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Dataflow model of computation
and dataflow execution

Luca Benini

DEIS Università di Bologna

2 Philosophy of Dataflow

Drastically different way of looking at computation

Von Neumann imperative language style: program 
counter is king

Dataflow language: movement of data the priority

Scheduling responsibility of the system, not the 
programmer
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3 Dataflow Model of Computation

Processes communicating through FIFO buffers

Process 1 Process 2
FIFO Buffer

Process 3

FIFO Buffer
FIFO Buffer

Process 3

4 Dataflow Semantics

Every process runs simultaneously

Processes can be described with imperative code

Compute compute receive compute transmitCompute … compute … receive … compute … transmit

Processes can only communicate through buffers
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5 Dataflow Communication

Communication is only through buffers

B ff ll t t d b d d f fl ibilitBuffers usually treated as unbounded for flexibility

Sequence of tokens read guaranteed to be the same as 
the sequence of tokens written

Destructive read: reading a value from a buffer removes 
the value

Much more predictable than shared memory

6 Applications of Dataflow

Not a good fit for, say, a word processor

G d f i l i li tiGood for signal-processing applications

Anything that deals with a continuous stream of data

Becomes easy to parallelizeBecomes easy to parallelize

Buffers typically used for signal processing applications 
anyway
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7 Kahn Process Networks

Proposed by Kahn in 1974 as a general-purpose 
scheme for parallel programmingp p g g

Laid the theoretical foundation for dataflow

Unique attribute: deterministic

Difficult to schedule

Too flexible to make efficient, not flexible enough for a 
wide class of applications

N t t id dNever put to widespread use

8 Kahn Process Networks

Key idea:

Reading an empty channel blocks until data is available

No other mechanism for sampling communicationNo other mechanism for sampling communication 
channel’s contents

Can’t check to see whether buffer is empty
Can’t wait on multiple channels at once
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9 Kahn Processes

A C-like function (Kahn used Algol)

A t i l d FIFO h lArguments include FIFO channels

Language augmented with send() and wait() operations 
that write and read from channels 

10 A Kahn Process

From Kahn’s original 1974 paper

process f(in int u, in int v, out int w)
{
int i; bool b = true;
for (;;) {

u
(;;) {

i = b ? wait(u) : wait(w);
printf("%i\n", i);
send(i, w);
b = !b;

}

f

v

w

Process alternately reads}
}

Process alternately reads 
from u and v, prints the data 
value, and writes it to w
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11 A Kahn Process

From Kahn’s original 1974 paper

process f(in int u, in int v, out int w)
{
int i; bool b = true;
for (;;) {

Process 
interface 
includes FIFOs

wait() returns the next 
token in an input FIFO(;;) {

i = b ? wait(u) : wait(w);
printf("%i\n", i);
send(i, w);
b = !b;

}

token in an input FIFO, 
blocking if it’s empty

send() writes a data 
value on an output FIFO}

}
p

12 A Kahn Process

From Kahn’s original 1974 paper

process g(in int u, out int v, out int w)
{
int i; bool b = true;
for(;;) { gu

v

(;;) {
i = wait(u);
if (b) send(i, v); else send(i, w);
b = !b;

}
}

w

Process reads from u and} Process reads from u and 
alternately copies it to v and w
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13 A Kahn System

Prints an alternating sequence of 0’s and 1’s

h

Emits a 1 then copies input to output

fg

h

Emits a 0 then copies input to output

14 Proof of Determinism

Because a process can’t check the contents of buffers, 
only read from them, each process only sees sequence y y
of data values coming in on buffers

Behavior of process:

Compute read compute write read computeCompute … read … compute … write … read … compute

Values written only depend on program state

Computation only depends on program statep y p p g

Reads always return sequence of data values, nothing 
more
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15 Determinism

Another way to see it:

If I’m a process, I am only affected by the sequence of 
tokens on my inputs

I can’t tell whether they arrive early, late, or in what 
order

I will behave the same in any case

Thus, the sequence of tokens I put on my outputs is the 
same regardless of the timing of the tokens on my inputsg g y p

16 Scheduling Kahn Networks

Challenge is running processes without accumulating 
tokens

A C

BB
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17 Scheduling Kahn Networks

Challenge is running processes without accumulating 
tokens

A C
Only consumes 
t k f A

B

tokens from A

Tokens will 
accumulate here

B
Always emit tokens

18 Demand-driven Scheduling?

Apparent solution: only run a process whose outputs are 
being actively solicitedg y

However...

A C

B D

Always 
consume 
tokens

B D

Always 
produce 
tokens
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19 Other Difficult Systems

Not all systems can be scheduled without token 
accumulation

a

b

Produces 
two a’s for 

every b
Alternates 
between 

i i
y

receiving 
one a and 

one b

20 Tom Parks’ Algorithm

Schedules a Kahn Process Network in bounded memory 
if it is possiblep

Start with bounded buffers

Use any scheduling technique that avoids buffer 
overflow

If system deadlocks because of buffer overflow, 
increase size of smallest buffer and continue
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21 Parks’ Algorithm in Action

Start with buffers of size 1

R A B C DRun A, B, C, D

C
Only consumes 
t k f A0-1-0

A C tokens from A0 1 0

0-1

B D0-1-0

22 Parks’ Algorithm in Action

B blocked waiting for space in B->C buffer

Run A, then C

System will run indefinitely

C
Only consumes 
t k f A0-1-0

A C tokens from A0 1 0

1

B D0
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23 Parks’ Scheduling Algorithm

Neat trick

Wh th K h t k t i b d dWhether a Kahn network can execute in bounded 
memory is undecidable

Parks’ algorithm does not violate this

It will run in bounded memory if possible, and use 
unbounded memory if necessary

24 Using Parks’ Scheduling Algorithm

It works, but…

Requires dynamic memory allocation

Does not guarantee minimum memory usage

Scheduling choices may affect memory usageScheduling choices may affect memory usage

Data-dependent decisions may affect memory usage

Relatively costly scheduling technique

Detecting deadlock may be difficultDetecting deadlock may be difficult
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25 Kahn Process Networks

Their beauty is that the scheduling algorithm does not 
affect their functional behavior

Difficult to schedule because of need to balance relative 
process rates

System inherently gives the scheduler few hints about 
appropriate ratesappropriate rates

Parks’ algorithm expensive and fussy to implement

Might be appropriate for coarse-grain systems
Scheduling overhead dwarfed by process behavior

26 Synchronous Dataflow (SDF)

Edward Lee and David Messerchmitt,  Berkeley, 1987

Restriction of Kahn Networks to allow compile-time 
scheduling

Basic idea: each process reads and writes a fixed 
number of tokens each time it fires:

loop

read 3 A, 5 B, 1 C … compute … write 2 D, 1 E, 7 F

d lend loop
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27 SDF and Signal Processing

Restriction natural for multirate signal processing

Typical signal-processing processes:

Unit rateUnit-rate
Adders, multipliers

Upsamplers (1 in, n out)

Downsamplers (n in, 1 out)

28 Multi-rate SDF System

DAT-to-CD rate converter

C t 44 1 kH li t t 48 kHConverts a 44.1 kHz sampling rate to 48 kHz

1 1 2 3 2 7 8 7 5 1

Upsampler Downsampler
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29 Delays

Kahn processes often have an initialization phase

SDF d ’t ll thi b t t lSDF doesn’t allow this because rates are not always 
constant

Alternative: an SDF system may start with tokens in its 
buffers

These behave like delays (signal-processing)

Delays are sometimes necessary to avoid deadlock

30 Synchronous Dataflow Graphs (SDFGs)

actor edgerate tokens

2
A B C1 1 1 2α β

1 γ

1

1
fire Afire A

3
A B C1 1 1 2α β

1 γ

1

1

intro architecture app. problem throughput strategy conclusionsexperiments

1 γ
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31 Example SDF System

FIR Filter (all single-rate)
One-cycle delay

Duplicate

dup dup dup dup

One cycle delay

Constant 
multiply 

(filter 
coefficient)

*c *c

+

*c

+

*c

+

*c

+

)

Adder

32 SDF Scheduling

Schedule can be determined completely before the 
system runsy

Two steps:

1. Establish relative execution rates by solving a system of 
linear equations

2. Determine periodic schedule by simulating system for a 
single round g
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33 SDF Scheduling

Goal: a sequence of process firings that

Runs each process at least once in proportion to its rate

Avoids underflow 
no process fired unless all tokens it consumes are p
available

Returns the number of tokens in each buffer to their 
initial state

Result: the schedule can be executed repeatedly without 
accumulating tokens in buffers

34 Calculating Rates

Each arc imposes a constraint

b

2 3

41

3

3a – 2b = 0
4b – 3d = 0

b – 3c = 0
2c – a  = 0

d

1
2

3

2

c

33

2
1

6
d – 2a = 0

Solution:
a = 2c

a b = 3c
d = 4c1
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35 Calculating Rates

Consistent systems have a one-dimensional solution
Usually want the smallest integer solutionUsually want the smallest integer solution 

Repetition vector

Inconsistent systems only have the all-zeros solution

Disconnected systems have two- or higher-dimensional 
solutions

36 Calculating Repetition Vector 

MCM Algorithm (poly complexity)
Balance equations:

b

2 3

41

3

a = 2c
b = 3c
d = 4c

3/2Rb=Ra*Rh/Rt

d

1
2

3

2

c

33

2
1

6 4/3*3/2=21/3*3/2=1/2

a

11/2*2/1=1 OK!
2*1/2=1 OK!

Iteration vector [A:2, B:3, C:1, D:4]mcm=2 
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37 An Inconsistent System

No way to execute it without an unbounded 
accumulation of tokens

Only consistent solution is “do nothing”

a c = 0

1

ca
1

32

1

1

a – c = 0
a – 2b = 0
3b – c = 0

b
32

3a – 2c = 0

38 An Underconstrained System

Two or more unconnected pieces

R l ti t b t i d fi dRelative rates between pieces undefined

ba
1 1 a – b = 0

3c – 2d = 0

dc
3 2
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39 Consistent Rates Not Enough

A consistent system with no schedule

R t d t id d dl kRates do not  avoid deadlock

ba
1 1

1 1

Solution here: add a delay on one of the arcs

ba

40 SDF Scheduling

Fundamental SDF Scheduling Theorem:

If t b t bli h d h d li l ith th tIf rates can be established, any scheduling algorithm that 
avoids buffer underflow will produce a correct schedule if 

it exists (Periodic Admissible Seq Schedule)

1. Compute repetition vector q ALGO PASS

2. Form an arbitrarily ordered list L of all nodes 

3. For each n in L, schedule n if it is runnable, trying each n once

4. If each n has been scheduled qn times, STOP

5 If  d   b  h d l d DEADLOCK5. If no node can be scheduled DEADLOCK

6. Go to 3

Use q MINIMUM # of task executions!
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41 Scheduling Example

Theorem guarantees any valid simulation will produce a 
schedule

b

2 3

41

3

a=2  b=3  c=1  d=4

Possible schedules:
BBBCDDDDAA

d

1
2

3

2

c

33

2
1

6

BBBCDDDDAA
BDBDBCADDA
BBDDBDDCAA
… many more

a
BC … is not valid

42 Timed SDFG

C 1

channel (unbounded)
execution time

actor

A 2 B 1
32

3

Self-loop channel

1 1
C,1

rate

token

A,2 B,1

32
11

1

Single processor schedule using q MINIMUM LATENCY!
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43 Throughput Definition

Actor throughput:
The average number of firings of one actor per timeThe average number of firings of one actor per time 

unit

 firings of ( ) lim .
end time of these firingsk

k aTh a
→∞

=

(Normalized) graph throughput (if SDFG is consistent):

end time of these firings

( )min .
( )actorsa

Th a
q a

44 Computing throughput for PASS

3

C,1A,2 B,1
3

3

2

2
11

1

1 1

PASS
q=[(A,3), (B, 3), (C, 2)] ACABABCB

PASS

Th(A)=3/(2+1+2+1+2+1+1+1)=3/(3*2+1*3+1*3)=3/12

Th(B)=3/12 Th(C)=2/12

Single processor schedule using q MINIMUM LATENCY!

Th(B)=3/12, Th(C)=2/12

Th(SDG)=1/12
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45 Scheduling Choices

SDF Scheduling Theorem guarantees a schedule will be 
found if it exists

Systems often have many possible schedules

How can we use this flexibility?
Reduced code size
Reduced buffer sizes

46 SDF Code Generation (single core scheduling)

Often done with prewritten blocks

For traditional DSP, handwritten implementation of large 
functions (e.g., FFT)

One copy of each block’s code made for each 
appearance in the schedule

I.e., no function calls
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47 Code Generation

In this simple-minded approach, the schedule

BBBCDDDDAABBBCDDDDAA

would produce code like
B;
B;
CC;
D;
D;
D;
D;;
A;
A;

48 Looped Code Generation

Obvious improvement: use loops

Rewrite the schedule in “looped” form:

(3 B) C (4 D) (2 A)

Generated code becomes

for ( i = 0 ; i < 3; i++) B;

C;C;

for ( i = 0 ; i < 4 ; i++) D;

for ( i = 0 ; i < 2 ; i++) A;
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49 Single-Appearance Schedules

Often possible to choose a looped schedule in which 
each block appears exactly oncepp y

Leads to efficient block-structured code
Only requires one copy of each block’s code

Does not always exist

Often requires more buffer space than other schedulesOften requires more buffer space than other schedules

50 Minimum-Memory Schedules

Another possible objective

Often increases code size (block-generated code)

Static scheduling makes it possible to exactly predictStatic scheduling makes it possible to exactly predict 
memory requirements
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51 Mapping onto MPSoC Platforms
Multiple time-constrained applications

Provide timing guarantees on mapping of each applicationProvide timing guarantees on mapping of each application

Multiprocessor system

52 Parallel (multi-core) schedules

Given Ps (smallest possible PASS period), J (unroll 
multiplicative factor on period)p p )

Convert SDF into HSDF, then into an Acyclic 
Precedence Graph (APG) while unrolling it J times

The three steps can be performed in sequence

Schedule the APG for minimum makespan (assumingSchedule the APG for minimum makespan (assuming 
that max througput is the target), taking into account 
resource constraints
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53 Example

C,1A,2 B,1 1123
2

q=[2,3,3], J=1

A1,2 A2,2

HSDF+APG transform

B1,2 B2,2 B3,2

C1,2 C2,2 C3,2

Big catch… exponential blowup in #nodes is possible!

54 Unrolling…

A1,2 A2,2 A1,2 A2,2

B1,1 B2,1 B3,1

C1 1 C2 1 C3 1

…B1,1 B2,1 B3,1

C1 1 C2 1 C3 1

J=1,  Th=1/4

C1,1 C2,1 C3,1 C1,1 C2,1 C3,1

J=2

,

J=2, Th=2/4

J=n, Th=n/4
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55 Is speedup unbounded?

NO!  Every SDF has a maximum speedup, called MCM bound

The bound can be efficiently computed on HSDFThe bound can be efficiently computed on HSDF

The minimum iteration period T:

⎪
⎬
⎫⎪

⎨
⎧

=
∑ ∈

)(
max

vt
T cyclev

⎪⎭
⎬

⎪⎩
⎨=

∈ )(max cycleD
T

SDFcycle

This is given unbounded resources
O fNOTE: if there are no loops T 0

56 Example

HSDF (from SDF) 

A1,1 B,1

A2,1

C,1

T= (1+1+1)/1=3 

Polynomial-time computation on HSDF

P1
P2

Periodic schedule that 
achieves MCM bound
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57 Achieving the MCM bound

Can be achieved with a periodic time-triggered schedule 
(everything is synchronized) by optimal unroling JOPT( y g y ) y p g OPT

JOPT can be determined by a transformation [Parhi91]
SDF HSDF
Unfold HSDF mcm(delays in loops) times

May Imply a big increase in task execution instances (node 
blowup)

Can be achieved with a self-timed schedule
Execute each node ASAP when it is enabled!
It can be demonstrated that a self-timed schedule has the 
following structure:

Finite sequence of firings – non periodic partFinite sequence of firings non periodic part
Infinite sequence of firiring – periodic part

Implementation of STS can be tricky (…but)

58 Time-triggered vs. Self-timed schedule

Different execution model: timers vs. synchronization

…
Time triggered

Self-timed

Iterations are naturally partially overlapped

It handles un-certain execution times

Works also with limited resources TST≤TTT
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Motivation for Direct-SDFG techniques

Existing techniques use homogeneous SDFGs

Throughput analysis may be very slow for realistic 
applications when using homogeneous SDFGs 

Potential exponential blowup!

Use SDFGs for resource allocation and throughput 
analysis

60 Scheduling

Processors shared between actors or applications
Timing guarantee for each application individuallyTiming guarantee for each application individually
Minimize resource usage for each application

TDMA scheduling
Independent timing behavior between tasks
Potentially large resource reservationsPotentially large resource reservations

Static-order scheduling
Over-allocation of resources is limited
Ordering of tasks must be known a-priori

TDMA scheduling between applications

Static-order scheduling between actors of an application
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Architecture platform

Heterogeneous tile-based architecture
memory (size)

M
t1

connection (latency)
memory (size)

M
t2

P1

NI

network interfaceprocessor

P2

NI

network interface 
(#connections, in bw, out bw)

processor
(type, TDMA time wheel)

Streaming application graph

Application modeled with SDFG

Actor (per processor type: execution time, memory usage)

A B C1 1 1 2α β1

Edge (storage space source / destination / memory, 
token size bandwidth requirement)

A B C

1 γ
1

token size, bandwidth requirement)

Throughput constraint on graph
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Problem statement

A B C1 1 1 2α β1

M
t1(AB)* (C)*M

t2

1 γ
1

P1

NI

42% TDMA 37% TDMA
P2

NI

Find a binding and scheduling of an SDFG onto an 
MP-SoC that satisfies the throughput constraint

Throughput analysis

A B C1 1 1 2α β1

State: (token distribution, execution times firing actors)

1 γ
1

throughput C = 1/2

A,1 A,B,1 A,B,1 A,B,C,1

A,B,~C,1
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Binding-aware SDFG

A B C1 1 1 2α β1

1 γ
1

Model in SDFG

TDMA time wheel synchronization

D S

22
1

1

1

111

1
1

1 1

1 1

1 1 1

1

y

storage space allocations

connection delay

A B C2α β

1 γ

2211
1

1

1
1 1 1

1

Throughput analysis

A,1 B,1 A,D,1 B,1 A,9 B,D,S,1 A,10

Extend state with
position of static order schedule

throughput C = 1/29

C,2 A,4

D,11 B,S,1

position of static-order schedule
position TDMA time wheel

A,6 B,1 A,D,1 B,1 A,9 B,D,S,1 A,10

throughput C = 1/30

C,3 A,4

D,11 B,S,1
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Resource allocation strategy

Actor binding

Throughput-constrained SDFG MP-SoC architecture

Static-order scheduling

Time slice allocationTime slice allocation

Bound and scheduled SDFG

Actor binding

Actors sorted on “criticality”
Related to notion of Cycle-Mean in HSDFRelated to notion of Cycle Mean in HSDF

Binding considers
Processing load
Memory load
Communication load

Cost function weights alternatives

)()()()cost( 321 tlctlctlct cmp ⋅+⋅+⋅=
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Static-order scheduling

Order actor firings of an application on a processor

Li t h d li l ithList-scheduling algorithm

Time slice allocation

Provide timing independence between applications

Bi h l ith i f t th h tBinary search algorithm using fast throughput
analysis technique
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Experimental setup

Architecture
3x3 mesh of tiles3x3 mesh of tiles
3 different processor types

Four sets of three sequences of SDFGs
Compute intensive
Memory intensive
Communication intensive
Balanced

S f SDFG b d hi ill lidSequence of SDFGs bound to architecture till no valid 
binding can be found for an SDFG

Experimental results

cost compute 
intensive

memory 
intensive

communication 
intensive balanced

1,0,0 20.22 5.22 7.56 18.56

0,1,0 18.78 8.00 11.33 23.33

0 0 1 29 22 7 56 12 89 25 000,0,1 29.22 7.56 12.89 25.00

1,1,1 18.44 6.50 10.33 23.56

0,1,2 24.56 8.00 12.89 30.11

16.1 throughput computations per SDFG

lp, lm, lc



37

Experimental results

Application
3x H 263 decoders (4 actors)3x H.263 decoders (4 actors)
1x MP3 decoder (13 actors)

Architecture
2x2 mesh of tiles
2 accelerators 2 general purpose processors2 accelerators, 2 general-purpose processors

Cost function (2,0,1)
Focus on processing and communication

34 throughput computations

Run-time 8 minutes

Conclusions

Resource allocation strategy for SDFGs on MP-SoCs

M t i d l f t ti d fMost expressive model-of-computation used so far

Technique provides timing guarantees

Cost functions can steer resource allocation

Experiments show feasibility of the approachExperiments show feasibility of the approach
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75 Understanding the MCM bound

Cycle 1: 3*2/1 q=[(A,3), (B, 3), (C, 2)]

C 1A 2 B 1
32

3

1 1
C,1A,2 B,1

32
11

1

C l 2 (1*3 1*2)/(3/3 1/2)Cycle 2: (1*3+1*2)/(3/3+1/2)

Using a generalized formula for the computation of MCM 
(equivalent to the  


