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The Fourier kingdom 

•  CTFT 
–  Continuous time signals 

–  The amplitude F(ω), also called Fourier transform, of each sinusoidal wave e-ωjt is equal 
to its correlation with f  

–  If f (t) is uniformly regular, then its Fourier transform coefficients also have a fast decay 
when the frequency increases, so it can be easily approximated with few low-frequency 
Fourier coefficients. 
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The Fourier kingdom 

•  DTFT 
–  Over discrete signals, the Fourier transform is a decomposition in a discrete orthogonal 

Fourier basis {ei2kn/N }0≤k<N of CN , which has properties similar to a Fourier transform on 
functions.  

–  Its embedded structure leads to fast Fourier transform (FFT) algorithms, which compute 
discrete Fourier coefficients with O(N log N) instead of N2. This FFT algorithm is a 
cornerstone of discrete signal processing. 

•  The Fourier transform is unsuitable for representing transient phenomena 
–  the support of e-ωit covers the whole real line, so ˆf (ω) depends on the values f (t) for all 

times t ∈R. This -global “mix” of information makes it difficult to analyze or represent 
any local property of f (t) from ˆf (ω). 
§  As long as we are satisfied with linear time-invariant operators or uniformly regular signals, the 

Fourier transform provides simple answers to most questions. Its richness makes it suitable for a 
wide range of applications such as signal transmissions or stationary signal processing. 
However, to represent a transient phenomenon—a word pronounced at a particular time, an 
apple located in the left corner of an image—the Fourier transform becomes a cumbersome tool 
that requires many coefficients to represent a localized event. 



The Fourier kingdom 

•  The F-transform is not suitable for representing transient phenomena 
–  Intuition 

–  F(ω) depends on the values taken by f(t) on the entire temporal axis, which is not 
suitable for analyzing local properties 

–  Need of a transformation which is well localized in time and frequency 
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The Fourier kingdom 

•  Transient phenomena 

t 

The two transients present in the signal contribute differently to the spectrum. The F-
transform does not allow to characterize them separately to get a local description of 
the frequency content of the signal. 
 
The basis functions of the FT are complex sinusoids, thus F(ω) is a measure of the 
correlation of the signal f(t) with the complex exponential at frequency ω, which 
spreads over the whole frequency axis. 

f(t) 



Time-frequency localization 

•  Time-frequency atoms: basis functions that are well localized in both time and 
frequency 
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Windowed Fourier Transform 
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The Fourier integral is localized in the neighborhood of u by the window g(t-u). 
 
The transform Sf(u,ξ) depends only on the values of f(t) and f(ω) in the time and frequency 
neighborhoods where the energy is concentrated, providing information on the behavior of 
the function within a bounded time-frequency interval. 
 
Wavelet genesis : the WT was designed following the same approach, with the goal of 
characterizing transient phenomena in signals by a mapping into the time/frequency domain. 

Windowed Fourier atoms were introduced in 1946 by Gabor to measure localized frequency 
components of sounds 
Also short time Fourier transform 



Windowed Fourier Transform 
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Time-frequency atoms 

•  The time localization u and spread around u are defined as 

•  Similarly, the frequency localization ξ and the spread around ξ  

are defined as  
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has the same resolution across the time-frequency plan 



Heisemberg boxes 
•  Uncertainty principle: the rectangle has a minimum surface that limits the joint 

time-frequency resolution 
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When g is a Gaussian the atoms are called Gabor functions.  
Since in this case the equality holds, these minimize the area of the Heisemberg 
box, Gabor atoms are considered as optimal for the time-frequency 
characterization of signals. 
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Windowed Fourier Transform 

•  It can be interpreted as a Fourier transform of f at the frequency ξ, localized by the 
window g(t-u) in the neighborhood of u. This windowed Fourier transform is highly 
redundant and represents one-dimensional signals by a time-frequency image in 
(u, ξ). It is thus necessary to understand how to select many fewer time frequency 
coefficients that represent the signal efficiently. 

•  A windowed Fourier transform decomposes signals over waveforms that have 
the same time and frequency resolution. It is thus effective as long as the signal 
does not include structures having different time-frequency resolutions, some 
being very localized in time and others very localized in frequency.  

•  Wavelets address this issue by changing the time and frequency resolution. 



Short Time Fourier Transform 

•  The STFT (windowed FT) represents a sort of compromise between the time- and 
frequency-based views of a signal. It provides some information about both when 
and at what frequencies a signal event occurs.  

•  However, you can only obtain this information with limited precision, and that 
precision is determined by the size of the window 

•  While the STFT compromise between time and frequency information can be 
useful, the drawback is that once you choose a particular size for the time window, 
that window is the same for all frequencies 

•  Many signals require a more flexible approach, one where we can vary the window 
size to determine more accurately either time or frequency.  



Windowed Fourier transform 

Uniform tiling of the time-frequency plan 



Target 

•  Non uniform tiling of the time-frequency space 
–  This kind of tiling is adapted to analyze the scaling evolution of transients with zooming 

procedures across scales. 
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Wavelet basis 

•  As opposed to windowed Fourier atoms, 
wavelets have a time-frequency 
resolution that changes.  

•  The wavelet Ψu,s has a time support 
centered at u and proportional to s. Let us 
choose a wavelet  whose Fourier 
transform ˆΨ(ω) is nonzero in a positive 
frequency interval centered at η.  

•  The Fourier transform ˆΨ u,s(ω) is dilated 
by 1/s and thus is localized in a positive 
frequency interval centered at η/s; its size 
is scaled by 1/s.  
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Multiscale zooming 

•  In the time-frequency plane, the Heisenberg box of a wavelet atom u,s is therefore 
a rectangle centered at (u, η/s), with time and frequency widths, respectively, 
proportional to s and 1/s.  

•  When s varies, the time and frequency width of this time-frequency resolution cell 
changes, but its area remains constant  

–  Large-amplitude wavelet coefficients can detect and measure short high frequency 
variations because they have a narrow time localization at high frequencies. 

•  At low frequencies their time resolution is lower, but they have a better frequency 
resolution.  

–  This modification of time and frequency resolution is adapted to represent sounds with 
sharp attacks, or radar signals having a frequency that may vary quickly at high 
frequencies. 



Multiscale zooming 

•  Signal singularities have specific scaling invariance characterized by Lipschitz 
exponents.  

–  Pointwise regularity of f can be characterized by the asymptotic decay of the wavelet 
transform amplitude |Wf (u, s)| when s goes to zero.  

–  Singularities are detected by following the local maxima of the wavelet transform across 
scales. 



Multiscale zooming 

•  In images, wavelet local maxima indicate 
the position of edges, which are sharp 
variations of image intensity.  

–  At different scales, the geometry of this 
local maxima support provides contours of 
image structures of varying sizes.  

–  This multiscale edge detection is 
particularly effective for pattern recognition 
in computer vision. 



Multiscale edge detection 



Sparse representations 

Mallat 2009, Chapt. 1 



Sparse representations 

•  Sparse representations: few coefficients reveal the information we are looking for 
about the signals.  

•  Such representations can be constructed by decomposing signals over elementary 
waveforms chosen in a family called a dictionary. 

–  The discovery of wavelet orthogonal bases and local time-frequency dictionaries has 
opened the door to a huge jungle of new transforms. 

•  An orthogonal basis is a dictionary of minimum size that can yield a sparse 
representation if designed to concentrate the signal energy over a set of few 
vectors. This set gives a geometric signal description. 

•  In natural languages, a richer dictionary helps to build shorter and more precise 
sentences. Similarly, dictionaries of vectors that are larger than bases are needed 
to build sparse representations of complex signals. But choosing is difficult and 
requires more complex algorithms (pursuit algorithms). 



Computational harmonic analysis 

•  Fourier and wavelet bases are the journey’s starting point.  

•  They decompose signals over oscillatory waveforms that reveal many signal 
properties and provide a path to sparse representations. 

 

Analysis formula è Signal projection on the basis function 
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Signalsè Vectors 

Fourier è Complex exponentials 

SFTFè Windowed complex exponentials (Gabor) 

Wavelets è Time and frequency localized scalable functions 



Wavelet bases 

•  Wavelet bases, like Fourier bases, reveal the signal regularity through the 
amplitude of coefficients, and their structure leads to a fast computational 
algorithm. 

•  However, wavelets are well localized and few coefficients are needed to represent 
local transient structures.  

•  As opposed to a Fourier basis, a wavelet basis defines a sparse representation of 
piecewise regular signals which may include transients and singularities.  

–  In images, large wavelet coefficients are located in the neighborhood of edges and 
irregular textures. 

•  First wavelets: Haar 
–  Translations and dilations of Haar wavelets generate a basis for L2(R) for signals having 

finite energy 



WT of the step function 



Wavelet bases 

•  Writing the projection as an inner product in L2(R) 

•  Intuition:  Each Haar wavelet Ψj,n(t) has a zero average over its support [2jn,2j(n
+1)] . If f is locally regular and 2j  is small, then it is nearly constant over this 
interval and the wavelet coefficient  <f, Ψj,n(t)>  is nearly zero. This means that 
large wavelet coefficients are located at sharp signal transitions only. 

Analysis (projection) 

Synthesis (reconstruction) 



The Wavelets & Filter banks wedding 

•  Motivated by speech compression, in 1976 Croisier, Esteban, and Galand [ 189] 
introduced an invertible filter bank, which decomposes a discrete signal f [n]  into 
two signals of half its size using a filtering and subsampling procedure.  

•  They showed that f [n]  can be recovered from these subsampled signals by 
canceling the aliasing terms with a particular class of filters called conjugate mirror 
filters. 

•  The multiresolution theory of Mallat [362] and Meyer [44] proves that any 
conjugate mirror filter characterizes a wavelet  that generates an orthonormal 
basis of L2(R) , and that a fast discrete wavelet transform is implemented by 
cascading these conjugate mirror filters [361]. 

•  The equivalence between this continuous time wavelet theory and discrete filter 
banks led to a new fruitful interface between digital signal processing and 
harmonic analysis, first creating a culture shock that is now well resolved. 



Continuous vs discrete and finite 

•  Originally, many signal processing engineers were wondering what is the point of 
considering wavelets and signals as functions since all computations are 
performed over discrete signals with conjugate mirror filters. 

•  Why bother with the convergence of infinite convolution cascades if in practice we 
only compute a finite number of convolutions?  

•  Answering these important questions is necessary in order to understand why the 
book alternates between theorems on continuous time functions and discrete 
algorithms applied to finite sequences. 

•  A short answer would be “simplicity.” In L2(R), a wavelet basis is constructed by 
dilating and translating a single function . Several important theorems relate the 
amplitude of wavelet coefficients to the local regularity of the signal f. 

•  Link continuous-discrete: A theory of continuous-time functions gives asymptotic 
results for discrete sequences with sampling intervals decreasing to zero 



Continuous vs discrete and finite 

•  Continuous time or space models are not sufficient for elaborating discrete signal-
processing algorithms. 

•  The transition between continuous and discrete signals must be done with great 
care to maintain important properties such as orthogonality. 

•  Restricting the constructions to finite discrete signals adds another layer of 
complexity because of border problems.  

–  How these border issues affect numerical  implementations is carefully addressed once 
the properties of the bases are thoroughly understood. 

•  Wavelets for images: wavelet orthonormal bases of images can be constructed 
from wavelet orthonormal bases of one-dimensional signals (separability). 

–  This leads to a basis for 2D finite energy functions f(x1,x2) 



Wavelets for images 

•  Like in one dimension, a wavelet coefficient has a small amplitude if f(x) is regular 
over the support of Ψk

j,n.  

•  It has a large amplitude near sharp transitions such as edges. 



Sampling with linear approximations 

•  Analog-to-digital signal conversion is most often implemented with a linear 
approximation operator that filters and samples the input analog signal.  

–  From these samples, a linear digital-to-analog converter recovers a projection of the 
original analog signal over an approximation space whose dimension depends on the 
sampling density. 

•  Linear approximations project signals in spaces of lowest possible dimensions to 
reduce computations and storage cost, while controlling the resulting error. 

•  A sampling process implements a filtering of the function f(x) with a low-pass 
impulse response Φs(x) and a uniform sampling to output a discrete signal: 

f n[ ] = f ∗φs ns( ) = f x( )∫ φs ns− x( )dx = f x( )∫ φs x − ns( )dx = f x( ),φs ns− x( )

Interpolation 



Linear approximation error 

•  The linear approximation error represents the information that is lost in 
reconstructing the signal using the first m basis functions 

–  Reconstructed signal 

–  Approximation error 

–  Exact reconstruction 

•  This error decreases quickly when N increases if the coefficient amplitudes have a 
fast decay when the index m increases. The dimension N must be adjusted to the 
desired approximation error. 



Lienear approximation error 
Example: image reconstructed using the first N/16 
wavelet coefficients at the 3 largest scales 

 

•  Reducing the resolution introduces more 
blur and errors.  

•  A linear approximation space corresponds 
to a uniform grid that approximates 
precisely uniform regular signals.  

•  Since images are often not uniformly 
regular, it is necessary to measure it at a 
high-resolution N. 

–  This is why digital cameras have a resolution that 
increases as technology improves. 

•  To improve such approximations, more 
coefficients should be kept where needed
—not in regular regions but near sharp 
transitions and edges. 

•  Irregular sampling 



Sparse non linear approximations 

•  Optimized irregular sampling has a simple equivalent solution through nonlinear 
approximations in wavelet bases. 

•  Nonlinear approximations operate in two stages.  

•  First, a linear operator approximates the analog signal f  with N  samples 

•  Then, a nonlinear approximation of f [n]  is computed to reduce the N  coefficients f 
[n] to M<<N  coefficients in a sparse representation. 

–  The discrete signal can be seen as a vector in CN where inner products can be written as 

•  To obtain a sparse representation with a nonlinear approximation, we choose a 
new orthonormal basis                               which concentrates the signal energy as 
much as possible over few coefficients 



Linear vs Nonlinear approximations 

Linear, N/16 low-scale coeffs Non-linear, N/16 largest coeffs 



Sparsity vs regularity 

•  Sparse representations are obtained in a basis that takes advantage of some form 
of regularity of the input signals, creating many small-amplitude coefficients.  

•  Since wavelets have localized support, functions with isolated singularities produce 
few large-amplitude wavelet coefficients in the neighborhood of these singularities.  

•  Nonlinear wavelet approximation produces a small error over spaces of functions 
that do not have “too many” sharp transitions and singularities. 

•  Note: Edges often define regular geometric curves. Wavelets detect the location of 
edges but their square support cannot take advantage of their potential geometry 
regularity. More sparse representations are defined in dictionaries of curvelets or 
bandlets, which have elongated support in multiple directions, that can be adapted 
to this geometrical regularity 



Wavelet transforms 



Wavelet transforms 

•  A wavelet is a function of zero average centered in the neighborhood of t=0 and is 
normalized  

•  The translations and dilations of the wavelet generate a family of time-frequency 
atoms 

•  Wavelet transform of f in L2(R) at position u and scale s is 
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Wavelet transforms 

•  Real wavelets: suitable for detecting sharp 
signal transitions 

–  When s goes to zero the decay of the 
wavelet coefficients characterize the 
regularity of f in the neighborhood of u 

–  Edges in images 
–  Example: Mexican hat (second derivative of 

a Gaussian) 
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Real wavelets: example 

•  The wavelet transform was calculated using a Mexican hat wavelet 



Real wavelets: Admissibility condition 

•  Theorem 4.3 (Calderon, Grossman, Morlet) 
Let ψ in L2(R) be a real function such that  
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Admissibility condition 

•  Consequences 
–  The integral is finite if the wavelet has zero average 

§  This condition is nearly sufficient → 

–  If                                   is continuously differentiable, than the admissibility condition is 
satisfied 
§  This happens if it has a sufficient time decay 

 
→ The wavelet function must decay sufficiently fast in both time and frequency 
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Wavelet transform 

Ψu,s(t) 

t 

t 

Ψ0,s(t) 

Wf(0,s) ⇔ correlation for u=0 

0 



Wavelet transform 

Ψu,s(t) 

t 

t 

Ψn2j,s(t) 

u=n 2j 

Wf(n 2j,s) ⇔ correlation for u=n 2j 



Wavelet transform 

Ψu,s(t) 
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Ψ(n+1)2
j
s(t) 

u= (n+1) 2j 

Wf((n+1)2j,s) ⇔ correlation at u=(n
+1)2j 



Changing the scale 

Ψu,s(t) 

Ψu,s(t) 

Ψu,s(t) 

finer  

coarser  

s=2j+1 

s=2j 

s=2j+2 

multiresolution 



Fourier versus Wavelets 



Scaling 



Shifting 
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Recipe 



Recipe 



Wavelet Zoom 

•  WT at position u and scale s measures the local correlation between the signal 
and the wavelet 

(small) 

(large) 

small scale large scale 



Frequency domain 

•  Parseval  
  
 The wavelet coefficients Wf(u,s) depend on the values of f(t) (and F(ω)) in the time-
frequency region where the energy of the corresponding wavelet function (respectively, 
its transform) is concentrated 

•  time/frequency localization  
•  The position and scale of high amplitude coefficients allow to characterize the temporal 

evolution of the signal 

•  Time domain signals (1D) : Temporal evolution 
•  Spatial domain signals (2D) : Localize and characterize spatial singularities 

Stratching in time ↔ Shrinking in frequency (and viceversa) 
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Parseval & Plancherel 

inverse transform in t=0 by definition of convolution 



Real valued functions 

f t( )→ f̂ ω( )
f −t( )→ f̂ −ω( ) = f̂ ∗ ω( )
Proof
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The FT of a real valued function is symmetric and thus the power spectrum is even 

f ∗ t( )→ f̂ ∗ −ω( ) Complex conjugate 



Note to Plancherel’s formula 



Wavelets and linear filtering 

•  The WT can be rewritten as a convolution product and thus the transform can be 
interpreted as a linear filtering operation 
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→ band-pass filter 



Wavelet filter (db3) 



Scaling function 

approximation 

details 

Wavelet representation = approximation + details approximation ↔ scaling function 
details ↔ wavelets 



Scaling function (db3) 



A different perspective: embedded grids of 
approximations 
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Haar pyramid [Haar 1910] 

sig0 

sig1 

sig2 

sig3 

ϕi,k=2-i/2 ϕ(x/2i-k) 

sigi=∑kai(k) ϕi,k 

Haar basis function Haar wavelet 

r1=∑kd1(k) Ψ1,k 

r2=∑kd2(k) Ψ2,k 

r3=∑kd3(k) Ψ3,k 

s = sig3 + ∑i,kdI,k(k) Ψi,k=∑ka3(k) ϕ3,k+∑i,kdi,k(k) Ψi,k 

ϕ2
0 

reconstructed from discrete approximations 

residuals from details 



Summary milestones 

•  Haar wavelet → piece-wise constant functions → far from optimal 

•  Stronberg 1980 → piece-wise linear functions → better approximation properties 

•  Meyer 1989 → continuously differentiable functions 

•  Mallat and Meyer 1989 → Theory for multiresolution signal approximation 


