COMPUTATIONAL ALGEBRA 24/02/14

- 1. Determine the splitting field of
 - (a) $x^3 x^2 x$ over \mathbb{F}_3
 - (b) $(x^3 x^2 x)(x^4 x^2 1)$ over \mathbb{F}_3
- 2. Let K the smallest field of characteristic 2 containing a primitive 7-th root of unity.
 - (a) Determine the number of elements of K.
 - (b) Find a primitive element of K.
 - (c) Determine all the primitive elements of K.
- 3. Decompose $x^8 x$ in irreducible factors in \mathbb{F}_2 .
- 4. (a) Find a primitive element of \mathbb{F}_{13} .
 - (b) Construct a Reed-Solomon code C of dimensions [12, 7] over \mathbb{F}_{13} .
 - (c) Determine the minimal distance of C.
 - (d) Find a parity check matrix for C.
- 5. Consider the primitive element α of \mathbb{F}_{16} satisfing $\alpha^4 = 1 + \alpha$. The elements of \mathbb{F}_{16} are listed in the table belove.

0000	0	1000	α^3	1011	α^7	1110	α^{11}
0001	1	0011	α^4	0101	α^8	1111	α^{12}
0010	α	0110	$lpha^5$	1010	α^9	1101	α^{13}
0100	α^2	1100	0,6	0111	o ¹⁰	1001	0,14

Consider the BCH code of dimensions [15, 5] over $\mathbb{F}_2[x]$ (with b = 1) with defining set $T = \{1, 2, 3, 4, 5, 6, 8, 9, 10, 12\}$. Using the primitive 15-root of unity α form the previous table, the generator polynomial of C is $g(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}$. Suppose C is used to transmit a codeword and y(x) is received. Correct the received word using the Peterson-Gorenstein-Zierler Decoding Algorithm, in case $y(x) = x^4 + x^5 + x^7 + x^9 + x^{10} + x^{12}$. Verify that the correct word is actually a codeword. Correct the same y(x) using the Sugiyama Decoding Algorithm.

- 6. (a) Give the definition of \mathbb{Z}_4 -linear code.
 - (b) What are the Hamming, Lee and Euclidean distances between the vectors (30012221) and (20202213) in \mathbb{Z}_4^8 ?