

Universita' di Verona Dipartimento di Informatica

Metodi di rete per garantire la Qualità del Servizio su rete IP

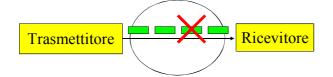
Davide Quaglia a.a. 2006/2007

(materiale tratto dalle lezioni del prof. J. C. De Martin – Politecnico di Torino)

1

Sommario

- Definizione del problema
- Parametri di Qualità del Servizio
 - QoS per vari tipi di applicazioni
 - funzione utilita'
- Caratteristiche del traffico immesso
 - policing (token bucket)
- Modello Best Effort
- Resource reservation protocol (RSVP)
- Modello a Servizi Integrati
- Modello a Servizi Differenziati

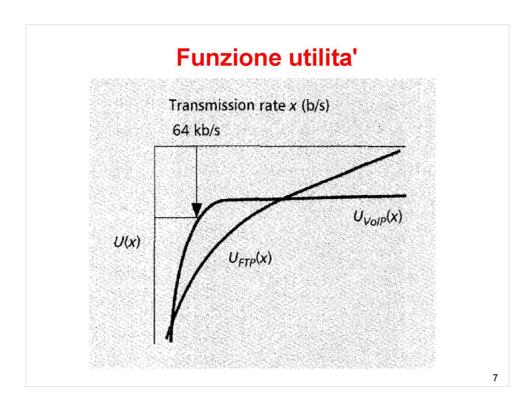

Definizione del problema

- Le reti a commutazione di circuito avevano una intrinseca garanzia di qualita' del servizio (QoS)
- La rete IP tradizionalemente non fornisce garanzie di QoS
- Si puo' assicurare agli utenti una QoS ?
- Nota: la gestione della QoS non crea banda dal nulla
 - se qualche utente verra' trattato meglio rispetto alla media, qualcun altro verra' trattato peggio

3

Parametri di Qualità del Servizio

- Frazione di pacchetti persi oppure Throughput
- Ritardo end-to-end
- Variazione del ritardo end-to-end


QoS e applicazioni

Error tolerant	Conversational voice and video	Voice messaging	Streaming audio and video	Fax
Error intolerant	Telnet, interactive games	E-commerce, WWW browsing,	FTP, still image, paging	E-mail arrival notification
·	Conversational (delay <<1 sec)	Interactive (delay approx 1 sec)	Streaming (delay <10 sec)	Background (delay >10 sec)

5

QoS e applicazioni interattive

Medium	Application	Degree of symmetry	Data rate	Key performance parameters and target values		
				End-to-end One- way Delay	Delay Variation within a call	Information loss
Audio	Conversational voice	Two-way	4-25 kb/s	<150 msec preferred <400 msec limit Note 1	< 1 msec	< 3% FER
Video	Videophone	Two-way	32-384 kb/s	< 150 msec preferred <400 msec limit Lip-synch : < 100 msec		< 1% FER
Data	Telemetry - two-way control	Two-way	<28.8 kb/s	< 250 msec	N.A	Zero
Data	Interactive games	Two-way	< 1 KB	< 250 msec	N.A	Zero
Data	Telnet	Two-way (asymmetric)	< 1 KB	< 250 msec	N.A	Zero

Modelli di traffico

Parametri caratterizzanti

- Bitrate
 - Bitrate istantaneo
 - Bitrate medio
 - Bitrate di picco
- Inter-packet gap
- Burstiness
- Packet size
- Packet arrival time
- Packet arrival rate

9

Bitrate

- Istantaneo *B(t)*
 - Numero di bit che passano sul canale nell'unita' di tempo
- Dato un intervallo T di osservazione
 - Bitrate medio

$$\frac{1}{T} \int_0^T B(t) \, dt$$

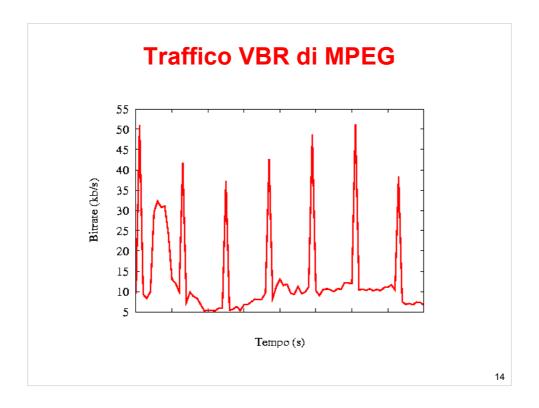
• Bitrate di picco

$$max_T(B(t))$$

Altri parametri

- Inter-packet gap
 - distanza temporale tra 2 pacchetti successivi
- Burstiness
 - lunghezza media (su un intervallo di osservazione) delle sequenze di pacchetti aventi inter-packet gap nullo
- Packet size
 - dimensione in byte del pacchetto
- Packet arrival time
 - istante di arrivo di un pacchetto al ricevitore
- Packet arrival rate
 - numero medio (su un intervallo di osservazione) di pacchetti che arrivano al RX nell'unità di tempo

11


Calcolo della burstiness: esempio

lunghezza media del burst =
$$\frac{(3+3+1+1+1)}{5}$$
$$.=\frac{9}{5}=1.8$$

Tipi di modelli di traffico

- Flussi Constant Bit Rate (CBR)
 - bitrate istantaneo costante e uguale al bitrate medio
 - Esempio:
 - conversazione telefonica tradizionale (64kb/s)
- Flussi Variable Bit Rate (VBR)
 - bitrate istantaneo variabile nel tempo
 - caratterizzato da un bitrate medio e di picco
 - Esempio:
 - traffico dati su una linea dialup
 - flusso di bit prodotto da un codificatore video MPEG

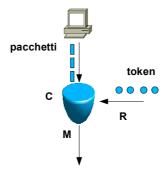
Gli utenti e la rete

- Gli utenti
 - generano traffico avente certe caratteristiche
 - possono chiedere alla rete di assicurare una certa QoS per il proprio traffico
- La rete
 - accetta traffico dagli utenti
 - recapita i pacchetti verso le destinazioni
 - puo' concordare con l'utente che, a fronte di un traffico con certe caratteristiche, garantira' certi valori di QoS (Service Level Agreement - SLA)
 - puo' riservare risorse a certi utenti dotati di SLA

15

Policing

- La rete deve verificare che l'utente rispetti il SLA
 - Si mette un filtro davanti al traffico in ingresso prodotto dall'utente.
 - Solo i pacchetti che passano il filtro rispettano il SLA e quindi avranno QoS garantita
 - Agendo su alcuni parametri del filtro si riproducono i valori del SLA specifico
- Tipi di filtro
 - Leaky bucket
 - Token bucket
- L'utente con un filtro analogo e gli stessi parametri puo' "modellare" il suo traffico in modo che rispetti sempre il SLA (traffic shaping)


Leaky bucket

- Usato per il policing accetta traffico VBR con un dato rate medio e lo trasforma in traffico CBR a tale rate.
- Usato come traffic shaper genera sempre e solo traffico CBR.
- ATT: introduzione di ritardi (critici x multimedia interattivo)

17

Token bucket

- Un cesto di capacita' C [bit] riceve token di 1 bit ogni 1/R secondi
- Un pacchetto in arrivo viene ammesso se ci sono token sufficienti per la sua dimensione nel cesto
- In uscita e' ammesso un rate massimo M

Token bucket (2)

- Il token bucket ammette in uscita un traffico dato da
 - un bitrate medio R
 - un bitrate di picco M
 - la massima lunghezza di un burst al rate di picco pari a

$$\frac{C}{(M-R)}$$

19

Modello Best Effort

- La rete non assicura nulla all'utente
- La QoS istantanea dipende da
 - carico della rete
 - politiche di traffic engineering e routing
 - controllo di congestione end-to-end (TCP)
 - meccanismi di scheduling e dimensione dei buffer

Resource reservation Protocol (RSVP)

Un protocollo per la prenotazione di risorse in Internet

21

Requisiti di progetto

- Deve supportare applicazioni unicast, multicast uno-a-molti e molti-a-molti
- Deve usare le risorse in modo efficiente
- Deve supportare ricevitori eterogenei
- Deve seguire principi di progetto dello stack TCP/IP
 - robustezza rispetto a perdite di pacchetti o guasti
 - adattamento ai cambiamenti di topologia
- Deve rappresentare un'integrazione dell'architettura tradizionale non una modifica

RSVP nell'architettura esistente

- Messaggi incaspulati in IP
 - PATH (unicast o multicast)
 - RESV (unicast)
 - TEARDOWN (unicast o multicast)
- Per la propagazione dei messaggi si usano le normali informazioni di routing unicast o multicast
- Ad ogni "hop" interagisce con il Controllo di Ammissione del router e, se esistono le risorse, le prenota altrimenti avverte il richiedente dell'insuccesso

23

Cosa RSVP non fa

- routing
- controllo di ammissione
- classificazione dei pacchetti
- schedulazione dei pacchetti

RSVP: sommario

- Prenota risorse per ciascun flusso di dati di livello 4
- E' il ricevitore del flusso di dati a decidere se prenotare e quanto prenotare
- Non occorre conferma end-to-end di avvenuta prenotazione ma solo di fallimento

25

RSVP: operazioni (1)

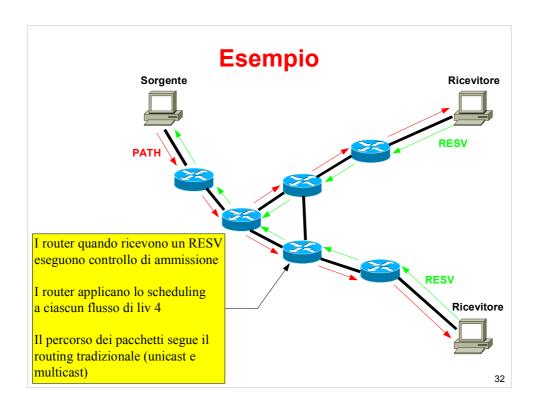
- Esempio: audioconferenza su gruppo multicast con una sorgente e molteplici ricevitori appartenenti al gruppo
- La sorgente invia periodicamente messaggi PATH al/ai ricevitore/i
- Ciascun ricevitore, in risposta ad un messaggio PATH, invia verso la sorgente un messaggio RESV con cui richiede la prenotazione di risorse.
- I messaggi RESV seguono il percorso inverso rispetto ai messaggi PATH.

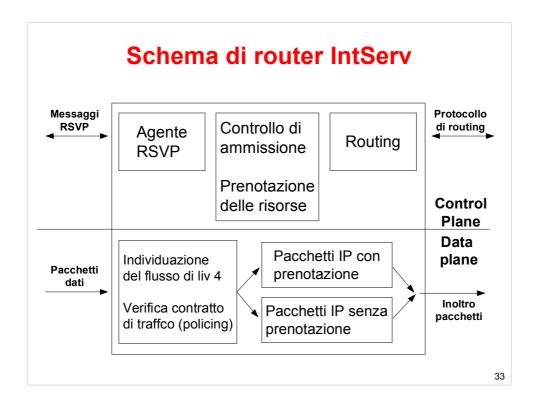
RSVP: operazioni (2)

- I messaggi RESV, hop per hop, portano la richiesta di prenotazione di risorse del ricevitore a ciascun router e alla sorgente del messaggio PATH.
 - se un router non ha sufficienti risorse informa il ricevitore
 - se due o piu' messaggi RESV (quindi provenienti da ricevitori diversi) richiedono risorse per la stessa sorgente allora le richieste vengono fuse prima di essere propagate verso la sorgente
- Quando il messaggio RESV arriva alla sorgente questa è sicura che tutte le risorse sono state prenotate con successo
- Alla fine della sessione, sorgente e ricevitori inviano un messaggio di TEARDOWN

Sorgente Ricevitore RESV RESV

Cambiamenti di topologia


- RSVP è robusto ai cambiamenti di topologia della rete in quanto i messaggi PATH e RESV vengono inviati periodicamente
 - in assenza di cambi di percorso i messaggi periodici rinfrescano semplicemente le prenotazioni
 - quando ci sono dei cambiamenti di topologia i messaggi PATH identificano i nuovi percorsi e i messaggi RESV li seguono a ritroso
 - le prenotazioni non piu' rinfrescate scadono liberando le risorse del router


29

Modello a Servizi Integrati (IntServ)

Concetti fondamentali

- Applicazioni specifiche richiedono QoS
 - garanzie sui ritardi
 - garanzie sulla banda
- La QoS viene fornita a flussi di livello 4
 - ogni flusso è identificato da IP sorgente, IP destinazione, porta sorgente, porta destinazione, protocollo (UDP/TCP)
 - ogni flusso informa la rete delle sue richieste (RSVP)
 - la rete accetta o rifiuta in base al tipo di richiesta e alle risorse disponibili
- Supporto QoS per flussi unicast e multicast
- Flussi QoS possono coesistere con flussi best effort
- I router mantengono info per ogni flusso

Controllo di ammissione

- Messaggio RESV relativo ad un certo flusso di livello 4
 - definizione della QoS richiesta (banda, ritardo)
 - caratterizzazione del traffico che inviera' in rete (parametri token bucket)

Classi di servizio IntServ

- Due classi di servizio standardizzate da IETF
 - Guaranteed Service (GS)
 - Controlled Load (CL)
- Riferimenti
 - Shenker, S., Partridge, C., and R. Guerin, "Specification of Guaranteed Quality of Service", RFC 2212, September 1997
 - Wroclawski, J., "Specification of the Controlled-Load Network Element Service", RFC 2211, September 1997

35

Guaranteed Service

- Garanzie fornite a pacchetti conformi
 - conformita' definita tramite Token Bucket
 - Upper bound su ritardo di rete end-to-end
 - Nessuna garanzia sul ritardo medio
 - Nessuna garanzia sul jitter del ritardo
 - Nessuna perdita per overflow del buffer del router
 - lo spazio nei router viene prenotato
- I pacchetti non conformi sono trattati come traffico best effort

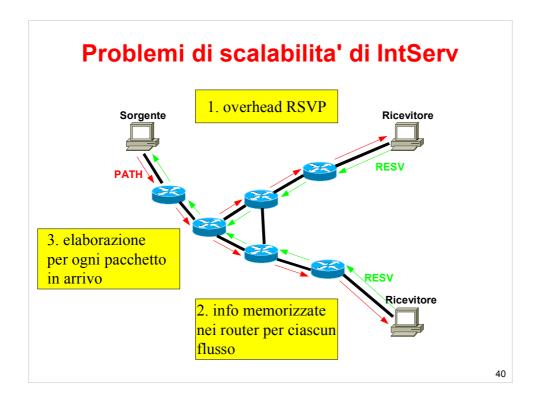
Controlled Load

Principio

 fornire un servizio come in una rete best effort con basso carico e senza congestioni

Garanzie

- Nessuna garanzia sulle perdite
- ...ma le perdite devono essere basse come in GS
- Nessuna garanzia su ritardi e jitter
- ...ma il ritardo di accodamento deve essere basso


37

Bibliografia

- R. Hunt, A review of quality of service mechanisms in IP-based networks - integrated and differentiated services, multi-layer switching, MPLS and traffic engineering, Elsevier CompComm Mag., 2002
- http://www.ietf.org
 - RFC 1633: Integrated Services in the Internet Architecture: an Overview, 1994
 - RFC 2205: Resource ReSerVation Protocol (RSVP), 1997
 - RFC 2210: The Use of RSVP with IETF Integrated Services, 1997
- http://ieeexplore.ieee.org (down. da dentro la facolta')
 - P. P. White, RSVP and Integrated Services in the Internet: a Tutorial, IEEE Communication Magazine, Maggio 1997

Commento

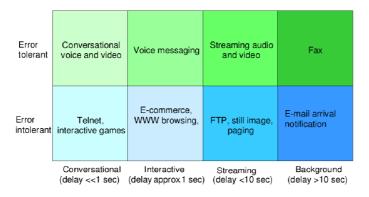
- Vantaggi
 - garanzie fornite a ciascun flusso di livello 4
- Svantaggi
 - complessita' in tutti i router della rete
 - ogni router in ogni parte della rete deve tenere info per ogni flusso di livello 4 (scalabilita')
 - gestione del protocollo RSVP
 - identificazione dei flussi di livello 4 (spacchettamento)
 - policing/queueing/scheduling dei flussi di livello 4
 - definizione delle caratteristiche del traffico in uscita da ogni applicazione
 - certe applicazioni potrebbero non saperlo

Problemi di scalabilita' di IntServ (2)

- Overhead RSVP
 - elaborazione di una coppia PATH/RESV per ogni flusso per ogni periodo di refresh
- Info memorizzate per ciascun flusso
 - identificazione dei flussi (IP sorg, IP dest, porta sorg, porta dest, protocollo)
 - identificazione dell'hop precedente (per inoltrare RESV)
 - stato della prenotazione
 - risorse prenotate
- Elaborazione per ogni pacchetto in arrivo
 - associazione ad un flusso
 - verifica della prenotazione
 - verifica del contratto

41

Modello a Servizi Differenziati (DiffServ)

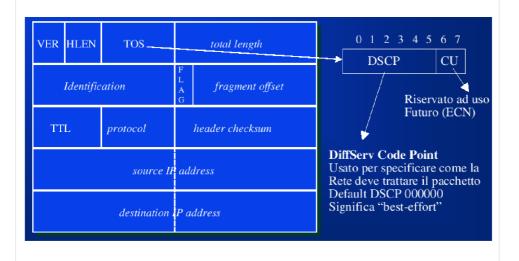

Limiti del modello IntServ


- Prenotazione risorse per singole sessioni
 - simile ad un modello a commutazione di circuito (contro la filosofia di Internet)
 - su Internet le sessioni sono spesso molto brevi --> eccessivo overhead
- Prenotazione lungo tutto il percorso del flusso dati
 - Internet e' una connessione di reti diverse sotto amministrazioni diverse
- Complessita' nel centro della rete
 - Internet ha sempre confinato la complessita' ai bordi della rete mantenendo il "core" semplice ed efficiente

43

Un approccio semplificato

- Permettere agli utenti di specificare SLA per alcune classi di traffico
 - Best effort, better effort, real-time
 - diverse garanzie su banda e ritardi per ogni tipo di classe



Architettura (2)

- Dominio DiffServ: rete IP con amministrazione omogenea della QoS da fornire alle varie classi
- Edge router: tra host e rete DiffServ
- Border router: tra domini DiffServ
- Il tipo di classe a cui appartiene il pacchetto e' indicato in un campo dell'header IP
 - elaborazione a livello 3 e non 4 come in IntServ!
- La marcatura dei pacchetti puo' essere fatta
 - negli host
 - negli edge router
 - nei border router

Marcatura dei pacchetti IP

47

Ruolo dei router

- Gli Edge router marcano il traffico proveniente dall'host in base al SLA oppure fanno il policing dei flussi gia' marcati
 - possono anche fare traffic shaping
- I Border router hanno il compito di mappare le classi di un dominio DiffServ in quelle di un altro dominio
 - l'amministratore potrebbe aver usato DSCP diversi per le stesse classi oppure accorpato piu' classi
- I Core router gestiscono ciascun pacchetto dati in base alla classe di appartenenza
 - code diverse per classi diverse (es. corsia preferenziale, cassa veloce al supermercato)

Vantaggi

- La complessita' computazionale e' confinata il piu' possibile ai bordi della rete
 - (re)marking, policing, (re)shaping
- La differenziazione di trattamento nei core router e' piu' leggera
 - livello 3 invece che 4
 - poche info di stato (solo parametri QoS delle classi)
 - la complessita' dipente dal numero di classi e non dal numero di flussi di livello 4
 - il numero di classi solitamente non e' molto alto
- La QoS puo' essere anche assicurata su parte dell'intero tragitto (diversamente da IntServ)

49

Per-hop behavior (PHB)

- Comportamento che i core router applicano a ciascun pacchetto in base alla classe di appartenza
- PHB standard
 - best effort
 - expedited forwarding (RFC 2598)
 - bassa percentuale di perdita
 - basso delay
 - basso jitter
 - assured forwarding (RFC 2597)
 - bassa percentuale di perdita
 - 4 sotto-classi servite indipendentemente

Expedited forwarding (EF)

- Simile alla posta prioritaria
- Adatta per applicazioni multimediali interattive
- In ogni nodo, l'amministratore deve configurare parte della banda per il traffico EF
 - Il traffico EF deve usufruire della banda indipendentemente dall'intensità di altro traffico attraverso il nodo
 - la banda usata dai pacchetti EF dovrebbe essere, in media, pari almeno alla banda garantita durante qualsiasi intervallo di tempo uguale o più lungo del tempo per inviare un pacchetto di dimensione massima al rate pari alla banda

51

Assured forwarding (AF)

- Simile alla lettera raccomandata
- Obiettivo: dare priorita' all'accesso alla banda
 - utenza "business"
 - utenza dial-up a pagamento
 - utenza dial-up gratis
- Ogni classe usa cio' che rimane della banda e lascia il resto alla classe piu' bassa

DiffServ: considerazioni finali

- assegnare tutto il traffico ad una stessa classe significa tornare al modello best-effort
- Es: rete IP con traffico dati + multimedia real-time
 - best-effort per il traffico dati
 - expedited e assured forwarding per multimedia
- Oggi con pochi servizi multimediali funziona
- Cosa succedera' quando il traffico multimediale pareggiera' o superera' il traffico dati?
- Possibile soluzione
 - non tutti i pacchetti multimediali alle classi nobili (cercare un punto ottimo)
 - torna il compromesso rate (risorse) distortion

53

Bibliografia

- R. Hunt, A review of quality of service mechanisms in IPbased networks - integrated and differentiated services, multilayer switching, MPLS and traffic engineering, Elsevier CompComm Mag., 2002
- http://www.ietf.org
 - RFC 2474: Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers, 1998
 - RFC 2475: An Architecture for Differentiated Services, 1998
 - RFC 2597: Assured Forwarding PHB Group, 1999
 - RFC 2598: Expedited Forwarding PHB Group, 1999
 - RFC 2638: A Two-bit Differentiated Services Architecture for the Internet, 1999
- http://ieeexplore.ieee.org
 - B. E. Carpenter, K. Nichols, Differentiated Services in the Internet, Proceedings IEEE, vol. 90, n. 9, settembre 2002 54