(w + x = 0),

NATURAL DEDUCTION
Notation

in the same context φ(x) and φ(t) denote respectively φ and φ[t/x]

hpD

2.8 Natural Deduction 91

11. σ := ∀x1 . . . xn∃y1 . . . ymϕ and τ := ∃y1 . . . ymψ are sentences in a lan-
guage without identity, function symbols and constants, where ϕ and ψ
are quantifier free. Show: |= σ ⇔ σ holds in all structures with n elements.
|= τ ⇔ τ holds in all structures with 1 element.

12. Monadic predicate calculus has only unary predicate symbols (no identity).
Consider A = ⟨A, R1, . . . , Rn⟩ where all Ri are sets. Define a ∼ b := a ∈
Ri ⇔ b ∈ Ri for all i ≤ n. Show that ∼ is an equivalence relation and that
∼ has at most 2n equivalence classes. The equivalence class of a is denoted
by [a]. Define B = A/ ∼ and [a] ∈ Si ⇔ a ∈ Ri, B = ⟨B, S1, . . . , Sn⟩.
Show A |= σ ⇔ B |= σ for all σ in the corresponding language. For such
σ show |= σ ⇔ A |= σ for all A with at most 2n elements. Using this fact,
outline a decision procedure for truth in monadic predicate calculus.

13. Let N be the standard model of arithmetic. Show N |= n < m ⇔ n < m.

14. Let A = ⟨N, <⟩ and B = ⟨N,△⟩, where n△m iff (i) n < m and n, m both
even or both odd, or (ii) if n is even and m odd. Give a sentence σ such
that A |= σ and L |= ¬σ.

15. If ⟨A, R⟩ is a projective plane, then ⟨A, R̆⟩ is also a projective plane (the
dual plane), where R̆ is the converse of the relation R. Formulated in
the two sorted language: if ⟨AP , AL, I⟩ is a projective plane, then so is
⟨AL, AP , Ĭ⟩).

2.8 Natural Deduction

We extend the system of section 1.5 to predicate logic. For reasons similar
to the ones mentioned in section 1.5 we consider a language with connectives
∧,→,⊥ and ∀. The existential quantifier is left out, but will be considered
later.

We adopt all the rules of propositional logic and we add

∀I
ϕ(x)

∀xϕ(x) ∀E
∀xϕ(x)

ϕ(t)

where in ∀I the variable x may not occur free in any hypothesis on which
ϕ(x) depends, i.e. an uncancelled hypothesis in the derivation of ϕ(x). In ∀E
we, of course, require t to be free for x.

∀I has the following intuive explanation: if an arbitrary object x has the
property ϕ, then every object has the property ϕ. The problem is that none of
the objects we know in mathematics can be considered “arbitrary”. So instead

t free for x in φ

D D

x∉FV(hpD)

92 2 Predicate Logic

of looking for the “arbitrary object” in the real world (as far as mathemat-
ics is concerned), let us try to find a syntactic criteria. Consider a variable
x (or a constant) in a derivation, are there reasonable grouns for calling x
“arbitrary” ? Here is a plausible suggestion: in the context of the derivations
we shall call x arbitrary if nothing has been assumed concerning x. In more
technical terms, x is arbitrary at its particular occurrence in a derivation if
the part of the derivation above it contains no hypotheses containing x free.

We will demonstrate the necessity of the above restrictions, keeping in
mind that the system at least has to be sound, i.e. that derivable statements
should be true.

Restriction on ∀I: [x = 0]
∀x(x = 0)

x = 0 → ∀x(x = 0)
∀x(x = 0 → ∀x(x = 0))

0 = 0 → ∀x(x = 0)

The ∀ introduction at the first step was illegal.
So ⊢ 0 = 0 → ∀x(x = 0), but clearly ̸|= 0 = 0 → ∀x(x = 0) (take any

structure containing more than just 0).
Restriction on ∀E: [∀x¬∀y(x = y)]

¬∀y(y = y)
∀x¬∀y(x = y) → ¬∀y(y = y)

The ∀ elimination at the first step was illegal.
Note that y is not free for x in ¬∀y(x = y). The derived sentence is clearly
not true in structures with at least two elements.

We now give some examples of derivations. We assume that the reader has
by now enough experience in cancelling hypotheses, so that we will not longer
indicate the cancellations by encircled numbers.

[∀x∀yϕ(x, y)]
∀E

∀yϕ(x, y)
∀E

ϕ(x, y)
∀I

∀xϕ(x, y)
∀I

∀y∀x(ϕ(x, y)
→ I

∀x∀yϕ(x, y) → ∀y∀xϕ(x, y)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ϕ(x)

∀xϕ(x)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ψ(x)

∀xψ(x)

∀xϕ(x) ∧ ∀xψ(x)

∀x(ϕ ∧ ψ) → ∀xϕ ∧ ∀xψ

92 2 Predicate Logic

of looking for the “arbitrary object” in the real world (as far as mathemat-
ics is concerned), let us try to find a syntactic criteria. Consider a variable
x (or a constant) in a derivation, are there reasonable grouns for calling x
“arbitrary” ? Here is a plausible suggestion: in the context of the derivations
we shall call x arbitrary if nothing has been assumed concerning x. In more
technical terms, x is arbitrary at its particular occurrence in a derivation if
the part of the derivation above it contains no hypotheses containing x free.

We will demonstrate the necessity of the above restrictions, keeping in
mind that the system at least has to be sound, i.e. that derivable statements
should be true.

Restriction on ∀I: [x = 0]
∀x(x = 0)

x = 0 → ∀x(x = 0)
∀x(x = 0 → ∀x(x = 0))

0 = 0 → ∀x(x = 0)

The ∀ introduction at the first step was illegal.
So ⊢ 0 = 0 → ∀x(x = 0), but clearly ̸|= 0 = 0 → ∀x(x = 0) (take any

structure containing more than just 0).
Restriction on ∀E: [∀x¬∀y(x = y)]

¬∀y(y = y)
∀x¬∀y(x = y) → ¬∀y(y = y)

The ∀ elimination at the first step was illegal.
Note that y is not free for x in ¬∀y(x = y). The derived sentence is clearly
not true in structures with at least two elements.

We now give some examples of derivations. We assume that the reader has
by now enough experience in cancelling hypotheses, so that we will not longer
indicate the cancellations by encircled numbers.

[∀x∀yϕ(x, y)]
∀E

∀yϕ(x, y)
∀E

ϕ(x, y)
∀I

∀xϕ(x, y)
∀I

∀y∀x(ϕ(x, y)
→ I

∀x∀yϕ(x, y) → ∀y∀xϕ(x, y)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ϕ(x)

∀xϕ(x)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ψ(x)

∀xψ(x)

∀xϕ(x) ∧ ∀xψ(x)

∀x(ϕ ∧ ψ) → ∀xϕ ∧ ∀xψ

NO!

92 2 Predicate Logic

of looking for the “arbitrary object” in the real world (as far as mathemat-
ics is concerned), let us try to find a syntactic criteria. Consider a variable
x (or a constant) in a derivation, are there reasonable grouns for calling x
“arbitrary” ? Here is a plausible suggestion: in the context of the derivations
we shall call x arbitrary if nothing has been assumed concerning x. In more
technical terms, x is arbitrary at its particular occurrence in a derivation if
the part of the derivation above it contains no hypotheses containing x free.

We will demonstrate the necessity of the above restrictions, keeping in
mind that the system at least has to be sound, i.e. that derivable statements
should be true.

Restriction on ∀I: [x = 0]
∀x(x = 0)

x = 0 → ∀x(x = 0)
∀x(x = 0 → ∀x(x = 0))

0 = 0 → ∀x(x = 0)

The ∀ introduction at the first step was illegal.
So ⊢ 0 = 0 → ∀x(x = 0), but clearly ̸|= 0 = 0 → ∀x(x = 0) (take any

structure containing more than just 0).
Restriction on ∀E: [∀x¬∀y(x = y)]

¬∀y(y = y)
∀x¬∀y(x = y) → ¬∀y(y = y)

The ∀ elimination at the first step was illegal.
Note that y is not free for x in ¬∀y(x = y). The derived sentence is clearly
not true in structures with at least two elements.

We now give some examples of derivations. We assume that the reader has
by now enough experience in cancelling hypotheses, so that we will not longer
indicate the cancellations by encircled numbers.

[∀x∀yϕ(x, y)]
∀E

∀yϕ(x, y)
∀E

ϕ(x, y)
∀I

∀xϕ(x, y)
∀I

∀y∀x(ϕ(x, y)
→ I

∀x∀yϕ(x, y) → ∀y∀xϕ(x, y)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ϕ(x)

∀xϕ(x)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ψ(x)

∀xψ(x)

∀xϕ(x) ∧ ∀xψ(x)

∀x(ϕ ∧ ψ) → ∀xϕ ∧ ∀xψ

92 2 Predicate Logic

of looking for the “arbitrary object” in the real world (as far as mathemat-
ics is concerned), let us try to find a syntactic criteria. Consider a variable
x (or a constant) in a derivation, are there reasonable grouns for calling x
“arbitrary” ? Here is a plausible suggestion: in the context of the derivations
we shall call x arbitrary if nothing has been assumed concerning x. In more
technical terms, x is arbitrary at its particular occurrence in a derivation if
the part of the derivation above it contains no hypotheses containing x free.

We will demonstrate the necessity of the above restrictions, keeping in
mind that the system at least has to be sound, i.e. that derivable statements
should be true.

Restriction on ∀I: [x = 0]
∀x(x = 0)

x = 0 → ∀x(x = 0)
∀x(x = 0 → ∀x(x = 0))

0 = 0 → ∀x(x = 0)

The ∀ introduction at the first step was illegal.
So ⊢ 0 = 0 → ∀x(x = 0), but clearly ̸|= 0 = 0 → ∀x(x = 0) (take any

structure containing more than just 0).
Restriction on ∀E: [∀x¬∀y(x = y)]

¬∀y(y = y)
∀x¬∀y(x = y) → ¬∀y(y = y)

The ∀ elimination at the first step was illegal.
Note that y is not free for x in ¬∀y(x = y). The derived sentence is clearly
not true in structures with at least two elements.

We now give some examples of derivations. We assume that the reader has
by now enough experience in cancelling hypotheses, so that we will not longer
indicate the cancellations by encircled numbers.

[∀x∀yϕ(x, y)]
∀E

∀yϕ(x, y)
∀E

ϕ(x, y)
∀I

∀xϕ(x, y)
∀I

∀y∀x(ϕ(x, y)
→ I

∀x∀yϕ(x, y) → ∀y∀xϕ(x, y)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ϕ(x)

∀xϕ(x)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ψ(x)

∀xψ(x)

∀xϕ(x) ∧ ∀xψ(x)

∀x(ϕ ∧ ψ) → ∀xϕ ∧ ∀xψ

2.8 Natural Deduction 91

11. σ := ∀x1 . . . xn∃y1 . . . ymϕ and τ := ∃y1 . . . ymψ are sentences in a lan-
guage without identity, function symbols and constants, where ϕ and ψ
are quantifier free. Show: |= σ ⇔ σ holds in all structures with n elements.
|= τ ⇔ τ holds in all structures with 1 element.

12. Monadic predicate calculus has only unary predicate symbols (no identity).
Consider A = ⟨A, R1, . . . , Rn⟩ where all Ri are sets. Define a ∼ b := a ∈
Ri ⇔ b ∈ Ri for all i ≤ n. Show that ∼ is an equivalence relation and that
∼ has at most 2n equivalence classes. The equivalence class of a is denoted
by [a]. Define B = A/ ∼ and [a] ∈ Si ⇔ a ∈ Ri, B = ⟨B, S1, . . . , Sn⟩.
Show A |= σ ⇔ B |= σ for all σ in the corresponding language. For such
σ show |= σ ⇔ A |= σ for all A with at most 2n elements. Using this fact,
outline a decision procedure for truth in monadic predicate calculus.

13. Let N be the standard model of arithmetic. Show N |= n < m ⇔ n < m.

14. Let A = ⟨N, <⟩ and B = ⟨N,△⟩, where n△m iff (i) n < m and n, m both
even or both odd, or (ii) if n is even and m odd. Give a sentence σ such
that A |= σ and L |= ¬σ.

15. If ⟨A, R⟩ is a projective plane, then ⟨A, R̆⟩ is also a projective plane (the
dual plane), where R̆ is the converse of the relation R. Formulated in
the two sorted language: if ⟨AP , AL, I⟩ is a projective plane, then so is
⟨AL, AP , Ĭ⟩).

2.8 Natural Deduction

We extend the system of section 1.5 to predicate logic. For reasons similar
to the ones mentioned in section 1.5 we consider a language with connectives
∧,→,⊥ and ∀. The existential quantifier is left out, but will be considered
later.

We adopt all the rules of propositional logic and we add

∀I
ϕ(x)

∀xϕ(x) ∀E
∀xϕ(x)

ϕ(t)

where in ∀I the variable x may not occur free in any hypothesis on which
ϕ(x) depends, i.e. an uncancelled hypothesis in the derivation of ϕ(x). In ∀E
we, of course, require t to be free for x.

∀I has the following intuive explanation: if an arbitrary object x has the
property ϕ, then every object has the property ϕ. The problem is that none of
the objects we know in mathematics can be considered “arbitrary”. So instead

t free for x in φ

D D

x∉FV(hpD)

92 2 Predicate Logic

of looking for the “arbitrary object” in the real world (as far as mathemat-
ics is concerned), let us try to find a syntactic criteria. Consider a variable
x (or a constant) in a derivation, are there reasonable grouns for calling x
“arbitrary” ? Here is a plausible suggestion: in the context of the derivations
we shall call x arbitrary if nothing has been assumed concerning x. In more
technical terms, x is arbitrary at its particular occurrence in a derivation if
the part of the derivation above it contains no hypotheses containing x free.

We will demonstrate the necessity of the above restrictions, keeping in
mind that the system at least has to be sound, i.e. that derivable statements
should be true.

Restriction on ∀I: [x = 0]
∀x(x = 0)

x = 0 → ∀x(x = 0)
∀x(x = 0 → ∀x(x = 0))

0 = 0 → ∀x(x = 0)

The ∀ introduction at the first step was illegal.
So ⊢ 0 = 0 → ∀x(x = 0), but clearly ̸|= 0 = 0 → ∀x(x = 0) (take any

structure containing more than just 0).
Restriction on ∀E: [∀x¬∀y(x = y)]

¬∀y(y = y)
∀x¬∀y(x = y) → ¬∀y(y = y)

The ∀ elimination at the first step was illegal.
Note that y is not free for x in ¬∀y(x = y). The derived sentence is clearly
not true in structures with at least two elements.

We now give some examples of derivations. We assume that the reader has
by now enough experience in cancelling hypotheses, so that we will not longer
indicate the cancellations by encircled numbers.

[∀x∀yϕ(x, y)]
∀E

∀yϕ(x, y)
∀E

ϕ(x, y)
∀I

∀xϕ(x, y)
∀I

∀y∀x(ϕ(x, y)
→ I

∀x∀yϕ(x, y) → ∀y∀xϕ(x, y)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ϕ(x)

∀xϕ(x)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ψ(x)

∀xψ(x)

∀xϕ(x) ∧ ∀xψ(x)

∀x(ϕ ∧ ψ) → ∀xϕ ∧ ∀xψ

NO!

92 2 Predicate Logic

of looking for the “arbitrary object” in the real world (as far as mathemat-
ics is concerned), let us try to find a syntactic criteria. Consider a variable
x (or a constant) in a derivation, are there reasonable grouns for calling x
“arbitrary” ? Here is a plausible suggestion: in the context of the derivations
we shall call x arbitrary if nothing has been assumed concerning x. In more
technical terms, x is arbitrary at its particular occurrence in a derivation if
the part of the derivation above it contains no hypotheses containing x free.

We will demonstrate the necessity of the above restrictions, keeping in
mind that the system at least has to be sound, i.e. that derivable statements
should be true.

Restriction on ∀I: [x = 0]
∀x(x = 0)

x = 0 → ∀x(x = 0)
∀x(x = 0 → ∀x(x = 0))

0 = 0 → ∀x(x = 0)

The ∀ introduction at the first step was illegal.
So ⊢ 0 = 0 → ∀x(x = 0), but clearly ̸|= 0 = 0 → ∀x(x = 0) (take any

structure containing more than just 0).
Restriction on ∀E: [∀x¬∀y(x = y)]

¬∀y(y = y)
∀x¬∀y(x = y) → ¬∀y(y = y)

The ∀ elimination at the first step was illegal.
Note that y is not free for x in ¬∀y(x = y). The derived sentence is clearly
not true in structures with at least two elements.

We now give some examples of derivations. We assume that the reader has
by now enough experience in cancelling hypotheses, so that we will not longer
indicate the cancellations by encircled numbers.

[∀x∀yϕ(x, y)]
∀E

∀yϕ(x, y)
∀E

ϕ(x, y)
∀I

∀xϕ(x, y)
∀I

∀y∀x(ϕ(x, y)
→ I

∀x∀yϕ(x, y) → ∀y∀xϕ(x, y)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ϕ(x)

∀xϕ(x)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ψ(x)

∀xψ(x)

∀xϕ(x) ∧ ∀xψ(x)

∀x(ϕ ∧ ψ) → ∀xϕ ∧ ∀xψ

92 2 Predicate Logic

of looking for the “arbitrary object” in the real world (as far as mathemat-
ics is concerned), let us try to find a syntactic criteria. Consider a variable
x (or a constant) in a derivation, are there reasonable grouns for calling x
“arbitrary” ? Here is a plausible suggestion: in the context of the derivations
we shall call x arbitrary if nothing has been assumed concerning x. In more
technical terms, x is arbitrary at its particular occurrence in a derivation if
the part of the derivation above it contains no hypotheses containing x free.

We will demonstrate the necessity of the above restrictions, keeping in
mind that the system at least has to be sound, i.e. that derivable statements
should be true.

Restriction on ∀I: [x = 0]
∀x(x = 0)

x = 0 → ∀x(x = 0)
∀x(x = 0 → ∀x(x = 0))

0 = 0 → ∀x(x = 0)

The ∀ introduction at the first step was illegal.
So ⊢ 0 = 0 → ∀x(x = 0), but clearly ̸|= 0 = 0 → ∀x(x = 0) (take any

structure containing more than just 0).
Restriction on ∀E: [∀x¬∀y(x = y)]

¬∀y(y = y)
∀x¬∀y(x = y) → ¬∀y(y = y)

The ∀ elimination at the first step was illegal.
Note that y is not free for x in ¬∀y(x = y). The derived sentence is clearly
not true in structures with at least two elements.

We now give some examples of derivations. We assume that the reader has
by now enough experience in cancelling hypotheses, so that we will not longer
indicate the cancellations by encircled numbers.

[∀x∀yϕ(x, y)]
∀E

∀yϕ(x, y)
∀E

ϕ(x, y)
∀I

∀xϕ(x, y)
∀I

∀y∀x(ϕ(x, y)
→ I

∀x∀yϕ(x, y) → ∀y∀xϕ(x, y)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ϕ(x)

∀xϕ(x)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ψ(x)

∀xψ(x)

∀xϕ(x) ∧ ∀xψ(x)

∀x(ϕ ∧ ψ) → ∀xϕ ∧ ∀xψ

92 2 Predicate Logic

of looking for the “arbitrary object” in the real world (as far as mathemat-
ics is concerned), let us try to find a syntactic criteria. Consider a variable
x (or a constant) in a derivation, are there reasonable grouns for calling x
“arbitrary” ? Here is a plausible suggestion: in the context of the derivations
we shall call x arbitrary if nothing has been assumed concerning x. In more
technical terms, x is arbitrary at its particular occurrence in a derivation if
the part of the derivation above it contains no hypotheses containing x free.

We will demonstrate the necessity of the above restrictions, keeping in
mind that the system at least has to be sound, i.e. that derivable statements
should be true.

Restriction on ∀I: [x = 0]
∀x(x = 0)

x = 0 → ∀x(x = 0)
∀x(x = 0 → ∀x(x = 0))

0 = 0 → ∀x(x = 0)

The ∀ introduction at the first step was illegal.
So ⊢ 0 = 0 → ∀x(x = 0), but clearly ̸|= 0 = 0 → ∀x(x = 0) (take any

structure containing more than just 0).
Restriction on ∀E: [∀x¬∀y(x = y)]

¬∀y(y = y)
∀x¬∀y(x = y) → ¬∀y(y = y)

The ∀ elimination at the first step was illegal.
Note that y is not free for x in ¬∀y(x = y). The derived sentence is clearly
not true in structures with at least two elements.

We now give some examples of derivations. We assume that the reader has
by now enough experience in cancelling hypotheses, so that we will not longer
indicate the cancellations by encircled numbers.

[∀x∀yϕ(x, y)]
∀E

∀yϕ(x, y)
∀E

ϕ(x, y)
∀I

∀xϕ(x, y)
∀I

∀y∀x(ϕ(x, y)
→ I

∀x∀yϕ(x, y) → ∀y∀xϕ(x, y)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ϕ(x)

∀xϕ(x)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ψ(x)

∀xψ(x)

∀xϕ(x) ∧ ∀xψ(x)

∀x(ϕ ∧ ψ) → ∀xϕ ∧ ∀xψ

92 2 Predicate Logic

of looking for the “arbitrary object” in the real world (as far as mathemat-
ics is concerned), let us try to find a syntactic criteria. Consider a variable
x (or a constant) in a derivation, are there reasonable grouns for calling x
“arbitrary” ? Here is a plausible suggestion: in the context of the derivations
we shall call x arbitrary if nothing has been assumed concerning x. In more
technical terms, x is arbitrary at its particular occurrence in a derivation if
the part of the derivation above it contains no hypotheses containing x free.

We will demonstrate the necessity of the above restrictions, keeping in
mind that the system at least has to be sound, i.e. that derivable statements
should be true.

Restriction on ∀I: [x = 0]
∀x(x = 0)

x = 0 → ∀x(x = 0)
∀x(x = 0 → ∀x(x = 0))

0 = 0 → ∀x(x = 0)

The ∀ introduction at the first step was illegal.
So ⊢ 0 = 0 → ∀x(x = 0), but clearly ̸|= 0 = 0 → ∀x(x = 0) (take any

structure containing more than just 0).
Restriction on ∀E: [∀x¬∀y(x = y)]

¬∀y(y = y)
∀x¬∀y(x = y) → ¬∀y(y = y)

The ∀ elimination at the first step was illegal.
Note that y is not free for x in ¬∀y(x = y). The derived sentence is clearly
not true in structures with at least two elements.

We now give some examples of derivations. We assume that the reader has
by now enough experience in cancelling hypotheses, so that we will not longer
indicate the cancellations by encircled numbers.

[∀x∀yϕ(x, y)]
∀E

∀yϕ(x, y)
∀E

ϕ(x, y)
∀I

∀xϕ(x, y)
∀I

∀y∀x(ϕ(x, y)
→ I

∀x∀yϕ(x, y) → ∀y∀xϕ(x, y)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ϕ(x)

∀xϕ(x)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ψ(x)

∀xψ(x)

∀xϕ(x) ∧ ∀xψ(x)

∀x(ϕ ∧ ψ) → ∀xϕ ∧ ∀xψ

92 2 Predicate Logic

of looking for the “arbitrary object” in the real world (as far as mathemat-
ics is concerned), let us try to find a syntactic criteria. Consider a variable
x (or a constant) in a derivation, are there reasonable grouns for calling x
“arbitrary” ? Here is a plausible suggestion: in the context of the derivations
we shall call x arbitrary if nothing has been assumed concerning x. In more
technical terms, x is arbitrary at its particular occurrence in a derivation if
the part of the derivation above it contains no hypotheses containing x free.

We will demonstrate the necessity of the above restrictions, keeping in
mind that the system at least has to be sound, i.e. that derivable statements
should be true.

Restriction on ∀I: [x = 0]
∀x(x = 0)

x = 0 → ∀x(x = 0)
∀x(x = 0 → ∀x(x = 0))

0 = 0 → ∀x(x = 0)

The ∀ introduction at the first step was illegal.
So ⊢ 0 = 0 → ∀x(x = 0), but clearly ̸|= 0 = 0 → ∀x(x = 0) (take any

structure containing more than just 0).
Restriction on ∀E: [∀x¬∀y(x = y)]

¬∀y(y = y)
∀x¬∀y(x = y) → ¬∀y(y = y)

The ∀ elimination at the first step was illegal.
Note that y is not free for x in ¬∀y(x = y). The derived sentence is clearly
not true in structures with at least two elements.

We now give some examples of derivations. We assume that the reader has
by now enough experience in cancelling hypotheses, so that we will not longer
indicate the cancellations by encircled numbers.

[∀x∀yϕ(x, y)]
∀E

∀yϕ(x, y)
∀E

ϕ(x, y)
∀I

∀xϕ(x, y)
∀I

∀y∀x(ϕ(x, y)
→ I

∀x∀yϕ(x, y) → ∀y∀xϕ(x, y)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ϕ(x)

∀xϕ(x)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ψ(x)

∀xψ(x)

∀xϕ(x) ∧ ∀xψ(x)

∀x(ϕ ∧ ψ) → ∀xϕ ∧ ∀xψ

92 2 Predicate Logic

of looking for the “arbitrary object” in the real world (as far as mathemat-
ics is concerned), let us try to find a syntactic criteria. Consider a variable
x (or a constant) in a derivation, are there reasonable grouns for calling x
“arbitrary” ? Here is a plausible suggestion: in the context of the derivations
we shall call x arbitrary if nothing has been assumed concerning x. In more
technical terms, x is arbitrary at its particular occurrence in a derivation if
the part of the derivation above it contains no hypotheses containing x free.

We will demonstrate the necessity of the above restrictions, keeping in
mind that the system at least has to be sound, i.e. that derivable statements
should be true.

Restriction on ∀I: [x = 0]
∀x(x = 0)

x = 0 → ∀x(x = 0)
∀x(x = 0 → ∀x(x = 0))

0 = 0 → ∀x(x = 0)

The ∀ introduction at the first step was illegal.
So ⊢ 0 = 0 → ∀x(x = 0), but clearly ̸|= 0 = 0 → ∀x(x = 0) (take any

structure containing more than just 0).
Restriction on ∀E: [∀x¬∀y(x = y)]

¬∀y(y = y)
∀x¬∀y(x = y) → ¬∀y(y = y)

The ∀ elimination at the first step was illegal.
Note that y is not free for x in ¬∀y(x = y). The derived sentence is clearly
not true in structures with at least two elements.

We now give some examples of derivations. We assume that the reader has
by now enough experience in cancelling hypotheses, so that we will not longer
indicate the cancellations by encircled numbers.

[∀x∀yϕ(x, y)]
∀E

∀yϕ(x, y)
∀E

ϕ(x, y)
∀I

∀xϕ(x, y)
∀I

∀y∀x(ϕ(x, y)
→ I

∀x∀yϕ(x, y) → ∀y∀xϕ(x, y)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ϕ(x)

∀xϕ(x)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ψ(x)

∀xψ(x)

∀xϕ(x) ∧ ∀xψ(x)

∀x(ϕ ∧ ψ) → ∀xϕ ∧ ∀xψ

92 2 Predicate Logic

of looking for the “arbitrary object” in the real world (as far as mathemat-
ics is concerned), let us try to find a syntactic criteria. Consider a variable
x (or a constant) in a derivation, are there reasonable grouns for calling x
“arbitrary” ? Here is a plausible suggestion: in the context of the derivations
we shall call x arbitrary if nothing has been assumed concerning x. In more
technical terms, x is arbitrary at its particular occurrence in a derivation if
the part of the derivation above it contains no hypotheses containing x free.

We will demonstrate the necessity of the above restrictions, keeping in
mind that the system at least has to be sound, i.e. that derivable statements
should be true.

Restriction on ∀I: [x = 0]
∀x(x = 0)

x = 0 → ∀x(x = 0)
∀x(x = 0 → ∀x(x = 0))

0 = 0 → ∀x(x = 0)

The ∀ introduction at the first step was illegal.
So ⊢ 0 = 0 → ∀x(x = 0), but clearly ̸|= 0 = 0 → ∀x(x = 0) (take any

structure containing more than just 0).
Restriction on ∀E: [∀x¬∀y(x = y)]

¬∀y(y = y)
∀x¬∀y(x = y) → ¬∀y(y = y)

The ∀ elimination at the first step was illegal.
Note that y is not free for x in ¬∀y(x = y). The derived sentence is clearly
not true in structures with at least two elements.

We now give some examples of derivations. We assume that the reader has
by now enough experience in cancelling hypotheses, so that we will not longer
indicate the cancellations by encircled numbers.

[∀x∀yϕ(x, y)]
∀E

∀yϕ(x, y)
∀E

ϕ(x, y)
∀I

∀xϕ(x, y)
∀I

∀y∀x(ϕ(x, y)
→ I

∀x∀yϕ(x, y) → ∀y∀xϕ(x, y)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ϕ(x)

∀xϕ(x)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ψ(x)

∀xψ(x)

∀xϕ(x) ∧ ∀xψ(x)

∀x(ϕ ∧ ψ) → ∀xϕ ∧ ∀xψ

92 2 Predicate Logic

of looking for the “arbitrary object” in the real world (as far as mathemat-
ics is concerned), let us try to find a syntactic criteria. Consider a variable
x (or a constant) in a derivation, are there reasonable grouns for calling x
“arbitrary” ? Here is a plausible suggestion: in the context of the derivations
we shall call x arbitrary if nothing has been assumed concerning x. In more
technical terms, x is arbitrary at its particular occurrence in a derivation if
the part of the derivation above it contains no hypotheses containing x free.

We will demonstrate the necessity of the above restrictions, keeping in
mind that the system at least has to be sound, i.e. that derivable statements
should be true.

Restriction on ∀I: [x = 0]
∀x(x = 0)

x = 0 → ∀x(x = 0)
∀x(x = 0 → ∀x(x = 0))

0 = 0 → ∀x(x = 0)

The ∀ introduction at the first step was illegal.
So ⊢ 0 = 0 → ∀x(x = 0), but clearly ̸|= 0 = 0 → ∀x(x = 0) (take any

structure containing more than just 0).
Restriction on ∀E: [∀x¬∀y(x = y)]

¬∀y(y = y)
∀x¬∀y(x = y) → ¬∀y(y = y)

The ∀ elimination at the first step was illegal.
Note that y is not free for x in ¬∀y(x = y). The derived sentence is clearly
not true in structures with at least two elements.

We now give some examples of derivations. We assume that the reader has
by now enough experience in cancelling hypotheses, so that we will not longer
indicate the cancellations by encircled numbers.

[∀x∀yϕ(x, y)]
∀E

∀yϕ(x, y)
∀E

ϕ(x, y)
∀I

∀xϕ(x, y)
∀I

∀y∀x(ϕ(x, y)
→ I

∀x∀yϕ(x, y) → ∀y∀xϕ(x, y)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ϕ(x)

∀xϕ(x)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ψ(x)

∀xψ(x)

∀xϕ(x) ∧ ∀xψ(x)

∀x(ϕ ∧ ψ) → ∀xϕ ∧ ∀xψ

92 2 Predicate Logic

of looking for the “arbitrary object” in the real world (as far as mathemat-
ics is concerned), let us try to find a syntactic criteria. Consider a variable
x (or a constant) in a derivation, are there reasonable grouns for calling x
“arbitrary” ? Here is a plausible suggestion: in the context of the derivations
we shall call x arbitrary if nothing has been assumed concerning x. In more
technical terms, x is arbitrary at its particular occurrence in a derivation if
the part of the derivation above it contains no hypotheses containing x free.

We will demonstrate the necessity of the above restrictions, keeping in
mind that the system at least has to be sound, i.e. that derivable statements
should be true.

Restriction on ∀I: [x = 0]
∀x(x = 0)

x = 0 → ∀x(x = 0)
∀x(x = 0 → ∀x(x = 0))

0 = 0 → ∀x(x = 0)

The ∀ introduction at the first step was illegal.
So ⊢ 0 = 0 → ∀x(x = 0), but clearly ̸|= 0 = 0 → ∀x(x = 0) (take any

structure containing more than just 0).
Restriction on ∀E: [∀x¬∀y(x = y)]

¬∀y(y = y)
∀x¬∀y(x = y) → ¬∀y(y = y)

The ∀ elimination at the first step was illegal.
Note that y is not free for x in ¬∀y(x = y). The derived sentence is clearly
not true in structures with at least two elements.

We now give some examples of derivations. We assume that the reader has
by now enough experience in cancelling hypotheses, so that we will not longer
indicate the cancellations by encircled numbers.

[∀x∀yϕ(x, y)]
∀E

∀yϕ(x, y)
∀E

ϕ(x, y)
∀I

∀xϕ(x, y)
∀I

∀y∀x(ϕ(x, y)
→ I

∀x∀yϕ(x, y) → ∀y∀xϕ(x, y)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ϕ(x)

∀xϕ(x)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ψ(x)

∀xψ(x)

∀xϕ(x) ∧ ∀xψ(x)

∀x(ϕ ∧ ψ) → ∀xϕ ∧ ∀xψ

2.8 Natural Deduction 93

Let x ̸∈ FV (ϕ)

[∀x(ϕ → ψ(x))]
∀E

ϕ → ψ(x) [ϕ]
→ E

ψ(x)
∀I

∀xψ(x)
→ I

ϕ → ∀xψ(x)

∀x(ϕ → ψ(x)) → (ϕ → ∀x(ψ(x))

[ϕ]
∀I

∀xϕ

[∀xϕ]
∀E

ϕ

ϕ ↔ ∀xϕ

In the righthand derivation ∀I is allowed, since x ̸∈ FV (ϕ), and ∀E is ap-
plicable.

Note that ∀I in the bottom left derivation is allowed because x ̸∈ FV (ϕ),
for at that stage ϕ is still (part of) a hypothesis.

The reader will have grasped the technique behind the quantifier rules: re-
duce a ∀xϕ to ϕ and reintroduce ∀ later, if necessary. Intuitively, one makes the
following step: to show “ for all x . . . x . . . ” it suffices to show “. . . x . . . ” for an
arbitrary x. The latter statement is easier to handle. Without going into fine
philosophical distinctions, we note that the distinction “for all x . . . x . . . ” –
“for an arbitrary x . . . x . . . ” is embodied in our system by means of the
distinction. “quantified statement” – “ free variable statement”.

The reader will also have observed that under a reasonable derivation strat-
egy, roughly speaking, elimination precedes introduction. There is a sound
explanation for this phenomenon, its proper treatment belongs to proof theory,
where normal derivations (derivations without superfluous steps) are consid-
ered. See Ch. 6. For the moment the reader may accept the above mentioned
fact as a convenient rule of thumb.

We can formulate the derivability properties of the universal quantifier in
terms of the relation ⊢:

Γ ⊢ ϕ(x) ⇒ Γ ⊢ ∀xϕ(x) if x ̸∈ FV (ψ) for all ψ ∈ Γ
Γ ⊢ ∀xϕ(x) ⇒ Γ ⊢ ϕ(t) if t is free for x in ϕ.

The above implications follow directly from (∀I) and (∀E).

Our next goal is the correctness of the system of natural deduction for
predicate logic. We first extend the definition of |=.

2.8 Natural Deduction 93

Let x ̸∈ FV (ϕ)

[∀x(ϕ → ψ(x))]
∀E

ϕ → ψ(x) [ϕ]
→ E

ψ(x)
∀I

∀xψ(x)
→ I

ϕ → ∀xψ(x)

∀x(ϕ → ψ(x)) → (ϕ → ∀x(ψ(x))

[ϕ]
∀I

∀xϕ

[∀xϕ]
∀E

ϕ

ϕ ↔ ∀xϕ

In the righthand derivation ∀I is allowed, since x ̸∈ FV (ϕ), and ∀E is ap-
plicable.

Note that ∀I in the bottom left derivation is allowed because x ̸∈ FV (ϕ),
for at that stage ϕ is still (part of) a hypothesis.

The reader will have grasped the technique behind the quantifier rules: re-
duce a ∀xϕ to ϕ and reintroduce ∀ later, if necessary. Intuitively, one makes the
following step: to show “ for all x . . . x . . . ” it suffices to show “. . . x . . . ” for an
arbitrary x. The latter statement is easier to handle. Without going into fine
philosophical distinctions, we note that the distinction “for all x . . . x . . . ” –
“for an arbitrary x . . . x . . . ” is embodied in our system by means of the
distinction. “quantified statement” – “ free variable statement”.

The reader will also have observed that under a reasonable derivation strat-
egy, roughly speaking, elimination precedes introduction. There is a sound
explanation for this phenomenon, its proper treatment belongs to proof theory,
where normal derivations (derivations without superfluous steps) are consid-
ered. See Ch. 6. For the moment the reader may accept the above mentioned
fact as a convenient rule of thumb.

We can formulate the derivability properties of the universal quantifier in
terms of the relation ⊢:

Γ ⊢ ϕ(x) ⇒ Γ ⊢ ∀xϕ(x) if x ̸∈ FV (ψ) for all ψ ∈ Γ
Γ ⊢ ∀xϕ(x) ⇒ Γ ⊢ ϕ(t) if t is free for x in ϕ.

The above implications follow directly from (∀I) and (∀E).

Our next goal is the correctness of the system of natural deduction for
predicate logic. We first extend the definition of |=.

2.8 Natural Deduction 93

Let x ̸∈ FV (ϕ)

[∀x(ϕ → ψ(x))]
∀E

ϕ → ψ(x) [ϕ]
→ E

ψ(x)
∀I

∀xψ(x)
→ I

ϕ → ∀xψ(x)

∀x(ϕ → ψ(x)) → (ϕ → ∀x(ψ(x))

[ϕ]
∀I

∀xϕ

[∀xϕ]
∀E

ϕ

ϕ ↔ ∀xϕ

In the righthand derivation ∀I is allowed, since x ̸∈ FV (ϕ), and ∀E is ap-
plicable.

Note that ∀I in the bottom left derivation is allowed because x ̸∈ FV (ϕ),
for at that stage ϕ is still (part of) a hypothesis.

The reader will have grasped the technique behind the quantifier rules: re-
duce a ∀xϕ to ϕ and reintroduce ∀ later, if necessary. Intuitively, one makes the
following step: to show “ for all x . . . x . . . ” it suffices to show “. . . x . . . ” for an
arbitrary x. The latter statement is easier to handle. Without going into fine
philosophical distinctions, we note that the distinction “for all x . . . x . . . ” –
“for an arbitrary x . . . x . . . ” is embodied in our system by means of the
distinction. “quantified statement” – “ free variable statement”.

The reader will also have observed that under a reasonable derivation strat-
egy, roughly speaking, elimination precedes introduction. There is a sound
explanation for this phenomenon, its proper treatment belongs to proof theory,
where normal derivations (derivations without superfluous steps) are consid-
ered. See Ch. 6. For the moment the reader may accept the above mentioned
fact as a convenient rule of thumb.

We can formulate the derivability properties of the universal quantifier in
terms of the relation ⊢:

Γ ⊢ ϕ(x) ⇒ Γ ⊢ ∀xϕ(x) if x ̸∈ FV (ψ) for all ψ ∈ Γ
Γ ⊢ ∀xϕ(x) ⇒ Γ ⊢ ϕ(t) if t is free for x in ϕ.

The above implications follow directly from (∀I) and (∀E).

Our next goal is the correctness of the system of natural deduction for
predicate logic. We first extend the definition of |=.

2.8 Natural Deduction 93

Let x ̸∈ FV (ϕ)

[∀x(ϕ → ψ(x))]
∀E

ϕ → ψ(x) [ϕ]
→ E

ψ(x)
∀I

∀xψ(x)
→ I

ϕ → ∀xψ(x)

∀x(ϕ → ψ(x)) → (ϕ → ∀x(ψ(x))

[ϕ]
∀I

∀xϕ

[∀xϕ]
∀E

ϕ

ϕ ↔ ∀xϕ

In the righthand derivation ∀I is allowed, since x ̸∈ FV (ϕ), and ∀E is ap-
plicable.

Note that ∀I in the bottom left derivation is allowed because x ̸∈ FV (ϕ),
for at that stage ϕ is still (part of) a hypothesis.

The reader will have grasped the technique behind the quantifier rules: re-
duce a ∀xϕ to ϕ and reintroduce ∀ later, if necessary. Intuitively, one makes the
following step: to show “ for all x . . . x . . . ” it suffices to show “. . . x . . . ” for an
arbitrary x. The latter statement is easier to handle. Without going into fine
philosophical distinctions, we note that the distinction “for all x . . . x . . . ” –
“for an arbitrary x . . . x . . . ” is embodied in our system by means of the
distinction. “quantified statement” – “ free variable statement”.

The reader will also have observed that under a reasonable derivation strat-
egy, roughly speaking, elimination precedes introduction. There is a sound
explanation for this phenomenon, its proper treatment belongs to proof theory,
where normal derivations (derivations without superfluous steps) are consid-
ered. See Ch. 6. For the moment the reader may accept the above mentioned
fact as a convenient rule of thumb.

We can formulate the derivability properties of the universal quantifier in
terms of the relation ⊢:

Γ ⊢ ϕ(x) ⇒ Γ ⊢ ∀xϕ(x) if x ̸∈ FV (ψ) for all ψ ∈ Γ
Γ ⊢ ∀xϕ(x) ⇒ Γ ⊢ ϕ(t) if t is free for x in ϕ.

The above implications follow directly from (∀I) and (∀E).

Our next goal is the correctness of the system of natural deduction for
predicate logic. We first extend the definition of |=.

2.8 Natural Deduction 95

So let A |= Γ (a), then A |= ϕ(b)(a) for all b ∈ |A|. In particular we may
take t[a/z] for b, where we slightly abuse the notation; since there are finitely
many variables z1, . . . , zn, we only need finitely many of the ai’s, and we con-
sider it therefore an ordinary simultaneous substitution.
A |= (ϕ[a/z])[t[a/z]/x], hence by Lemma 2.5.4, A |= (ϕ[t/x])[a/z], or A |=
(ϕ(t))(a). !

Having established the soundness of our system, we can easily get non-
derivability results.
Examples.

1. ̸⊢ ∀x∃yϕ → ∃y∀xϕ.
Take A = ⟨{0, 1}, {⟨0, 1⟩, ⟨1, 0⟩}⟩ (type ⟨2;−; 0⟩) and consider
ϕ := P (x, y), the predicate interpreted in A.
A |= ∀x∃yP (x, y), since for 0 we have ⟨0, 1⟩ ∈ P and for l we have
⟨1, 0⟩ ∈ P .
But, A ̸|= ∃y∀xP (x, y), since for 0 we have ⟨0, 0⟩ ̸∈ P and for 1 we have
⟨1, 1⟩ ̸∈ P .

2. ∀xϕ(x, x), ∀xy(ϕ(x, y) → ϕ(y, x))) ̸⊢ ∀xyz(ϕ(x, y) ∧ ϕ(y, z) → ϕ(x, z)).
Consider B = ⟨R, P ⟩ with P = {⟨a, b⟩ | |a − b| ≤ 1}.

Although variables and constants are basically different, they share some
properties. Both constants and free variables may be introduced in deriva-
tions through ∀E, but only free variables can be subjected to ∀I, – that is
free variables can disappear in derivations by other than propositional means.
It follows that a variable can take the place of a constant in a derivation but
in general not vice versa. We make this precise as follows.

Theorem 2.8.3 Let x be a variable not occurring in Γ or ϕ.
(i) Γ ⊢ ϕ ⇒ Γ [x/c] ⊢ ϕ[x/c].
(ii) If c does not occur in Γ , then Γ ⊢ ϕ(c) ⇒ Γ ⊢ ∀xϕ(x).

Proof. (ii) follows immediately from (i) by ∀I. (i) Induction on the derivation
of Γ ⊢ ϕ. Left to the reader. !

Observe that the result is rather obvious, changing c to x is just as harm-
less as colouring c red — the derivation remains intact.

Exercises

1. Show: (i)⊢ ∀x(ϕ(x) → ψ(x)) → (∀xϕ(x) → ∀xψ(x)),
(ii)⊢ ∀xϕ(x) → ¬∀x¬ϕ(x),
(iii)⊢ ∀xϕ(x) → ∀zϕ(z) if z does not occur in ϕ(x),

SEMANTICS

⟨r1,. . . ,rn ;a1,…,am;κ⟩

⟨P1, . . . , Pn; f1,…,fm,{ci }i<k⟩

𝖀=⟨A, P1, . . . , Pn; f1,…,fm,{ci }i<k⟩

Bijective mapping I
between the alphabet and the elements

of a mathematical structureI(Pi) = Pi
I(fi) = fi
I(ci) = ci

Given 𝖀. and a corresponding assignment I
an environment, is a function
ρ: VAR ➝ A
ENV={ρ | ρ: VAR ➝ A}

an interpretation of the terms of L in 𝖀, is a
mapping
⟦-⟧ : TERM x ENV→ |𝖀| satisfying:
(i)⟦c⟧ρ = I(c)

(ii)⟦x⟧ρ = ρ(x),
(iii)⟦f(t1,…,tk)⟧ρ = I(f)(⟦t1⟧ρ,…,⟦tk⟧ρ)

The relation ⊨

1. 𝖀, ρ⊨ P(t1,…,tn) ⇔(⟦t1⟧ρ,…,⟦tn⟧ρ)

2. 𝖀, ρ⊨φ∧ψ⇔ 𝖀, ρ⊨φ and 𝖀, ρ⊨ψ,

3. 𝖀, ρ⊨φ∨ψ⇔𝖀, ρ⊨φ or 𝖀, ρ⊨ψ

4. 𝖀, ρ ⊨ ¬φ ⇔ 𝖀, ρ⊭ φ,

5. 𝖀, ρ⊨φ→ψ⇔ (𝖀, ρ⊨φ⇒𝖀, ρ⊨ψ),

6. 𝖀, ρ⊨∀xφ⇔ 𝖀, ρ[a ↦x] ⊨ φ, for each a∈|𝖀|.

7. 𝖀, ρ ⊨ ∃xφ ⇔ 𝖀, ρ[a↦x] ⊨ φ, for some a∈|𝖀|.

where

ρ[a↦x](y) = (if y=x then a else ρ(y))

𝖀⊨ φ (𝖀 is a model of φ) ⇔ for each ρ, 𝖀,ρ ⊨ φ,

 ⊨ φ (φ is valid/true) ⇔

𝖀 ⊨ φ for all 𝖀 (of the appropriate type),

 𝖀 , ρ⊨ Γ (𝖀 satisfies Γ) ⇔

𝖀, ρ ⊨ ψ for all ψ∈Γ,

 Γ ⊨ φ (φ is consequence of Γ) ⇔

for each ρ 𝖀 and for each ρ(𝖀, ρ ⊨ Γ ⇒ 𝖀,ρ ⊨ φ),

2.5 Simple Properties of Predicate Logic 73

2.5 Simple Properties of Predicate Logic

Our definition of validity (truth) was a straightforward extension of the
valuation-definition of propositional logic. As a consequence formulas which
are instances of tautologies are true in all structures A (exercise 1). So we can
copy many results from sections 1.2 and 1.3. We will use these results with a
simple reference to propositional logic.

The specific properties concerning quantifiers will be treated in this sec-
tion. First we consider the generalizations of De Morgan’s laws .

Theorem 2.5.1 (i) |= ¬∀xϕ ↔ ∃x¬ϕ
(ii) |= ¬∃xϕ ↔ ∀x¬ϕ
(iii) |= ∀xϕ ↔ ¬∃x¬ϕ
(iv) |= ∃xϕ ↔ ¬∀x¬ϕ

Proof. If there are no free variables involved, then the above equivalences are
almost trivial. We will do one general case.

(i) Let FV (∀xϕ) = {z1, . . . , zk}, then we must show
A |= ∀z1 . . . zk(¬∀xϕ(x, z1, . . . , zk) ↔ ∃x¬ϕ(x, z1, . . . , zk)), for all A.
So we have to show A |= ¬∀xϕ(x, a1, . . . , ak) ↔ ∃x¬ϕ(x, a1, . . . , ak) for ar-
bitrary a1, . . . , ak ∈ |A|. We apply the properties of |= as listed in Lemma
2.4.5:
A |= ¬∀xϕ(x, a1, . . . , ak) ⇔ A ̸|= ∀xϕ(x, a1, . . . , ak) ⇔ not for all
b ∈ |A| A |= ϕ(b, a1, . . . , ak) ⇔ there is a b ∈ |A| such that
A |= ¬ϕ(b, a1, . . . , ak) ⇔ A |= ∃x¬ϕ(x, a1, . . . , an).

(ii) is similarly dealt with,
(iii) can be obtained from (i), (ii),
(iv) can be obtained from (i), (ii). !

The order of quantifiers of the same sort is irrelevant, and quantification
over a variable that does not occur can be deleted.

Theorem 2.5.2 (i) |= ∀x∀yϕ ↔ ∀y∀xϕ,
(ii) |= ∃x∃yϕ ↔ ∃y∃xϕ,
(iii) |= ∀xϕ ↔ ϕ if x ̸∈ FV (ϕ),
(iv) |= ∃xϕ ↔ ϕ if x ̸∈ FV (ϕ).

Proof. Left to the reader. !
We have already observed that ∀ and ∃ are, in a way, generalizations of

∧ and ∨. Therefore it is not surprising that ∀ (resp. ∃) distributes over ∧
(resp.∨). ∀ (and ∃) distributes over ∨ (resp. ∧) only if a certain condition is
met.

exercises

Change of Bound Variables
If x, y are free for z in φ and x,y∉ FV(φ)),

(or simply: if x and y does not occur in φ) then
⊨ ∃x(φ[x/z]) ↔ ∃y(φ[y/z]),

⊨ ∀x(φ[x/z]) ↔ ∀y(φ[y/z]).

Every formula is equivalent to one in which no variable
occurs both free and bound.

IDENTITY

1. ∀x(x = x),

2. ∀xy(x=y→y=x),

3. ∀xyz(x=y∧y=z→x=z),

4. ∀x1 ...xny1 …yn(i=1,n xi= yi → t(x1,...,xn) = t(y1,...,yn))

5. ∀x1 ...xny1 …yn(i=1,n
 xi = yi → (φ(x1,...,xn) → φ(y1,...,yn)))

∧∧
∧∧

exercise:
⊨ ∀x∃y(x = y)

Soundness

Γ ⊢ σ ⇒ Γ ⊨ σ

hpD ⊆ Γ x∉FV(hpD)

by Induction hypothesis

Γ ⊨φ i.e.

∀ 𝖀, ∀ρ, (𝖀, ρ ⊨ hpD⇒ 𝖀, ρ ⊨ φ)⇒

∀ 𝖀, ∀ρ∀,a (𝖀, ρ[x↦a]⊨hpD ⇒ 𝖀, ρ[x↦a]⊨φ)⇒

⇒ ∀ 𝖀, ∀ρ, ((∀a 𝖀,ρ[x↦a]⊨hpD)⇒ (∀a 𝖀,ρ[x↦a]⊨φ)) ⇒

(because 𝖀,ρ[x↦a]⊨ hpD ⇔ 𝖀,ρ⊨ hpD) .

∀ 𝖀, ∀ρ, (𝖀,ρ ⊨ hpD ⇒ 𝖀 ,ρ⊨ ∀x.φ) ⇒

Γ ⊨ ∀x.φ

94 2 Predicate Logic

Definition 2.8.1 Let Γ be a set of formulae and let {xi1 , xi2 , . . .} =⋃
{FV (ψ)|ψ ∈ Γ ∪{σ}}. If a is a sequence (a1, a2, . . .) of elements (repetitions

allowed) of |A|, then Γ (a) is obtained from Γ by replacing simultaneously in
all formulas of Γ the xij by aj(j ≥ 1) (for Γ = {ψ} we write ψ(a)). We now
define

(i) A |= Γ (a) if A |= ψ for all ψ ∈ Γ (a)
(ii) Γ |= σ if A |= Γ (a) ⇒ A |= σ(a) for all A, a.

In case only sentences are involved, the definition can be simplified:
Γ |= σ if A |= Γ ⇒ A |= σ for all A.
If Γ = ∅, we write |= σ.

We can paraphrase this definition as : Γ |= σ, if for all structures A and all
choices of a, σ(a) is true in A if all hypotheses of Γ (a) are true in A.

Now we can formulate

Lemma 2.8.2 (Soundness) Γ ⊢ σ ⇒ Γ |= σ.

Proof. By definition of Γ ⊢ σ is suffices to show that for each derivation D
with hypothesis set Γ and conclusion σ Γ |= σ. We use induction on D (cf.
1.5.1 and exercise 2).

Since we have cast our definition of satisfaction in terms of valuations,
which evidently contains the propositional logic as a special case, we can copy
the cases of (1) the one element derivation, (2) the derivations with a propo-
sitional rule at last step, from Lemma 1.6.1 (please check this claim).

So we have to treat derivations with (∀I) or (∀E) as the final step.

(∀I) D D has its hypotheses in Γ and x is not free in Γ.
ϕ(x) Induction hypothesis: Γ |= ϕ(x), i.e. A |= Γ (a) ⇒

∀xϕ(x) A |= (ϕ(x))(a) for all A and all a.
It is no restriction to suppose that x is the first of the free variables involved
(why?). So we can substitute a1 for x in ϕ. Put a = (a1,a′).Now we have:

for all a1 and a′ = (a2, . . .) A |= Γ (a′) ⇒ A |= ϕ(a1)(a′), so
for all a′ A |= Γ (a′) ⇒ (A |= (ϕ(a1))(a′) for all a1 , so
for all a′ A |= Γ (a′) ⇒ A |= (∀xϕ(x))(a′).

This shows Γ |= ∀xϕ(x). (Note that in this proof we used ∀x(σ → τ(x)) →
(σ → ∀xτ(x)), where x ̸∈ FV (σ), in the metalanguage. Of course we may use
sound principles on the metalevel).

(∀E) D Induction hypothesis: Γ |= ∀xϕ(x),
∀xϕ(x) i.e.A |= Γ (a) ⇒ A |= (∀xϕ(x))(a),

ϕ(t) for all a and A.

by IH: Γ ⊨∀x.φ
i.e. ∀𝖀 ∀ ρ,. 𝖀,ρ ⊨ Γ ⇒ 𝖀,ρ ⊨ ∀x.φ

𝖀,ρ ⊨ ∀x.φ ⇒ ∀a 𝖀,ρ[x↦a]⊨φ ⇒

∀t 𝖀,ρ[x↦⟦t⟧]⊨φ ⇔ ∀t 𝖀,ρ⊨φ[t/x]

and therefore ∀t(𝖀,ρ ⊨ ∀x.φ(ρ) ⇒ 𝖀,ρ⊨φ[t/x])

94 2 Predicate Logic

Definition 2.8.1 Let Γ be a set of formulae and let {xi1 , xi2 , . . .} =⋃
{FV (ψ)|ψ ∈ Γ ∪{σ}}. If a is a sequence (a1, a2, . . .) of elements (repetitions

allowed) of |A|, then Γ (a) is obtained from Γ by replacing simultaneously in
all formulas of Γ the xij by aj(j ≥ 1) (for Γ = {ψ} we write ψ(a)). We now
define

(i) A |= Γ (a) if A |= ψ for all ψ ∈ Γ (a)
(ii) Γ |= σ if A |= Γ (a) ⇒ A |= σ(a) for all A, a.

In case only sentences are involved, the definition can be simplified:
Γ |= σ if A |= Γ ⇒ A |= σ for all A.
If Γ = ∅, we write |= σ.

We can paraphrase this definition as : Γ |= σ, if for all structures A and all
choices of a, σ(a) is true in A if all hypotheses of Γ (a) are true in A.

Now we can formulate

Lemma 2.8.2 (Soundness) Γ ⊢ σ ⇒ Γ |= σ.

Proof. By definition of Γ ⊢ σ is suffices to show that for each derivation D
with hypothesis set Γ and conclusion σ Γ |= σ. We use induction on D (cf.
1.5.1 and exercise 2).

Since we have cast our definition of satisfaction in terms of valuations,
which evidently contains the propositional logic as a special case, we can copy
the cases of (1) the one element derivation, (2) the derivations with a propo-
sitional rule at last step, from Lemma 1.6.1 (please check this claim).

So we have to treat derivations with (∀I) or (∀E) as the final step.

(∀I) D D has its hypotheses in Γ and x is not free in Γ.
ϕ(x) Induction hypothesis: Γ |= ϕ(x), i.e. A |= Γ (a) ⇒

∀xϕ(x) A |= (ϕ(x))(a) for all A and all a.
It is no restriction to suppose that x is the first of the free variables involved
(why?). So we can substitute a1 for x in ϕ. Put a = (a1,a′).Now we have:

for all a1 and a′ = (a2, . . .) A |= Γ (a′) ⇒ A |= ϕ(a1)(a′), so
for all a′ A |= Γ (a′) ⇒ (A |= (ϕ(a1))(a′) for all a1 , so
for all a′ A |= Γ (a′) ⇒ A |= (∀xϕ(x))(a′).

This shows Γ |= ∀xϕ(x). (Note that in this proof we used ∀x(σ → τ(x)) →
(σ → ∀xτ(x)), where x ̸∈ FV (σ), in the metalanguage. Of course we may use
sound principles on the metalevel).

(∀E) D Induction hypothesis: Γ |= ∀xϕ(x),
∀xϕ(x) i.e.A |= Γ (a) ⇒ A |= (∀xϕ(x))(a),

ϕ(t) for all a and A.

⟦s[t/x]⟧ρ=⟦s⟧ρ[x↦⟦t⟧ρ]

𝖀,ρ⊨ φ[t/x] iff 𝖀,ρ[x↦⟦t⟧ρ]⊨ φ
t free for x in φ

Adding the Existential Quantifier

2.9 Adding the Existential Quantifier 97

(ii)

¬∀x¬ϕ(x)

[ϕ(x)]

D

ψ [¬ψ]
→ E

⊥
→ I

¬ϕ(x)
∀I

∀x¬ϕ(x)
→ E

⊥
RAA

ψ !

Explanation. The subderivation top left is the given one; its hypotheses are
in Γ ∪ {ϕ(x)} (only ϕ(x) is shown). Since ϕ(x) (that is, all occurrences of it)
is cancelled and x does not occur free in Γ or ψ, we may apply ∀I. From the
derivation we conclude that Γ, ∃xϕ(x) ⊢ ψ.

We can compress the last derivation into an elimination rule for ∃:

[ϕ]
...

∃xϕ(x) ψ
ψ

∃E

with the conditions: x is not free in ψ, or in a hypothesis of the subderivation
of ψ, other than ϕ(x).

This is easily seen to be correct since we can always fill in the missing
details, as shown in the preceding derivation.

By (i) we also have an introduction rule:
ϕ(t)

∃I
∃x ϕ(x)

for t free for x in ϕ.

Examples of derivations.

[∃xϕ(x)]2

[∀x(ϕ(x) → ψ)]3
∀E

ϕ(x) → ψ [ϕ(x)]1
→ E

ψ
∃E1

ψ
→ I2

∃xϕ(x) → ψ
→ I3

∀x(ϕ(x) → ψ) → (∃xϕ(x) → ψ)

x ̸∈ FV (ψ)

2.9 Adding the Existential Quantifier 97

(ii)

¬∀x¬ϕ(x)

[ϕ(x)]

D

ψ [¬ψ]
→ E

⊥
→ I

¬ϕ(x)
∀I

∀x¬ϕ(x)
→ E

⊥
RAA

ψ !

Explanation. The subderivation top left is the given one; its hypotheses are
in Γ ∪ {ϕ(x)} (only ϕ(x) is shown). Since ϕ(x) (that is, all occurrences of it)
is cancelled and x does not occur free in Γ or ψ, we may apply ∀I. From the
derivation we conclude that Γ, ∃xϕ(x) ⊢ ψ.

We can compress the last derivation into an elimination rule for ∃:

[ϕ]
...

∃xϕ(x) ψ
ψ

∃E

with the conditions: x is not free in ψ, or in a hypothesis of the subderivation
of ψ, other than ϕ(x).

This is easily seen to be correct since we can always fill in the missing
details, as shown in the preceding derivation.

By (i) we also have an introduction rule:
ϕ(t)

∃I
∃x ϕ(x)

for t free for x in ϕ.

Examples of derivations.

[∃xϕ(x)]2

[∀x(ϕ(x) → ψ)]3
∀E

ϕ(x) → ψ [ϕ(x)]1
→ E

ψ
∃E1

ψ
→ I2

∃xϕ(x) → ψ
→ I3

∀x(ϕ(x) → ψ) → (∃xϕ(x) → ψ)

x ̸∈ FV (ψ)

x∉FV(hpD-{φ})∪FV(ψ)

D

t free for x in φ

2.9 Adding the Existential Quantifier 97

(ii)

¬∀x¬ϕ(x)

[ϕ(x)]

D

ψ [¬ψ]
→ E

⊥
→ I

¬ϕ(x)
∀I

∀x¬ϕ(x)
→ E

⊥
RAA

ψ !

Explanation. The subderivation top left is the given one; its hypotheses are
in Γ ∪ {ϕ(x)} (only ϕ(x) is shown). Since ϕ(x) (that is, all occurrences of it)
is cancelled and x does not occur free in Γ or ψ, we may apply ∀I. From the
derivation we conclude that Γ, ∃xϕ(x) ⊢ ψ.

We can compress the last derivation into an elimination rule for ∃:

[ϕ]
...

∃xϕ(x) ψ
ψ

∃E

with the conditions: x is not free in ψ, or in a hypothesis of the subderivation
of ψ, other than ϕ(x).

This is easily seen to be correct since we can always fill in the missing
details, as shown in the preceding derivation.

By (i) we also have an introduction rule:
ϕ(t)

∃I
∃x ϕ(x)

for t free for x in ϕ.

Examples of derivations.

[∃xϕ(x)]2

[∀x(ϕ(x) → ψ)]3
∀E

ϕ(x) → ψ [ϕ(x)]1
→ E

ψ
∃E1

ψ
→ I2

∃xϕ(x) → ψ
→ I3

∀x(ϕ(x) → ψ) → (∃xϕ(x) → ψ)

x ̸∈ FV (ψ)

98 2 Predicate Logic

[∃x(ϕ(x) ∨ ψ(x))]3

[ϕ(x) ∨ ψ(x)]2

[ϕ(x)]1

∃xϕ(x)

∃xϕ(x) ∨ ∃xψ(x)

[ψ(x)]1

∃xψ(x)

∃xϕ(x) ∨ ∃xψ(x)
∨E1

∃xϕ(x) ∨ ∃xψ(x)
∃E2

∃xϕ(x) ∨ ∃xψ(x)
→ I3

∃x(ϕ(x) ∨ ψ(x)) → ∃xϕ(x) ∨ ∃xψ(x)

We will also sketch the alternative approach, that of enriching the language.

Theorem 2.9.2 Consider predicate logic with the full language and rules for
all connectives, then ⊢ ∃xϕ(x) ↔ ¬∀x¬ϕ(x).

Proof. Compare 1.6.3. !

It is time now to state the rules for ∀ and ∃ with more precision. We want
to allow substitution of terms for some occurrences of the quantified variable
in (∀E) and (∃E). The following example motivates this.

∀x(x = x)
∀E

x = x
∃I

∃y(x = y))

The result would not be derivable if we could only make substitutions for all
occurrences at the same time. Yet, the result is evidently true.

The proper formulation of the rules now is:

∀I
ϕ

∀xϕ
∀E

∀xϕ
ϕ[t/x]

∃I
ϕ[t/x]
∃xϕ

∃E

[ϕ]
.
.

∃xϕ ψ
ψ

with the appropriate restrictions.

Exercises

1. ⊢ ∃x(ϕ(x) ∧ ψ) ↔ ∃xϕ(x) ∧ ψ if x ̸∈ FV (ψ),
2. ⊢ ∀x(ϕ(x) ∨ ψ) ↔ ∀xϕ(x) ∨ ψ if x ̸∈ FV (ψ),
3. ⊢ ∀xϕ(x) ↔ ¬∃x¬ϕ(x),
4. ⊢ ¬∀xϕ(x) ↔ ∃x¬ϕ(x),

98 2 Predicate Logic

[∃x(ϕ(x) ∨ ψ(x))]3

[ϕ(x) ∨ ψ(x)]2

[ϕ(x)]1

∃xϕ(x)

∃xϕ(x) ∨ ∃xψ(x)

[ψ(x)]1

∃xψ(x)

∃xϕ(x) ∨ ∃xψ(x)
∨E1

∃xϕ(x) ∨ ∃xψ(x)
∃E2

∃xϕ(x) ∨ ∃xψ(x)
→ I3

∃x(ϕ(x) ∨ ψ(x)) → ∃xϕ(x) ∨ ∃xψ(x)

We will also sketch the alternative approach, that of enriching the language.

Theorem 2.9.2 Consider predicate logic with the full language and rules for
all connectives, then ⊢ ∃xϕ(x) ↔ ¬∀x¬ϕ(x).

Proof. Compare 1.6.3. !

It is time now to state the rules for ∀ and ∃ with more precision. We want
to allow substitution of terms for some occurrences of the quantified variable
in (∀E) and (∃E). The following example motivates this.

∀x(x = x)
∀E

x = x
∃I

∃y(x = y))

The result would not be derivable if we could only make substitutions for all
occurrences at the same time. Yet, the result is evidently true.

The proper formulation of the rules now is:

∀I
ϕ

∀xϕ
∀E

∀xϕ
ϕ[t/x]

∃I
ϕ[t/x]
∃xϕ

∃E

[ϕ]
.
.

∃xϕ ψ
ψ

with the appropriate restrictions.

Exercises

1. ⊢ ∃x(ϕ(x) ∧ ψ) ↔ ∃xϕ(x) ∧ ψ if x ̸∈ FV (ψ),
2. ⊢ ∀x(ϕ(x) ∨ ψ) ↔ ∀xϕ(x) ∨ ψ if x ̸∈ FV (ψ),
3. ⊢ ∀xϕ(x) ↔ ¬∃x¬ϕ(x),
4. ⊢ ¬∀xϕ(x) ↔ ∃x¬ϕ(x),

98 2 Predicate Logic

[∃x(ϕ(x) ∨ ψ(x))]3

[ϕ(x) ∨ ψ(x)]2

[ϕ(x)]1

∃xϕ(x)

∃xϕ(x) ∨ ∃xψ(x)

[ψ(x)]1

∃xψ(x)

∃xϕ(x) ∨ ∃xψ(x)
∨E1

∃xϕ(x) ∨ ∃xψ(x)
∃E2

∃xϕ(x) ∨ ∃xψ(x)
→ I3

∃x(ϕ(x) ∨ ψ(x)) → ∃xϕ(x) ∨ ∃xψ(x)

We will also sketch the alternative approach, that of enriching the language.

Theorem 2.9.2 Consider predicate logic with the full language and rules for
all connectives, then ⊢ ∃xϕ(x) ↔ ¬∀x¬ϕ(x).

Proof. Compare 1.6.3. !

It is time now to state the rules for ∀ and ∃ with more precision. We want
to allow substitution of terms for some occurrences of the quantified variable
in (∀E) and (∃E). The following example motivates this.

∀x(x = x)
∀E

x = x
∃I

∃y(x = y))

The result would not be derivable if we could only make substitutions for all
occurrences at the same time. Yet, the result is evidently true.

The proper formulation of the rules now is:

∀I
ϕ

∀xϕ
∀E

∀xϕ
ϕ[t/x]

∃I
ϕ[t/x]
∃xϕ

∃E

[ϕ]
.
.

∃xϕ ψ
ψ

with the appropriate restrictions.

Exercises

1. ⊢ ∃x(ϕ(x) ∧ ψ) ↔ ∃xϕ(x) ∧ ψ if x ̸∈ FV (ψ),
2. ⊢ ∀x(ϕ(x) ∨ ψ) ↔ ∀xϕ(x) ∨ ψ if x ̸∈ FV (ψ),
3. ⊢ ∀xϕ(x) ↔ ¬∃x¬ϕ(x),
4. ⊢ ¬∀xϕ(x) ↔ ∃x¬ϕ(x),

98 2 Predicate Logic

[∃x(ϕ(x) ∨ ψ(x))]3

[ϕ(x) ∨ ψ(x)]2

[ϕ(x)]1

∃xϕ(x)

∃xϕ(x) ∨ ∃xψ(x)

[ψ(x)]1

∃xψ(x)

∃xϕ(x) ∨ ∃xψ(x)
∨E1

∃xϕ(x) ∨ ∃xψ(x)
∃E2

∃xϕ(x) ∨ ∃xψ(x)
→ I3

∃x(ϕ(x) ∨ ψ(x)) → ∃xϕ(x) ∨ ∃xψ(x)

We will also sketch the alternative approach, that of enriching the language.

Theorem 2.9.2 Consider predicate logic with the full language and rules for
all connectives, then ⊢ ∃xϕ(x) ↔ ¬∀x¬ϕ(x).

Proof. Compare 1.6.3. !

It is time now to state the rules for ∀ and ∃ with more precision. We want
to allow substitution of terms for some occurrences of the quantified variable
in (∀E) and (∃E). The following example motivates this.

∀x(x = x)
∀E

x = x
∃I

∃y(x = y))

The result would not be derivable if we could only make substitutions for all
occurrences at the same time. Yet, the result is evidently true.

The proper formulation of the rules now is:

∀I
ϕ

∀xϕ
∀E

∀xϕ
ϕ[t/x]

∃I
ϕ[t/x]
∃xϕ

∃E

[ϕ]
.
.

∃xϕ ψ
ψ

with the appropriate restrictions.

Exercises

1. ⊢ ∃x(ϕ(x) ∧ ψ) ↔ ∃xϕ(x) ∧ ψ if x ̸∈ FV (ψ),
2. ⊢ ∀x(ϕ(x) ∨ ψ) ↔ ∀xϕ(x) ∨ ψ if x ̸∈ FV (ψ),
3. ⊢ ∀xϕ(x) ↔ ¬∃x¬ϕ(x),
4. ⊢ ¬∀xϕ(x) ↔ ∃x¬ϕ(x),

98 2 Predicate Logic

[∃x(ϕ(x) ∨ ψ(x))]3

[ϕ(x) ∨ ψ(x)]2

[ϕ(x)]1

∃xϕ(x)

∃xϕ(x) ∨ ∃xψ(x)

[ψ(x)]1

∃xψ(x)

∃xϕ(x) ∨ ∃xψ(x)
∨E1

∃xϕ(x) ∨ ∃xψ(x)
∃E2

∃xϕ(x) ∨ ∃xψ(x)
→ I3

∃x(ϕ(x) ∨ ψ(x)) → ∃xϕ(x) ∨ ∃xψ(x)

We will also sketch the alternative approach, that of enriching the language.

Theorem 2.9.2 Consider predicate logic with the full language and rules for
all connectives, then ⊢ ∃xϕ(x) ↔ ¬∀x¬ϕ(x).

Proof. Compare 1.6.3. !

It is time now to state the rules for ∀ and ∃ with more precision. We want
to allow substitution of terms for some occurrences of the quantified variable
in (∀E) and (∃E). The following example motivates this.

∀x(x = x)
∀E

x = x
∃I

∃y(x = y))

The result would not be derivable if we could only make substitutions for all
occurrences at the same time. Yet, the result is evidently true.

The proper formulation of the rules now is:

∀I
ϕ

∀xϕ
∀E

∀xϕ
ϕ[t/x]

∃I
ϕ[t/x]
∃xϕ

∃E

[ϕ]
.
.

∃xϕ ψ
ψ

with the appropriate restrictions.

Exercises

1. ⊢ ∃x(ϕ(x) ∧ ψ) ↔ ∃xϕ(x) ∧ ψ if x ̸∈ FV (ψ),
2. ⊢ ∀x(ϕ(x) ∨ ψ) ↔ ∀xϕ(x) ∨ ψ if x ̸∈ FV (ψ),
3. ⊢ ∀xϕ(x) ↔ ¬∃x¬ϕ(x),
4. ⊢ ¬∀xϕ(x) ↔ ∃x¬ϕ(x),

?

98 2 Predicate Logic

[∃x(ϕ(x) ∨ ψ(x))]3

[ϕ(x) ∨ ψ(x)]2

[ϕ(x)]1

∃xϕ(x)

∃xϕ(x) ∨ ∃xψ(x)

[ψ(x)]1

∃xψ(x)

∃xϕ(x) ∨ ∃xψ(x)
∨E1

∃xϕ(x) ∨ ∃xψ(x)
∃E2

∃xϕ(x) ∨ ∃xψ(x)
→ I3

∃x(ϕ(x) ∨ ψ(x)) → ∃xϕ(x) ∨ ∃xψ(x)

We will also sketch the alternative approach, that of enriching the language.

Theorem 2.9.2 Consider predicate logic with the full language and rules for
all connectives, then ⊢ ∃xϕ(x) ↔ ¬∀x¬ϕ(x).

Proof. Compare 1.6.3. !

It is time now to state the rules for ∀ and ∃ with more precision. We want
to allow substitution of terms for some occurrences of the quantified variable
in (∀E) and (∃E). The following example motivates this.

∀x(x = x)
∀E

x = x
∃I

∃y(x = y))

The result would not be derivable if we could only make substitutions for all
occurrences at the same time. Yet, the result is evidently true.

The proper formulation of the rules now is:

∀I
ϕ

∀xϕ
∀E

∀xϕ
ϕ[t/x]

∃I
ϕ[t/x]
∃xϕ

∃E

[ϕ]
.
.

∃xϕ ψ
ψ

with the appropriate restrictions.

Exercises

1. ⊢ ∃x(ϕ(x) ∧ ψ) ↔ ∃xϕ(x) ∧ ψ if x ̸∈ FV (ψ),
2. ⊢ ∀x(ϕ(x) ∨ ψ) ↔ ∀xϕ(x) ∨ ψ if x ̸∈ FV (ψ),
3. ⊢ ∀xϕ(x) ↔ ¬∃x¬ϕ(x),
4. ⊢ ¬∀xϕ(x) ↔ ∃x¬ϕ(x),

yes!

98 2 Predicate Logic

[∃x(ϕ(x) ∨ ψ(x))]3

[ϕ(x) ∨ ψ(x)]2

[ϕ(x)]1

∃xϕ(x)

∃xϕ(x) ∨ ∃xψ(x)

[ψ(x)]1

∃xψ(x)

∃xϕ(x) ∨ ∃xψ(x)
∨E1

∃xϕ(x) ∨ ∃xψ(x)
∃E2

∃xϕ(x) ∨ ∃xψ(x)
→ I3

∃x(ϕ(x) ∨ ψ(x)) → ∃xϕ(x) ∨ ∃xψ(x)

We will also sketch the alternative approach, that of enriching the language.

Theorem 2.9.2 Consider predicate logic with the full language and rules for
all connectives, then ⊢ ∃xϕ(x) ↔ ¬∀x¬ϕ(x).

Proof. Compare 1.6.3. !

It is time now to state the rules for ∀ and ∃ with more precision. We want
to allow substitution of terms for some occurrences of the quantified variable
in (∀E) and (∃E). The following example motivates this.

∀x(x = x)
∀E

x = x
∃I

∃y(x = y))

The result would not be derivable if we could only make substitutions for all
occurrences at the same time. Yet, the result is evidently true.

The proper formulation of the rules now is:

∀I
ϕ

∀xϕ
∀E

∀xϕ
ϕ[t/x]

∃I
ϕ[t/x]
∃xϕ

∃E

[ϕ]
.
.

∃xϕ ψ
ψ

with the appropriate restrictions.

Exercises

1. ⊢ ∃x(ϕ(x) ∧ ψ) ↔ ∃xϕ(x) ∧ ψ if x ̸∈ FV (ψ),
2. ⊢ ∀x(ϕ(x) ∨ ψ) ↔ ∀xϕ(x) ∨ ψ if x ̸∈ FV (ψ),
3. ⊢ ∀xϕ(x) ↔ ¬∃x¬ϕ(x),
4. ⊢ ¬∀xϕ(x) ↔ ∃x¬ϕ(x),

(x=x)[x/x]
∀x.φ
φ[t/x] ≣ψ[u/y]

98 2 Predicate Logic

[∃x(ϕ(x) ∨ ψ(x))]3

[ϕ(x) ∨ ψ(x)]2

[ϕ(x)]1

∃xϕ(x)

∃xϕ(x) ∨ ∃xψ(x)

[ψ(x)]1

∃xψ(x)

∃xϕ(x) ∨ ∃xψ(x)
∨E1

∃xϕ(x) ∨ ∃xψ(x)
∃E2

∃xϕ(x) ∨ ∃xψ(x)
→ I3

∃x(ϕ(x) ∨ ψ(x)) → ∃xϕ(x) ∨ ∃xψ(x)

We will also sketch the alternative approach, that of enriching the language.

Theorem 2.9.2 Consider predicate logic with the full language and rules for
all connectives, then ⊢ ∃xϕ(x) ↔ ¬∀x¬ϕ(x).

Proof. Compare 1.6.3. !

It is time now to state the rules for ∀ and ∃ with more precision. We want
to allow substitution of terms for some occurrences of the quantified variable
in (∀E) and (∃E). The following example motivates this.

∀x(x = x)
∀E

x = x
∃I

∃y(x = y))

The result would not be derivable if we could only make substitutions for all
occurrences at the same time. Yet, the result is evidently true.

The proper formulation of the rules now is:

∀I
ϕ

∀xϕ
∀E

∀xϕ
ϕ[t/x]

∃I
ϕ[t/x]
∃xϕ

∃E

[ϕ]
.
.

∃xϕ ψ
ψ

with the appropriate restrictions.

Exercises

1. ⊢ ∃x(ϕ(x) ∧ ψ) ↔ ∃xϕ(x) ∧ ψ if x ̸∈ FV (ψ),
2. ⊢ ∀x(ϕ(x) ∨ ψ) ↔ ∀xϕ(x) ∨ ψ if x ̸∈ FV (ψ),
3. ⊢ ∀xϕ(x) ↔ ¬∃x¬ϕ(x),
4. ⊢ ¬∀xϕ(x) ↔ ∃x¬ϕ(x),

(x=x)[x/x] ≣(x=y)[x/y]
∀x.φ
φ[t/x] ≣ψ[u/y]

98 2 Predicate Logic

[∃x(ϕ(x) ∨ ψ(x))]3

[ϕ(x) ∨ ψ(x)]2

[ϕ(x)]1

∃xϕ(x)

∃xϕ(x) ∨ ∃xψ(x)

[ψ(x)]1

∃xψ(x)

∃xϕ(x) ∨ ∃xψ(x)
∨E1

∃xϕ(x) ∨ ∃xψ(x)
∃E2

∃xϕ(x) ∨ ∃xψ(x)
→ I3

∃x(ϕ(x) ∨ ψ(x)) → ∃xϕ(x) ∨ ∃xψ(x)

We will also sketch the alternative approach, that of enriching the language.

Theorem 2.9.2 Consider predicate logic with the full language and rules for
all connectives, then ⊢ ∃xϕ(x) ↔ ¬∀x¬ϕ(x).

Proof. Compare 1.6.3. !

It is time now to state the rules for ∀ and ∃ with more precision. We want
to allow substitution of terms for some occurrences of the quantified variable
in (∀E) and (∃E). The following example motivates this.

∀x(x = x)
∀E

x = x
∃I

∃y(x = y))

The result would not be derivable if we could only make substitutions for all
occurrences at the same time. Yet, the result is evidently true.

The proper formulation of the rules now is:

∀I
ϕ

∀xϕ
∀E

∀xϕ
ϕ[t/x]

∃I
ϕ[t/x]
∃xϕ

∃E

[ϕ]
.
.

∃xϕ ψ
ψ

with the appropriate restrictions.

Exercises

1. ⊢ ∃x(ϕ(x) ∧ ψ) ↔ ∃xϕ(x) ∧ ψ if x ̸∈ FV (ψ),
2. ⊢ ∀x(ϕ(x) ∨ ψ) ↔ ∀xϕ(x) ∨ ψ if x ̸∈ FV (ψ),
3. ⊢ ∀xϕ(x) ↔ ¬∃x¬ϕ(x),
4. ⊢ ¬∀xϕ(x) ↔ ∃x¬ϕ(x),

(x=y)[x/y]
∀x.φ
ψ[u/y]
∃y.ψ

98 2 Predicate Logic

[∃x(ϕ(x) ∨ ψ(x))]3

[ϕ(x) ∨ ψ(x)]2

[ϕ(x)]1

∃xϕ(x)

∃xϕ(x) ∨ ∃xψ(x)

[ψ(x)]1

∃xψ(x)

∃xϕ(x) ∨ ∃xψ(x)
∨E1

∃xϕ(x) ∨ ∃xψ(x)
∃E2

∃xϕ(x) ∨ ∃xψ(x)
→ I3

∃x(ϕ(x) ∨ ψ(x)) → ∃xϕ(x) ∨ ∃xψ(x)

We will also sketch the alternative approach, that of enriching the language.

Theorem 2.9.2 Consider predicate logic with the full language and rules for
all connectives, then ⊢ ∃xϕ(x) ↔ ¬∀x¬ϕ(x).

Proof. Compare 1.6.3. !

It is time now to state the rules for ∀ and ∃ with more precision. We want
to allow substitution of terms for some occurrences of the quantified variable
in (∀E) and (∃E). The following example motivates this.

∀x(x = x)
∀E

x = x
∃I

∃y(x = y))

The result would not be derivable if we could only make substitutions for all
occurrences at the same time. Yet, the result is evidently true.

The proper formulation of the rules now is:

∀I
ϕ

∀xϕ
∀E

∀xϕ
ϕ[t/x]

∃I
ϕ[t/x]
∃xϕ

∃E

[ϕ]
.
.

∃xϕ ψ
ψ

with the appropriate restrictions.

Exercises

1. ⊢ ∃x(ϕ(x) ∧ ψ) ↔ ∃xϕ(x) ∧ ψ if x ̸∈ FV (ψ),
2. ⊢ ∀x(ϕ(x) ∨ ψ) ↔ ∀xϕ(x) ∨ ψ if x ̸∈ FV (ψ),
3. ⊢ ∀xϕ(x) ↔ ¬∃x¬ϕ(x),
4. ⊢ ¬∀xϕ(x) ↔ ∃x¬ϕ(x),

2.10 Natural Deduction and Identity 99

5. ⊢ ¬∃xϕ(x) ↔ ∀x¬ϕ(x),
6. ⊢ ∃x(ϕ(x) → ψ) ↔ (∀xϕ(x) → ψ) if x ̸∈ FV (ψ),
7. ⊢ ∃x(ϕ → ψ(x)) ↔ (ϕ → ∃xψ(x)) if x ̸∈ FV (ϕ) ,
8. ⊢ ∃x∃yϕ ↔ ∃y∃xϕ,
9. ⊢ ∃xϕ ↔ ϕ if x ̸∈ FV (ϕ).

2.10 Natural Deduction and Identity

We will give rules, corresponding to the axioms I1 − I4 of section 2.6.

RI1
x = x

x = y
RI2

y = x

x = y y = z
RI3

x = z

x1 = y1, . . . , xn = yn
RI4

t(x1, . . . , xn) = t(y1, . . . , yn)

x1 = y1, . . . , xn = yn ϕ(x1, . . . , xn)
RI4

ϕ(y1, . . . , yn)

where y1, . . . , yn are free for x1, . . . , xn in ϕ. Note that we want to allow sub-
stitution of the variable yi(i ≤ n) for some and not necessarily all occurrences
of the variable xi. We can express this by formulating RI4 in the precise terms
of the simultaneous substitution operator:

x1 = y1, . . . , xn = yn

t[x1, . . . , xn/z1, . . . , zn] = t[y1, . . . , yn/z1, . . . , zn]

x1 = y1, . . . , xn = yn ϕ[x1, . . . , xn/z1, . . . , zn]

ϕ[y1, . . . , yn/z1, . . . , zn]

Example.

x = y x2 + y2 > 12x

2y2 > 12x

x = y x2 + y2 > 12x

x2 + y2 > 12y

Natural Deduction and Identity

2.10 Natural Deduction and Identity 99

5. ⊢ ¬∃xϕ(x) ↔ ∀x¬ϕ(x),
6. ⊢ ∃x(ϕ(x) → ψ) ↔ (∀xϕ(x) → ψ) if x ̸∈ FV (ψ),
7. ⊢ ∃x(ϕ → ψ(x)) ↔ (ϕ → ∃xψ(x)) if x ̸∈ FV (ϕ) ,
8. ⊢ ∃x∃yϕ ↔ ∃y∃xϕ,
9. ⊢ ∃xϕ ↔ ϕ if x ̸∈ FV (ϕ).

2.10 Natural Deduction and Identity

We will give rules, corresponding to the axioms I1 − I4 of section 2.6.

RI1
x = x

x = y
RI2

y = x

x = y y = z
RI3

x = z

x1 = y1, . . . , xn = yn
RI4

t(x1, . . . , xn) = t(y1, . . . , yn)

x1 = y1, . . . , xn = yn ϕ(x1, . . . , xn)
RI4

ϕ(y1, . . . , yn)

where y1, . . . , yn are free for x1, . . . , xn in ϕ. Note that we want to allow sub-
stitution of the variable yi(i ≤ n) for some and not necessarily all occurrences
of the variable xi. We can express this by formulating RI4 in the precise terms
of the simultaneous substitution operator:

x1 = y1, . . . , xn = yn

t[x1, . . . , xn/z1, . . . , zn] = t[y1, . . . , yn/z1, . . . , zn]

x1 = y1, . . . , xn = yn ϕ[x1, . . . , xn/z1, . . . , zn]

ϕ[y1, . . . , yn/z1, . . . , zn]

Example.

x = y x2 + y2 > 12x

2y2 > 12x

x = y x2 + y2 > 12x

x2 + y2 > 12y

2.10 Natural Deduction and Identity 99

5. ⊢ ¬∃xϕ(x) ↔ ∀x¬ϕ(x),
6. ⊢ ∃x(ϕ(x) → ψ) ↔ (∀xϕ(x) → ψ) if x ̸∈ FV (ψ),
7. ⊢ ∃x(ϕ → ψ(x)) ↔ (ϕ → ∃xψ(x)) if x ̸∈ FV (ϕ) ,
8. ⊢ ∃x∃yϕ ↔ ∃y∃xϕ,
9. ⊢ ∃xϕ ↔ ϕ if x ̸∈ FV (ϕ).

2.10 Natural Deduction and Identity

We will give rules, corresponding to the axioms I1 − I4 of section 2.6.

RI1
x = x

x = y
RI2

y = x

x = y y = z
RI3

x = z

x1 = y1, . . . , xn = yn
RI4

t(x1, . . . , xn) = t(y1, . . . , yn)

x1 = y1, . . . , xn = yn ϕ(x1, . . . , xn)
RI4

ϕ(y1, . . . , yn)

where y1, . . . , yn are free for x1, . . . , xn in ϕ. Note that we want to allow sub-
stitution of the variable yi(i ≤ n) for some and not necessarily all occurrences
of the variable xi. We can express this by formulating RI4 in the precise terms
of the simultaneous substitution operator:

x1 = y1, . . . , xn = yn

t[x1, . . . , xn/z1, . . . , zn] = t[y1, . . . , yn/z1, . . . , zn]

x1 = y1, . . . , xn = yn ϕ[x1, . . . , xn/z1, . . . , zn]

ϕ[y1, . . . , yn/z1, . . . , zn]

Example.

x = y x2 + y2 > 12x

2y2 > 12x

x = y x2 + y2 > 12x

x2 + y2 > 12y

100 2 Predicate Logic

x = y x2 + y2 > 12x

2y2 > 12y

The above are three legitimate applications of RI4 having three different con-
clusions.

The rule RI1 has no hypotheses, which may seem surprising, but which
certainly is not forbidden.

The rules RI4 have many hypotheses, as a consequence the derivation trees
can look a bit more complicated. Of course one can get all the benefits from
RI4 by a restricted rule, allowing only one substitution at the time.

Lemma 2.10.1 ⊢ Ii for i = 1, 2, 3, 4.

Proof. Immediate. !
We can weaken the rules RI4 slightly by considering only the simplest

terms and formulae.

Lemma 2.10.2 Let L be of type ⟨r1, . . . , rn; a1, . . . , am; k⟩. If the rules
x1 = y1, . . . , xri = yri P1(x1, . . . , xri) for all i ≤ n

P1(y1, . . . , yri)

and
x1 = y1, . . . , xaj = yaj for all j ≤ m

fj(x1, . . . , xaj) = fj(y1, . . . , yaj)

are given, then the rules RI4 are derivable.

Proof. We consider a special case. Let L have one binary predicate symbol
and one unary function symbol.

(i) We show x = y ⊢ t(x) = t(y) by induction on t.
(a) t(x) is a variable or a constant. Immediate.
(b) t(x) = f(s(x)). Induction hypothesis: x = y ⊢ s(x) = s(y)

[x = y]

f(x) = f(y)
∀I 2×

∀xy(x = y → f(x) = f(y))

s(x) = s(y) → f(s(x)) = f(s(y))

x = y

D

s(x) = s(y)

f(s(x)) = f(s(y))

2.10 Natural Deduction and Identity 99

5. ⊢ ¬∃xϕ(x) ↔ ∀x¬ϕ(x),
6. ⊢ ∃x(ϕ(x) → ψ) ↔ (∀xϕ(x) → ψ) if x ̸∈ FV (ψ),
7. ⊢ ∃x(ϕ → ψ(x)) ↔ (ϕ → ∃xψ(x)) if x ̸∈ FV (ϕ) ,
8. ⊢ ∃x∃yϕ ↔ ∃y∃xϕ,
9. ⊢ ∃xϕ ↔ ϕ if x ̸∈ FV (ϕ).

2.10 Natural Deduction and Identity

We will give rules, corresponding to the axioms I1 − I4 of section 2.6.

RI1
x = x

x = y
RI2

y = x

x = y y = z
RI3

x = z

x1 = y1, . . . , xn = yn
RI4

t(x1, . . . , xn) = t(y1, . . . , yn)

x1 = y1, . . . , xn = yn ϕ(x1, . . . , xn)
RI4

ϕ(y1, . . . , yn)

where y1, . . . , yn are free for x1, . . . , xn in ϕ. Note that we want to allow sub-
stitution of the variable yi(i ≤ n) for some and not necessarily all occurrences
of the variable xi. We can express this by formulating RI4 in the precise terms
of the simultaneous substitution operator:

x1 = y1, . . . , xn = yn

t[x1, . . . , xn/z1, . . . , zn] = t[y1, . . . , yn/z1, . . . , zn]

x1 = y1, . . . , xn = yn ϕ[x1, . . . , xn/z1, . . . , zn]

ϕ[y1, . . . , yn/z1, . . . , zn]

Example.

x = y x2 + y2 > 12x

2y2 > 12x

x = y x2 + y2 > 12x

x2 + y2 > 12y

2.10 Natural Deduction and Identity 99

5. ⊢ ¬∃xϕ(x) ↔ ∀x¬ϕ(x),
6. ⊢ ∃x(ϕ(x) → ψ) ↔ (∀xϕ(x) → ψ) if x ̸∈ FV (ψ),
7. ⊢ ∃x(ϕ → ψ(x)) ↔ (ϕ → ∃xψ(x)) if x ̸∈ FV (ϕ) ,
8. ⊢ ∃x∃yϕ ↔ ∃y∃xϕ,
9. ⊢ ∃xϕ ↔ ϕ if x ̸∈ FV (ϕ).

2.10 Natural Deduction and Identity

We will give rules, corresponding to the axioms I1 − I4 of section 2.6.

RI1
x = x

x = y
RI2

y = x

x = y y = z
RI3

x = z

x1 = y1, . . . , xn = yn
RI4

t(x1, . . . , xn) = t(y1, . . . , yn)

x1 = y1, . . . , xn = yn ϕ(x1, . . . , xn)
RI4

ϕ(y1, . . . , yn)

where y1, . . . , yn are free for x1, . . . , xn in ϕ. Note that we want to allow sub-
stitution of the variable yi(i ≤ n) for some and not necessarily all occurrences
of the variable xi. We can express this by formulating RI4 in the precise terms
of the simultaneous substitution operator:

x1 = y1, . . . , xn = yn

t[x1, . . . , xn/z1, . . . , zn] = t[y1, . . . , yn/z1, . . . , zn]

x1 = y1, . . . , xn = yn ϕ[x1, . . . , xn/z1, . . . , zn]

ϕ[y1, . . . , yn/z1, . . . , zn]

Example.

x = y x2 + y2 > 12x

2y2 > 12x

x = y x2 + y2 > 12x

x2 + y2 > 12y

x=x RI1

100 2 Predicate Logic

x = y x2 + y2 > 12x

2y2 > 12y

The above are three legitimate applications of RI4 having three different con-
clusions.

The rule RI1 has no hypotheses, which may seem surprising, but which
certainly is not forbidden.

The rules RI4 have many hypotheses, as a consequence the derivation trees
can look a bit more complicated. Of course one can get all the benefits from
RI4 by a restricted rule, allowing only one substitution at the time.

Lemma 2.10.1 ⊢ Ii for i = 1, 2, 3, 4.

Proof. Immediate. !
We can weaken the rules RI4 slightly by considering only the simplest

terms and formulae.

Lemma 2.10.2 Let L be of type ⟨r1, . . . , rn; a1, . . . , am; k⟩. If the rules
x1 = y1, . . . , xri = yri P1(x1, . . . , xri) for all i ≤ n

P1(y1, . . . , yri)

and
x1 = y1, . . . , xaj = yaj for all j ≤ m

fj(x1, . . . , xaj) = fj(y1, . . . , yaj)

are given, then the rules RI4 are derivable.

Proof. We consider a special case. Let L have one binary predicate symbol
and one unary function symbol.

(i) We show x = y ⊢ t(x) = t(y) by induction on t.
(a) t(x) is a variable or a constant. Immediate.
(b) t(x) = f(s(x)). Induction hypothesis: x = y ⊢ s(x) = s(y)

[x = y]

f(x) = f(y)
∀I 2×

∀xy(x = y → f(x) = f(y))

s(x) = s(y) → f(s(x)) = f(s(y))

x = y

D

s(x) = s(y)

f(s(x)) = f(s(y))

Pi

Pi

