Distributed Embedded Systems

Andrea Acquaviva

Scopo del Corso

. . Gestione della .
Nuovi servizi) Computazione

. o sicurezza)
multimediali collaborativa

. . ial of ice, .
(videoconferencing, (de:rlaangazsii:/ilce (cluster/grid
VolP, IPTV) computing)

bancarie)

Programmazione, ottimizzazione, gestione
(OS, middleware, applicazioni)

Potenza computazionale e
Velocita e capacita delle complessita elementi di rete
reti (router, gateway multimediali,
base stations)

20/01/2008

20/01/2008

Contenuti del Corso

Programmazione parallela per sistemi embedded
Il corso & organizzato in vari moduli, in genere uno per lezione
Sommario dei contenuti

— Applicazioni (videoconferenza, VolP, encryption, packet scheduling,
transcodifica video, etc)

— Modelli computazionali (kernel computazionali, control e data-flow
oriented applications, task graph)

— Hardware (piattaforme multiprocessore, memorie, interconnection
network, primitive di comunicazione, affidabilita)

— Modelli di programmazione (message passing, shared memory,
threads)

— Software di sistema (compilatori, autotuners, OS, virtual machines)

— Metriche e ottimizzazione (allocazione e bilanciamento del carico e
della comunicazione)

Introduction

In 2005 Intel announced that its high performance microprocessor would
rely on multiple processors or cores

— OK for multiprogrammed workload, but what for single tasks?

— Programmability?

Applications Hardware
Tension between

1. What are the Embedded & Server 3. What are the

applications? Computing hardware
huilding blocks?

2. What ars

common 4. How to

kemels of the Programming Models connect them?

applications? 5. How to describe applications and

kernels?
6. How fo program the hardware?

Evaluation:
7. How o measure success?

Figure 1. A view from Berkeley: seven critical questions for 21 Century parallel computing
(This figure is inspired by a view of the Golden Gate Bridge from Berkelay.)

20/01/2008

INTRO |

Application Scenario

Embedded vs Server Computing

* They have more in common than in the past
— Power
— Hardware utilization (cost)
— Software reuse (limit hand tuning)

— Network connection (protection, resource sharing
and scheduling)

— Real time requirements

Motivation (1/3)

1. Old CW: Power is free, but transistors are expensive.

New CW is the “Power wall”: Power is expensive, but transistors are “free”. That is, we can put more transistors
on a chip than we have the power to turn on.

2. Old CW: If you worry about power, the only concern is dynamic power.
New CW: For desktops and servers, static power due to leakage can be 40% of total power.

3. Old CW: Monolithic uniprocessors in silicon are reliable internally, with errors occurring only at the pins.

New CW: As chips drop below 65 nm feature sizes, they will have high soft and hard error rates. [Borkar 2005]
[Mukherjee et al 2005]

4. 0ld CW: By building upon prior successes, we can continue to raise the level of abstraction and hence the size
of hardware designs.

New CW: Wire delay, noise, cross coupling (capacitive and inductive), manufacturing variability, reliability (see
above), clock jitter, design validation, and so on conspire to stretch the development time and cost of large
designs at 65 nm or smaller feature sizes.

5. Old CW: Researchers demonstrate new architecture ideas by building chips.

New CW: The cost of masks at 65 nm feature size, the cost of Electronic Computer Aided Design software to
design such chips, and the cost of design for GHz clock rates means researchers can no longer build
believable prototypes. Thus, an alternative approach to evaluating architectures must be developed.

Motivation (2/3)

6. Old CW: Performance improvements yield both lower latency and higher bandwidth.

New CW: Across many technologies, bandwidth improves by at least the square of the improvement in latency.
[Patterson 2004]

7. Old CW: Multiply is slow, but load and store is fast.

New CW is the “Memory wall” [Wulf and McKee 1995]: Load and store is slow, but multiply is fast. Modern
microprocessors can take 200 clocks to access Dynamic Random Access Memory (DRAM), but even
floating point multiplies may take only four clock cycles.

8. Old CW: We can reveal more instruction-level parallelism (ILP) via compilers and architecture innovation.
Examples from the past include branch prediction, out-of-order execution, speculation, and Very Long
Instruction Word systems.

New CW is the “ILP wall”: There are diminishing returns on finding more ILP. [Hennessy and Patterson 2007]

9. Old CW: Uniprocessor performance doubles every 18 months.

New CW is Power Wall + Memory Wall + ILP Wall = Brick Wall. Figure 2 plots processor performance for almost
30 years. In 2006, performance is a factor of three below the traditional doubling every 18 months that we
enjoyed between 1986 and 2002. The doubling of uniprocessor performance may now take 5 years.

20/01/2008

20/01/2008

Motivation (3/3)

10. Old CW: Don’t bother parallelizing your application, as you can just wait a little while and run it on a much
faster sequential computer.

New CW: It will be a very long wait for a faster sequential computer (see above).

11. Old CW: Increasing clock frequency is the primary method of improving processor performance.
New CW: Increasing parallelism is the primary method of improving processor performance.

12. Old CW: Less than linear scaling for a multiprocessor application is failure.
New CW: Given the switch to parallel computing, any speedup via parallelism is a success.

10000 —

??%lyear

g

52%lyear

Performance (vs. VAX-11780)

5

1 T T T T T T T T T T T T T

1978 1980 1982 1984 1986 1888 1990 1992 1984 1996 1998 2000 2002 2004 2006

Parallel Computing Applications

eneral purpose
(PCs)
Network processors

(routers, media gateway,
base stations)

Parallel

. Media servers
computing

(url balancing)

Scientific and
entertainment computing
(physical event modelling,

video rendering)

Mobile terminals
(palmtops, smart-phones)

Evolving Network Scenario (1/2)

* Network speed is increasing
— High speed routers: 0C-192 (10Gb/s) or OC-768 ($40Gb/s)
* Network applications requirements are increasing and
more functionalities are needed along with packet
processing
— Packet content processing
* New services:
— Packet classification, QoS support, real-time constraints,
traffic shaping, intrusion detection, security support, active
networks

— VolIP gateways, video transcoding

Evolving Network Scenario (2/2)

Bandwidth (Mbyte/sec)

100,000 OC% 4

x4
0C192
10,000 y‘ 10Gh
1000 OC]'@
622M

2

X
100 BS3
@ 44Mb DS= Digital
Signal
10 x28 7

@
1.5M
1
XZ%
0.1
DSQ 64K
1980 1985 1990 1995 2000 2005 year

OC = Optical
Carrier

20/01/2008

Impact on Network Equipment

Increasing computational effort as applications are more sophisticated

— Flexibility to support different and evolving network protocols (e.g. security
applications)

— Processing at line rates

Current programmable network processors such as the Intel IXP2800
target low performance (100Mbs to 10Gbps)

Evolution

purpose

need of performance need of programmability
lack of programmability and more performance

High Performance & Flexibility

Sun Microsystems

10°x Average Bandwidth Growth
105x 2x every 16 months
=
‘§ 10*x
o
o 10%x
2
10%x Average CPU Growth
1x 2x every 24 months

1975 1980 1985 1990 1995 2000

Growth in networking bandwidth has outstripped the advances in
computing

ASIC-based high-performance networking devices are inflexible and impede
introduction of new services

Need for ability to rapidly develop and deploy new services into existing
networks

Need for programmability with high performance in the data-plane

14

20/01/2008

Network Application Complexity (1/2)

Network Complexity
Application Insts per byte

Deficit Round Robin 4.1
i)
o T | IP Header 7.7
8 8 | Fragmentation
3=
%’-Q Radix Tree Routing 2.1
(o]

TCP Filter Matching 10.3

Encoding | Decoding

o -
3 2 Encryption 104 104
$ < | JPEG Transcoding 81 60
0 o
2. 2 | Reed-Solomon FEC 603 1052
>
«Q

Lempel-Ziv 226 35

Compression

[Wolf@UMass]

Single CPU example:

Network speed: 10Gbps
Packet arrival rate: ~50ns
CPU frequency: 2.4GHz
Clock Period: 0.41ns
Insts per clock: 4
Insts per packet: ~500

— Line-rate processing
Insts per byte: ~8

15

Network Application Complexity (2/2)

This allows an average of 500 instructions that the processor
can execute on each packet prior to the arrival of the next

packet.

This severely limits the number of operations (and therefore
the applications) that can be performed on the arriving

packets.

This example clearly brings out the inability of general-
purpose processors in performing networking functions at

line-rate.

20/01/2008

New Types of Network Applications

¢ Deep packet classification processing

Single field: a single header field is examined (e.g. packet forwarding)

Multi-field: multiple fields are examined (e.g. firewall, QoS
applications like IntServ, Diffserv)

Deep: examines both headers and payload (server load balancing,
intrusion detection, virus scanning)

Must be executed at line rates

e Security related applications

Web servers: e-commerce, banking, financial trading (SSL, TLS)
CPU intensive, 5 to 7 times more than other network applications
Must be executed at line rates

Kernels of network applications

¢ Six categories [Yi2006]:

Pattern matching (e.g. lookup tables)

Lookup (e.g. IPv4 and IPv6 routing)

Computation (e.g. checksum)

Data manipulation (e.g. decrement TTL in IPv4 routing)
Queue management (e.g. packet dropping, shaping)
Control processing (e.g. table updates, statistics)*

¢ Data intensive and branch intensive

Ex: high load/store instruction ratio: Netbench TL, ROUTE, DRR, NAT
(75%)

Ex: relatively high branch ratio: Netbench IPCHAINS (15.3%), CRC
(2.5%)

(*) not at line rates

20/01/2008

Type of Network Application Tasks

* Type of tasks: data path, control path, management path
* Data path at line rate
— Receiving transmitting from MAC devices
— Packet forwarding, classification, queuing, scheduling
* Control path are less time-critical
— Table maintenance, routing, signaling policy management
— Typically present little data parallelism
* Management path
— System initialization, configuration

Ling-rale Fath Dala Fath

-Forww ding

CueningSchediling Cataln Diam Cui
.[iata Transformation

-Chssification

Slow-spessd Palh t A J'

-Routing Frocewing - H -

JError Frocessing

At stics Reporling

[Coifigumtion, e Control Mg smeni

Fath

Need of Scalability

Performance scales well as the amount of processing increases
— Increasing QoS requirements
— Increasing number of media streams
A scalable application architecture is obtained by distribution
— Parallelizing application algorithms
— Distribution of processing
Distribution:
— On-chip: exploit task level and packet level parallelism to distribute
workload among processing elements

— On-network: offload some task to network elements such as media
gateway to improve computation-communication trade-off

20/01/2008

10

Parallelism in Network Applications

* Net apps are typically layered (ISO-OSI model)

— Produce parallelism

* Packet parallelism

— Packet-level parallelism: each incoming packet is independent from
others and can be processed concurrently (exploited in current
commercial routers with IXP2800)

— Intra-packet parallelism: different tasks processing a packet, for
instance source and destination MAC address manipulation

* Packet dependency
It requires synchronization between packet processing

With TCP connections for encryption, state maintenance

For routing, address translation tables, traffic management counters

Example: for TCP flows, dependency probability of 14% in a window of
100 packets

Generic Platform

CPU . CPU CPU

v 9 I R

MWMR wrapper cache cache cache MWMR wrapper

Input engine Coprocessor

v

t v 3 3 I L S

interconnect

v

vy v v v v

MWMR wrapper
Semaphore External
;; A A ITY
ran Engine RAM

controler

Output engine

Base plateform

20/01/2008

11

Mapping

Multi-thread application

Application Mapping

Multi-processor architecture

The system designer must have
the following possibilities :

 choose the hard/soft
implementation for each task

» map the software tasks on the
programmable processors (and the
hardware tasks on synthesized or
existing coprocessors)

* map the communication channels
onto the physical memory banks

Application Model

The software parallel application is described as a task graph with
two types of nodes : tasks & communication channels.

Tasks communicate through Multi-Writer / Multi-Reader FIFOs..

Tasks can be hardware or

Q-

!

_..

20/01/2008

12

MWMR Communication Channels

Each MWMR channel is implemented as a software FIFO,
and is caracterized by 2 parameters: width & a depth.

Each MWMR channel is protected by a lock, in order to guarantee
exclusive access.

Read & Write communication primitives are non-blocking :
- int mwmr_read(channel_id, *buffer, nb_bytes)
- int mwmr_write(channel_id, *buffer, nb_bytes)

As any task can be implemented in hardware or software,

MWMR channels can be accessed by both hardware and
software controllers.

The software versions of the communication primitives are
built upon the POSIX API : The software application can be
executed on any UNIX workstation, before being mapped on
the SoC.

Task Structure Example

IPV4 Routing Application

20/01/2008

13

Task Structure Example

Classification Application

Memory Management

* The network processor must have the largest possible storage
capacity (several thousands packets).

* In networking applications, the relevant information is
usually located within the first few bytes of a packet.

* On-chip memory is limited

- External RAM is mandatory, with a careful allocation/free
policy.

- Only the packet descriptors are stored in the on-chip RAM.

20/01/2008

14

Memory Management

,Slot” Data Structure

¢ Descriptor (128 bits) : MWMR channels -
e First slot (128 bytes) : on-chip RAM -
* Following slots (128 bytes) : external RAM -

Use of Coprocessors

Both the Input Engine and Output Engine coprocessors are
configured by software, and use a MWMR hardware
controller.

* |nput Engine

— Its aim is to copy the packets coming from the Gigabit Ethernet
link into system memory.

— It implements the management of the slot structure.

* Qutput Engine
— Its aim is to reconstitute the packets from their slots in order
to copy them to the outgoing Ethernet link.
— The Output Engine works symmetrically to the Input Engine.

20/01/2008

15

Examples

Content Processing Networks (1/2)

Content networking overcomes the inadequacies of existing networks by
introducing intelligence into the network in order to enhance performance of
services and delivery of content to the consumer

Content Delivery Networks (CDN) are typically implemented as overlay networks
and contain one or more nodes that can inspect and/or manipulate information in
higher networking layers (four through seven in the OSI reference model).
Examples of CDNs include web cache networks and video streaming networks.

Examples of content networking devices include voice packet gateways, web
caches, load-balancing switches and firewalls

Network —
Access Optical
Network Metro Core
EEEN Network Netwark
|
Enterprise
Metwaork
>
User Control Service Provider Control

20/01/2008

16

Content Processing Networks (2/2)

¢ The network edge is typically characterized by an “impedance mismatch”.
The mismatch is typically due to differences in physical network attributes
such as network size, link bandwidth, network latency, network capacity
or abstract attributes such as trust, authority.

¢ Such discrepancies in the network boundaries can be overcome by
additional processing of the traffic flowing across them. However, this
additional processing is often not the same for all traffic types, and is
typically not known a priori. Content Networking applications adapt the
processing to the type of traffic flowing across a given network edge.

CAG

¢ Streaming media delivery over context aware gateway (CAG)

— The SMD application on the source CAG edge node replicates and
unicasts the source video stream to the destination CAG edge device
at each of the client sites. Thus, the application does not have to
perform any multicasting and the bottleneck problem at the source
access link is avoided.

Enterprise Network

Video Server Access

Application clients
Link Access

20/01/2008

17

Mapping Tasks on CAG

¢ Streaming media application

— Delivers contents to clients
e Compression application

— For clients requesting compressed media streams
* Encryption can be cascaded as well

Streaming
Media Compression "
Application Application poceeTiy

Content-Aware Gateway

RTVCA

* Real time video content analysis

— Surveillance systems, traffic control

C: Classification
E: feature Extraction

F: Filtering
4 S: Streaming

Filtered media streams |

Extracted features

(tasks + flows of data)

Media streams

| | Directed Acyclic Graph (DAG)

20/01/2008

18

Parallelization Example 1

* Real time tracking of moving object in a video stream
* |t can be executed in parallel by four processors

Tracked

Classification 4 Position={3.3)
aT
" A L2134
i 3 .
feature ME OT: Object Tracking

AT ry ME: Motion Estimation
i n CF : Color Filtering
s VS : Video Streaming
Filtering CF + : Event Notification
+ !n 4 : Filtered media stream

Streaming Vs , Media stream

Parallelization Example 2

* Finer granularity

* Focusing on processing bottlenecks
— Motion estimation: 2 processors
— Classification: 3 processors

9O ;‘-C;Zthzﬁ (33) Parallel processing
Classification o at different levels
PF PF
4 Yra 2 il
i . % CO: Coordination

feature PF : Particle Filtering

o ME ME 5 : -
Extraction - ! o ME: Motion Estimation
P] CF : Color Filtering

VS: Video Streaming
-

Filtering | CF CF : Event Notification
4 :Filtered media stream

Streaming Vs t : Video Stream

20/01/2008

19

INTRO I

Software Challenges

Reliability and Partitioning

¢ Shift to multicore in embedded systems
— Stability, reliability, performance assurance, low-power
— Rich and heterogeneous application scenario
— GP OSes + real-time OSes
¢ Reliability
— Performance assurance = reliability in normal operations
— Robustness = reliability in abnormal situations
¢ Two approaches
— Hardware (multicore)
— Software (OS scheduling and system protection)

40

20/01/2008

20

Reliability

Reliability of embedded systems can be enhanced by multicore and
partitioning approaches

— Physical partitioning by multicore AMP with distributed memory

— Logical partitioning by processor virtualization and SMP

More flexible and scalable platforms

41

Partitioning

Multitasking parallel model
— CPU core level partitioning
— OS kernel level partitioning
An independent instance of the OS kernel runs on each CPU core in an
AMP type of multicore system
— Isolation between interrupt driven real time and CPU centric application
On SMP, hardware facilities allow
to run multiple OSes

[Richard Low, Sept. 2005]

42

20/01/2008

21

Logical Partitioning

¢ Partitioning by physical cores has limitations
— Flexibility is an issue (application dependency)
* Go to logical partitioning
— Virtualization (multiple Oses on the same CPU core)
¢ AMP is not necessarily the best architecture, SMP may be preferable, SMP can be

more scalable

— Go to SMP architectures
— Pure SMP OS are not efficient

43

Hybrid SMP/AMP

e SMP OS applies AMP scheduling
¢ Specific tasks are bounded to defined CPU using CPU-affinity functions
* Heterogeneous OS environment
¢ Balance reliability and flexibility
— Proper control of scheduler
— Assignment of resources

20/01/2008

22

Software Design Challenges (1/2)

e Compiler enabling automatic task level parallelism in the Multitasking
parallel world
¢ Partitioning vs Communication
— Need OS wrapping for communication between different execution domains
— Using compatible API with local execution domain (such as SysV IPC)
¢ Task allocation and migration locally and between execution domains

¢ Resource assignment architectures with multiple voltage and frequency
domains (GALS)

45

Software Design Challenges (2/2)

Task allocation

Communicating
tasks

Communication
& synchronization

S

=] ™
)

Parallel
compilation

Power Management

46

20/01/2008

23

